Автоколебания системы с одной степенью свободы
Исследование движений автоколебаний системы с одной степенью свободы под действием внешней периодической силы, решение в случае достаточно сильной расстройки в области резонанса. Применение общих формул к теории захватывания в регенеративном приемнике.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.06.2010 |
Размер файла | 128,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Автоколебания системы с одной степенью свободы
Введение и краткое резюме
Настоящая работа посвящена исследованию движений автоколебаний системы с одной степенью свободы под действием внешней периодической силы. Такие движения представляют интерес для радиотелеграфии (например, к исследованию таких движений сводится теория регенеративного приемника). Особенно замечательно здесь явления так называемого "захватывания". Это явление заключается в том, что, когда период внешней силы достаточно близок к периоду автоколебаний системы, биения пропадают; внешняя сила как бы "захватывает" автоколебания. Колебания системы начинают совершаться с периодом внешнего сигнала, хотя их амплитуда весьма сильно зависит от амплитуды "исчезнувших" автоколебаний. Интервал захватывания зависит от интенсивности сигнала и от автоколебательной системы.
Теоретически этот вопрос уже разбирался, однако методами математически недостаточно строгими; кроме того, бралась характеристика весьма частного вида - кубическая парабола. Поэтому мы будем рассматривать случай произвольной характеристики при колебаниях близких к синусоидальных.
В этой работе мы рассмотрим периодические решения с периодом, равным периоду внешней силы, и их устойчивость при малых отклонениях. Мы оставим в стороне другие стационарные движения, возможные в исследуемой системы, например периодические решения с периодом, кратным периоду внешней силе, или квазипериодические решения. Мы оставим в стороне важный вопрос об устойчивости при больших отклонениях
Для отыскания периодических решений воспользуемся методом Пуанкаре, которые позволяют быстро решить задачу для случая колебаний, достаточно близких к синусоидальным. С этой целью введем в наше уравнение параметр таким образом, чтобы при = 0 уравнение превращалось в линейное и колебания делались синусоидальными. Этот параметр , который мы предполагать достаточно малым, может иметь различный смысл в зависимости от выбора системы.
Для решения вопроса об устойчивости найденного решения при малых отклонениях воспользуемся методами Ляпунова, требуя, чтобы искомые решения обладали "устойчивостью по Ляпунову".
В настоящей работе мы не будем вычислять радиусы сходимости тех рядов, с которыми нам придется иметь дело; грубая оценка может быть сделана по Пуанкаре.
В § 1 и 2 рассматривается область достаточно сильной расстройки; § 3 и 4 посвящены рассмотрению области резонанса; в § 5 показывается, как общие формулы для амплитуд и для устойчивости, полученные в § 1- 4, могут быть применены в конкретных случаях, причем в качестве примера рассматривается случай Ван дер Поля. Результаты применения общих формул совпадают с теми, которые получил нестрогим путем Ван дер Поль.
§1. Отыскание периодического решения в случае достаточно сильной расстройки
Уравнение, которое нас будет интересовать:
При = 0 это уравнение имеет единственное периодическое решение
Рассмотрим случай, когда бесконечно мало. Согласно Пуанкаре мы будем искать решение (1) в следующем виде:
Начальные условия выберем так:
F2 - степенной ряд по 1 2, начинающийся с членов второго порядка. Подставим (3) в (1):
Сравнивая коэффициенты при 1 2, получим уравнение для А, В, С. Начальные условия можно получить для них, подставив (4) в (3).
Решая задачи Коши, получим:
Для того, чтобы (3) представляли периодические решения необходимо и достаточно, чтобы
Введем обозначения ; для остальных функций аналогично.
Тогда (6) запишется в виде:
Если в этой системе можно 1 2 представить в виде функции так, чтобы 1 2, исчезли из системы (7) , то (3) - периодическое решение уравнения (1). Иначе Х- не периодично. Достаточным условием существования периодического решения при малых служит неравенство 0 Якобиана.
В нашем случае:
Т.е. мы всегда имеем периодические решения при малых и любых f. Искомое периодическое решение может быть найдено в виде.
