Перевод числа из одной системы счисления в другую
Перевод целого числа из двоичной (восьмеричной) системы в десятичную. Арифметические действия в заданной системе счисления. Перевод чисел из десятичной системы в системы с основаниями 2, 8 и 16. Алгоритм определения минимального из десяти заданных чисел.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.03.2010 |
Размер файла | 31,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Задание №1
Вопрос №1
Перевести заданные числа в десятичную систему счисления
ТАБЛИЦА
Система счисления |
||||
10 |
2 |
8 |
16 |
|
0 |
0 |
0 |
0 |
|
1 |
1 |
1 |
1 |
|
2 |
1 0 |
2 |
2 |
|
3 |
1 1 |
3 |
3 |
|
4 |
1 0 0 |
4 |
4 |
|
5 |
1 0 1 |
5 |
5 |
|
6 |
1 1 0 |
6 |
6 |
|
7 |
1 1 1 |
7 |
7 |
|
8 |
1 0 0 0 |
1 0 |
8 |
|
9 |
1 0 0 1 |
1 1 |
9 |
|
10 |
1 0 1 0 |
1 2 |
A |
|
11 |
1 0 1 1 |
1 3 |
B |
|
12 |
1 1 0 0 |
1 4 |
C |
|
13 |
1 1 0 1 |
1 5 |
D |
|
14 |
1 1 1 0 |
1 6 |
E |
|
15 |
1 1 1 1 |
1 7 |
F |
|
16 |
1 0 0 0 0 |
2 0 |
1 0 |
А) 1101101,1102
Для перевода целого числа из двоичной системы в десятичную необходимо цифры умножать на двойку в степени номера позиции (номер позиции начинается с нуля и нумеруется с права на лево). В не целых числах та часть числа, которая стоит после запятой, переводится отдельно, и дописывается к уже полученному числу.
11011012 = 1x20+0x21+1x22+1x23+0x24+1x25+1x26=10910
Переведём дробную часть:
1102 = 0x20+1x21+1x22 = 610
Итак, мы получаем, что 1101101,1102=109,610
Б) 226,518
Для того чтобы перевести число из восьмеричной системы в десятичную, необходимо сначала перевести его по таблице в начале контрольной в двоичную, а затем выше описанным методом в десятичную систему. Перевод по таблице делается справа налево, по одной цифре, причём в двоичном варианте должны выходить триады (цифры по три штуки), и если символов меньше, необходимо при переводе каждой цифры дописывать слева нули.
Мы получаем, что 226,518=10010110,1010012
По правилу перевода числа из двоичной системы в десятичную получаем, что 10010110,1010012=150,4110
Итого: 226,518=150,4110
В) ВС16
Используем метод, описанный в числе «Б», с той разницей, что в двоичном коде мы должны получить тетрады (цифры по четыре штуки).
Получаем, что ВС16=101111002
Затем, способом перевода двоичного числа в десятичное выясняем, что:
ВС16=18810
Вопрос №2
Выполнить указанные действия в заданной системе счисления
А) 100112 Б) 6328 В) 64316
+ 1102 - 248 + 6D16
= 110012 = 6268 = 6B016
Вопрос №3
Заданные числа и полученные результаты арифметических операции пункта 2 перевести в десятичною систему счисления и выполнить проверку полученных результатов в десятичной системе счисления.
А) Способом, описанным в задании №1, вопросе №1, подвопросе А, получаем, что:
100112=1910
1102=610
110012=2510
Б) Способом, описанным в задании №1, вопросе №1, подвопросе Б, получаем, что:
6328=41010
248=2010
6268=40610
В) Способом, описанным в задании №1, вопросе №1, подвопросе В, получаем, что:
64316=160310
6D16=10910
6B016=171210
ВЫВОД: Так как все операции с числами сходятся в десятичной системе счисления, и при переводе чисел заданий с ответами тоже, то предыдущее задание выполнено верно.
Вопрос №4
Перевести заданные в десятичной системе счисления числа в системы с основаниями 2, 8 и 16
65210
984,65210
23674,56677510
Ответ:
Для того чтобы перевести число из десятичной системы в любую другую, необходимо это число делить на число - основание той системы, в которую переводится число. Соответственно, эти числа - 2, 8, 10 и 16. Остатки необходимо фиксировать и нумеровать. Число, полученное в результате деления - делим ещё раз, и так до тех пор, пока вновь полученное число уже само не станет остатком, т. е. будет меньше основания - оно замыкает цепочку остатков. Затем остатки, начиная с последнего, переписываем в число, которое является переведённым в другую систему счисления.
Разделим число 63210 на 2, переведя его, таким образом, в двоичную систему счисления:
632/2=316, остаток №1 (A1)=0;
316/2=158, A2=0
158/2=79, A3=0
79/2=39, A4=1
39/2=19, A5=1
19/2=9, A6=1
9/2=4, A7=1
4/2=2, A7=0
2/2=1, A8=0
A9=1.
Теперь напишем остатки с последнего, и получим число 63210 в двоичной системе, оно = A9+A8+A7+A6+A5+A4+A3+A2+A1 =
= 10011110002
Путём такого деления узнаём, что:
63210 = 10011110002 = 27816 = 11708
984,65210=1111011000,10011110002=3D8, 27816=1730,11708
23674,56677510=57CA,8A5F716=56172,21227678 =
= 101110001111010,100010100101111101112
Вопрос №5
Перевести заданные в одной системе счисления числа в другую указанную в скобках систему счисления
А) 333,13 8 (8 - 2)
Б) 11101010,111112 (2-8)
В) 2336,748 (8-16)
Для того, чтобы перевести число «В» необходимо сначала перевести его в двоичную систему счисления. Используя метод, изложенный при решении задания №1, вопроса№1, подвопроса «Б» и «В» получаем:
333,138=11011011,10112
11101010,111112=352,378
2336,748=4DE,3C16
Задание №2:
Блок схема алгоритма определения минимального из десяти заданных чисел
Подобные документы
Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.
презентация [128,9 K], добавлен 12.01.2014Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.
реферат [75,2 K], добавлен 09.07.2009Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.
контрольная работа [892,8 K], добавлен 04.11.2013Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.
презентация [713,4 K], добавлен 20.06.2011Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.
курсовая работа [46,8 K], добавлен 29.04.2017Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.
реферат [459,5 K], добавлен 25.12.2014Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.
презентация [419,8 K], добавлен 10.11.2010Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.
реферат [42,5 K], добавлен 13.04.2008Перевод мер угла в градусной системе. Соотношения между градусной и часовой системами счисления. Перевод меры угла из классического вида в секунды, в десятичный и наоборот. Алгоритм (правила) и методы его перевода. Перевод мер угла в часовой системе.
контрольная работа [50,1 K], добавлен 13.05.2009Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".
презентация [1,0 M], добавлен 30.09.2012