Логика формальная и графическая модель описания работы хлебозавода
Представление структуры объекта в виде множеств. Исследование отношений на рефлексивность, транзитивность, симметричность. Определение логических взаимосвязей между множествами объекта. Представление структуры управления в виде графов, матрицы смежности.
Рубрика | Математика |
Предмет | Основы дискретной математики |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Яна |
Дата добавления | 07.06.2010 |
Размер файла | 278,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение логических взаимосвязей между цветами при помощи аппарата дискретной математики. Структуры объекта в виде множеств, граф отношений между ними. Исследование на рефлексивность, транзитивность, симметричность. Матрицы смежности и инцидентности.
контрольная работа [129,4 K], добавлен 07.06.2010Разработка логико-формальной модели описания методики изготовления винных изделий. Разделение ингредиентов и продукции на множества. Исследование на рефлексивность, транзитивность, симметричность. Построение графа, матрицы смежности и инцидентности.
контрольная работа [165,2 K], добавлен 07.06.2010Отношение Р и наличие стандартных свойств: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность. Графы и матрицы замыканий отношения Р. Таблица значений, граф и матрица функции f. Исследование М на линейность (полноту).
контрольная работа [3,3 M], добавлен 06.06.2011Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат [368,2 K], добавлен 13.06.2011Нечёткие системы логического вывода. Исследование основных понятий теории нечетких множеств. Операции над нечёткими множествами. Нечёткие соответствия и отношения. Описания особенностей логических операций: конъюнкции, дизъюнкции, отрицания и импликации.
презентация [191,0 K], добавлен 29.10.2013Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.
реферат [70,9 K], добавлен 11.03.2009Понятие и матричное представление графов. Ориентированные и неориентированные графы. Опеределение матрицы смежности. Маршруты, цепи, циклы и их свойства. Метрические характеристики графа. Применение теории графов в различных областях науки и техники.
курсовая работа [423,7 K], добавлен 21.02.2009Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа [625,4 K], добавлен 30.09.2014Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа [85,5 K], добавлен 09.01.2009Графическая интерпретация множеств и операций над ними. Математическая логика, булева алгебра. Совершенная конъюнктивная нормальная форма. Равносильные формулы и их доказательство. Полнота системы булевых функций. Логика предикатов, теория графов.
лекция [253,7 K], добавлен 01.12.2009