§2. Исследование устойчивости периодического решения
Составим уравнения первого приближения, порождаемое решением (8). Сделаем замену: x = Ф(t) + ; в уравнении (1) при этом отбросим члены, содержащие квадраты и высшие степени и '.
Воспользуемся тем фактом, что Ф (t) - решение уравнения. Получим уравнение первого приближения:
Это линейное дифференциальное уравнение с периодическими коэффициентами. Его решение мы будем искать в виде функции времени Удовлетворяют тому же уравнению, что и , то есть (10). Начальные условия для них определены следующим образом.
;
аналогичным образом можно показать, что (11).
Представим правую часть уравнения в виде степенного ряда по .
будем искать в виде:
(12).
Подставим (12) в (10) и сравнивая коэффициенты при соответствующих степенях , получим:
Начальные условия для Ао , Во, …. Следует выбрать так, чтобы выполнялись условия (11). Действительно подставляя (11) в (12) и сравнивая коэффициенты при соответствующих степенях , получим
Для В'о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:
(14)
Решение (13) можно найти при помощи квадратур:
(15)
Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:
S1, S2 - периодические функции с тем же периодом, что и Ф (t). 1, 2 - характеристические показатели.
Если все, т.е. колебания затухают, то в этом случае выполняется теорема, доказанная Ляпуновым, относительно того, что периодическое решение уравнения первого приближения вполне устойчиво. Согласно Пуанкаре характеристические показатели можно определить из следующего уравнения:
(16) Полагаем ;
Тогда определитель будет:
Вопрос об устойчивости, как сказано выше, решается знаком Re (), или что все равно . Если < 1 имеет место устойчивость = 1 этот случай для нашей задачи не представляет интереса. > 1 имеет место неустойчивость.
При рассмотрении (18) имеют место 2 случая q > р2; q < р2; В первом случае -комплексные; 2=q; (20) если q<1; устойчивость q>1 - неустойчивость.
Случай второй - - действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени из формул (19) (12).
(22)
Если принять во внимание (15)
(22a)
(23)
Мы видим, что при достаточно малом и n; n Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0- имеет место устойчивость, b > 0 - неустойчивость.
В нашем случае b имеет вид:
(23a)
§ 3. Отыскание периодического решения в области резонанса
Тогда о; 2 = 1+ aо , (24) (aо , - расстройка, реальный физический резонанс наступает при aо 0).
Тогда исследуемое уравнение имеет вид :
(25)
При = 0 периодическое решение будет иметь вид:
(26)
Следуя Пуанкаре, мы можем предположить периодическое решение в виде:
(27);
Начальные условия возьмем как и раньше:
Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при 1 2, и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).
(29)
Запишем условия периодичности для (27):
Делим на :
( 30a )
Необходимым условием существования периодического решения является:
Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме:
(31)
Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).
D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить 1, 2, в виде рядов по степеням . Таким образом, мы можем (27) как и в § 1 представить в виде ряда.
(33)
P,Q-определяются формулами (31) (32).
§4. Исследование устойчивости периодических решений в области резонанса
Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).
Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв:
Из формул (22) (34) , тогда
- тот же Якобиан, что и (32). Распишем его:
(36)
;
Тогда, зная функцию f, мы можем вычислить в виде функции P, Q и aо.
Заметим, что равенство (23 а) в нашем случае имеет вид:
; (37)
Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых )
1) p2 - q < 0
2) p2 - q > 0
В первом случае устойчивость характеризуется условием q<1 или, что то же самое b<0.
Во втором случае
(*)
последнее может быть выполнено только, если b < 0, а > 0. Нетрудно видеть, что необходимым достаточным условием в обоих случаях является b < 0, > 0.
§5. Применение общих формул, полученных в предыдущих параграфах, к теории захватывания в регенеративном приемнике для случая, когда характеристика - кубическая парабола
Мы рассмотрим простой регенеративный приемник с колебательным контуром в цепи сетки, на который действует внешняя сила Ро sin 1 t.
