Приближенное вычисление определенных интегралов

Нахождение определенных интегралов от функций, первообразные которых не выражаются через элементарные функции. Вывод приближенных формул вычисления определенных интегралов. Формула трапеций и формула парабол (Симпсона), абсолютная величина ее погрешности.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 08.03.2010
Размер файла 53,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

При решении физических и технических задач приходится находить определенные интегралы от функций, первообразные которых не выражаются через элементарные функции. Это привело к необходимости вывода приближенных формул вычисления определенных интегралов. Познакомимся с двумя из них: формулой трапеций и формулой парабол.

1. Формула трапеций

Пусть требуется вычислить интеграл , где f(x) - непрерывная функция. Для простоты рассуждений ограничимся случаем, когда f(x)0. Разобьем отрезок [a, b] на n отрезков точками a=x0<x1<x2<...<xk-1<xk<...<xn=b и с помощью прямых х=хk построим n прямолинейных трапеций (эти трапеции заштрихованы на рис. 1). Сумма площадей трапеций приближенно равна площади криволинейной трапеции, т.е.

Где f(xk-1) и f(xk) - соответственно основания трапеций; xk - xk-1 = (b-a)/n - их высоты.

Таким образом, получена приближенная формула

которая и называется формулой трапеций. Эта формула тем точнее, чем больше n.

Рассмотрим в качестве примера интеграл . Точное значение этого интеграла находится просто:

Вычислим теперь по формуле трапеций его приближенное значение. Пусть n=5. Тогда имеем: a=x0=0, x1=0,2, x2=0,4, x3=0,6, x4=0,8, x5=1=b и соответственно f(x0)=0, f(x1)=0,04, f(x2)=0,16, f(x3)=0,36, f(x4)=0,64, f(x5)=1. Следовательно,

Точное значение интеграла равно 0,3333...., поэтому абсолютная ошибка меньше 0,007. Во многих технических задач эта точность достаточна.

Если увеличить число n, то точность будет большей. Так, например, при n=10

т.е. абсолютная ошибка меньше 0,002.

В более полных курсах высшей математики доказывается, что если функция f(x) имеет на [a, b] непрерывную вторую производную, то абсолютная величина погрешности формулы трапеций не больше, чем

где k -наибольшее значение на отрезке [a, b].

Следует отметить, что с увеличением n увеличивается не только точность вычисления определенного интеграла, но и объем вычислительной работы. Однако здесь на помощь приходят ЭВМ.

Вычислим по формуле трапеции интеграл при n=10. Разобьем отрезок [0, 1] на 10 равных частей точками х0=0, х1=0,1, ..., х9=0,9, х10=1. Вычислим приближенно значения функции f(x)= в этих точках: f(0)=1,0000, f(0,1)=0.9091, f(0,2)=0,8333, f(0,3)=0.7692, f(0,4)=0,7143, f(0,5)=0,6667, f(0,6)=0,6250, f(0,7)=0,5882, f(0,8)= 0,5556, f(0,9)=0,5263, f(1)=0,5000.

По формуле трапеций получаем

Оценим погрешность полученного результата. Так как f(x)=1/(1+x), то На отрезке [0, 1] имеем . Поэтому погрешность полученного результата не превосходит величины

Вычислим точное значение данного интеграла по формуле Ньютона-Лейбница:

Абсолютная ошибка результата, полученного по формуле трапеций, меньше 0,0007. Это находится в соответствии с данной выше оценкой погрешности.

Идею, которая была использована при построении формулы трапеций, можно использовать для получения более точных приближенных формул для вычисления определенного интеграла.

Формула парабол

Докажем предварительно две леммы.

Лемма 1.1. Через любые три точки М1 1; у1), М2 2; у2), М3 3; у3) с различными абсциссами можно провести единственную кривую вида

у=Ах2+Вх+С (1)

Доказательство. Подставляя в уравнение параболы (1) координаты точек М1 , М2 , М3 , получаем систему трех уравнений первой степени с тремя неизвестными А, В, С:

Так как числа х1, х2, х3 различны, то определитель этой системы отличен от нуля:

Следовательно, данная система имеет единственное решение, т.е. коэффициенты А, В, С определяются однозначно.

Отметим, что если А0, то кривая (1) является параболой, если А=0, то прямой.

Лемма 1.2. Площадь s криволинейной трапеции, ограниченной кривой у=Ах2+Вх+С, проходящей через точки М1 (-h; y1), M2 (0, y2), M3 (h, y3) (рис. 2) выражается формулой

(2)

Доказательство. Подставляя в уравнение у=Ах2+Вх+С координаты точек М1, М2, М3, получаем у1h2h+С; у2=С; у3h2h+С, откуда следует, что

h2+2С=у13; С=у2 (3)

Учитывая соотношение (3), имеем

Рассмотрим снова криволинейную трапецию, ограниченную произвольной кривой y=f(x). Разобьем отрезок [a, b] на 2 равных отрезков точками a=x0<x1<x2<...<x2k<x2k+1<x2k+2<...<x2n-1<x2n=b, а кривую y=f(x) с помощью прямых x=xk на 2n соответствующих частей точками М0 , М1 , М2 , ..., М2k , М2k+1 , М2k+2, ..., М2n-2 , М2n-1 , М2n (рис. 3).

