Гамма-функция
Бета и гамма-функция, представленные интегралами Эйлера первого и второго рода. Вычисления интегралов с помощью рассматриваемых функций. Выведение формулы Стирлинга, дающей в частности приближенное значение производной при больших ее значениях.
Рубрика | Математика |
Предмет | Математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Валентина |
Дата добавления | 13.03.2010 |
Размер файла | 142,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение функций "бета", "гамма". Эйлеров интеграл первого и второго рода. Связь между функциями "бета" и "гамма". Формула Эйлера, интеграл Раабе. Основные свойства гамма-функции при ее определении. Отличие дифференцирования от интегрирования.
дипломная работа [167,9 K], добавлен 08.10.2011Несобственные интегралы первого, второго и третьего рода. Вычисление несобственных интегралов с помощью вычетов. Несобственные интегралы, содержащие параметр. Гамма-функция и бета-функция Эйлера. Критерий Коши и эквивалентные условия сходимости.
курсовая работа [1,5 M], добавлен 20.09.2013Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа [851,0 K], добавлен 03.07.2008Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.
презентация [69,4 K], добавлен 17.09.2013Сущностные характеристики плоского и планарного графа. Основные особенности формулы Эйлера и критерия Понтрягина-Куратовского, их доказательства. Общая характеристика двух критериев планарности. Сущность и значение процесса применения гамма-алгоритмов.
реферат [148,8 K], добавлен 25.12.2011Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.
курс лекций [119,3 K], добавлен 21.04.2009Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.
презентация [525,7 K], добавлен 11.09.2011Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа [612,2 K], добавлен 01.06.2014Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009