Дифференциальное уравнение колебаний данного контура следующее:
(39)
Считая, что анодный ток зависит только от сеточного напряжения, а также, что характеристикой является кубическая парабола:
(40)
S-крутизна характеристики, К - напряжение насыщения .
Далее, вводя обозначения:
Получим дифференциальное уравнение для х:
(41)
А: (случай далекий от резонанса).
Для него применяем результаты § 1, полагая.
Исходное решение в не посредственной близости, к которому устанавливается искомое решение следующее:
Если > 1, т.е. о > 1, то разность фаз равна 0, если < 1, то разность фаз равна . В этом отношении все происходит в первом приближении также, как и при обычном линейном резонансе. Устойчивость определяется знаком b (b < 0).
(42).
Т.е. те решения, для которых выполняется это условие, устойчивы.
В: (область резонанса , §3, 4).
В качестве исходного периодического решения, в непосредственной близости к которому устанавливается искомое, будет решение следующего вида:
x = P sin t + Q cos t (P, Q - const).
Запишем уравнение, определяющее эти P и Q, т.е. соотношение (31) для нашего случая.
Или преобразовав их, получим следующее:
Полагая Р = R sin ; Q = R cos . Далее найдем для амплитуды R и фазы для того исходного периодического решения, в близости к которому устанавливается рассматриваемое периодическое решение, соотношения связывающие их:
Первая формула дает "резонансную поверхность" для амплитуды. Вторая - для фазы. По (38) условия устойчивости имеют вид b < 0, > 0. Считаем b и через формулы (35-37).
(46)
Т.е. решение является устойчивым, если удовлетворяется условие (**). В заключение выпишем формулы для вычисления aо, соответствующего ширине захватывания для рассматриваемого случая.
1)
a0 - является общим корнем уравнений
2)
Сама ширина , отсчитанная от одной границы захватывания до другой выражается следующим образом: = aо 2о (MS - c r). Можно дать простые формулы для вычисления ширины захватывания в следующих случаях:
а) 2о << 1; = о Ро/Vоg.
б) для очень сильных сигналов (Vоg - амплитуда сеточного напряжения при отсутствии внешней силы).
Список литературы
Андронов А.А. Собрание трудов, издательство "Академии наук СССР", 1956.
Андронов А.А., Витт А. К теории захватывания Ван дер Поля. Собрание трудов, издательство "Академии наук СССР", 1956.
Ляпунов А. Общая задача об устойчивости движения, Харьков, 1892.
Подобные документы
Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [243,8 K], добавлен 11.05.2012Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.
курсовая работа [530,7 K], добавлен 21.08.2009Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).
презентация [12,2 K], добавлен 20.12.2011Знакомство с примерами возникновения свободных колебаний. Поиск геометрической интерпретации главных координат. Анализ основных формул для нахождения нормальных координат. Поиск коэффициентов распределения, колебание координат на собственной частоте.
курсовая работа [366,2 K], добавлен 11.07.2012Характеристика основных понятий теории упругости, уравнений равновесия и формул Коши, анализ линейного закона Гука и определение условий пластичности. Решение задачи упругопластической деформации трубы под действием равномерного внутреннего давления.
дипломная работа [511,3 K], добавлен 13.02.2010Методы исследования операций для количественного анализа сложных целенаправленных процессов. Решение задач методом полного перебора и оптимальной вставки (определение всевозможных расписаний, их очередности, выбор оптимального). Генератор исходных данных.
курсовая работа [476,3 K], добавлен 01.05.2011Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.
курсовая работа [165,8 K], добавлен 12.10.2009Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа [371,6 K], добавлен 14.01.2015Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.
контрольная работа [98,6 K], добавлен 19.04.2015Решение системы линейных уравнений методами Крамера, обратной матрицы и Гаусса. Расчет длин и скалярного произведения векторов. Уравнение прямой, проходящей через точку параллельно направляющему вектору. Расчет производных функций одной и двух переменных.
контрольная работа [984,9 K], добавлен 19.04.2013