Через каждую тройку точек

М0 М1 М2 , ..., М2k М2k+1 М2k+2, ..., М2n-2 М2n-1 М2n

проведем кривую вида у=Ах2+Вх+С (см. лемму 1.1). В результате получим n криволинейных трапеций, ограниченных сверху параболами или прямыми (эти трапеции заштрихованы на рис. 3). Так как площадь частичной криволинейной трапеции, соответствующей отрезку [x2k, x2k+2], приближенно равна площади соответствующей “параболической” трапеции, то по формуле (2) имеем [в данном случае h=(b-a)/(2n)]

где yk=f(xk), k=0, 1, 2, ...,2n. Складывая почленно эти приближенные равенства, получаем приближенную формулу

или в развернутом виде

Эта формула называется формулой парабол или формулой Симпсона.

В формуле параболы значение функции f(x) в нечетных точках разбиения х1, х3, ..., х2n-1 имеет коэффициент 4, в четных точках х2, х4, ..., х2n-2 - коэффициент 2 и в двух граничных точках х0=а, х1, х2n =b - коэффициент 1.

Геометрический смысл формулы Симпсона очевиден: площадь криволинейной трапеции под графиком функции f(x) на отрезке [a, b] приближенно заменяется суммой площадей фигур, лежащих под параболами (прямыми).

В полных курсах высшей математики доказывается, что если функция f(x) имеет на [a, b] непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке [a, b]. Выше отмечалось, что погрешность формулы трапеций оценивается числом

Так как n4 растет быстрее, чем n2, то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций. Этим и объясняется, что формула Симпсона позволяет получить большую точность, чем формула трапеций.

Для сравнения точности приближенных формул вычислим еще раз интеграл

, но теперь по формуле Симпсона при n=4. Разобьем отрезок [0, 1] на четыре равные части точками х0=0, х1=1/4, х2=1/2, х3=3/4, х4=1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках у0=1,0000, у1=0,8000, у2=0,6667, у3=0,5714, у4=0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f(4)(x)=24/(1+x)5 , откуда следует, что на отрезке [0, 1] . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 44),0б0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

Как отмечалось выше, приближенные формулы для вычисления определенного интеграла применяют в тех случаях, когда первообразная подынтегральной функции не выражается через элементарные функции.

Вычислим, например, интеграл по формуле Симпсона с точностью до 0,001.

Чтобы выбрать необходимое для получения заданной точности число 2n, найдем f(4)(x). Последовательно дифференцируя функцию f(x)= , получаем

f(4)(x)=4(4х4-12х2+3)

Так как на отрезке [0, 1] 1, 4х4-12х2+35, то . Следовательно, можно взять М=20. Используя формулу оценки погрешности, имеем 20/2880n4<1/1000, откуда n4 >1000/144. Для того чтобы выполнялось это неравенство, достаточно взять n=2, т.е. 2n=4.

Разобьем теперь отрезок [0, 1] на четыре равные части точками х0=0, х1=1/4, х2=1/2, х3=3/4, х4=1 и вычислим приближенно значения функции f(x)= в этих точках у0=1,0000, у1=0,9394, у2=0,7788, у3=0,5698, у4=0,3679. Применяя формулу Симпсона, получаем

Таким образом, с точностью до 0,001. Итак, разбив отрезок [0, 1] всего на четыре равные части и заменив рассматриваемый интеграл суммой, стоящей в правой части формулы Симпсона, мы вычислили данный интеграл с необходимой точностью.

В заключении отметим, что каждый из изложенных методов приближенного вычисления интегралов содержит четкий алгоритм их нахождения, что позволяет широко применять эти методы для вычислений на ЭВМ. Таким образом, указанные методы - эффективное средство вычисления интегралов. Для интегралов, которые нельзя выразить через элементарные функции, с помощью ЭВМ и простейших приближенных методов можно составить таблицы их значений.


Подобные документы

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа [187,8 K], добавлен 18.05.2019

  • Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.

    контрольная работа [123,7 K], добавлен 14.01.2015

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа [1,0 M], добавлен 11.03.2013

  • Решение задачи по вычислению определенного интеграла с помощью квадратурных формул и основная идея их построения. Количество параметров квадратурного выражения, степень подынтегральной функции. Построение квадратурных формул с плавающими узлами.

    реферат [51,4 K], добавлен 08.08.2009

  • Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.

    курсовая работа [349,3 K], добавлен 12.10.2009

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.

    курсовая работа [1,3 M], добавлен 21.05.2019

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.