Квадратные корни

Изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями. Квадратный корень из числа, его вычисление, геометрические приложения и основные тождества. Квадратный корень из произведения, дроби и степени.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 06.03.2010
Размер файла 105,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Муниципальное образовательное учреждение - МОУ Гимназия № 47

КВАДРАТНЫЕ КОРНИ

реферат по математике

Ученика 8 Г класса

Базуева Алексея

Учитель Дегтярева Н.В.

Екатеринбург, 2000г.

СОДЕРЖАНИЕ

Введение

Квадратный корень из числа

Вычисление квадратных корней

Геометрические приложения

Основные тождества для квадратных корней

Квадратный корень из произведения, дроби, степени

Преобразование выражений

Заключение

Список литературы

ВВЕДЕНИЕ

В ходе решения некоторых математических задач приходится оперировать с квадратными корнями. Поэтому важно знать правила действий с квадратными корнями и научиться преобразовывать выражения, их содержащие. Цель настоящего реферата - изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями.

Кроме того, я поставил себе дополнительную задачу - изучить правила работы на компьютере в операционной системе Windows и текстовом редакторе Word.

Квадратный корень из числа

Зная время t, можно найти путь при свободном падении по формуле:

Решим обратную задачу.

Задача. Сколько секунд будет падать камень, сброшенный с высоты 122,5 м?

Чтобы найти ответ, нужно решить уравнение

Из него находим, что Теперь осталось найти такое положительное число t, что его квадрат равняется 25. Этим числом является 5, так как Значит, камень будет падать 5 с.

Искать положительное число по его квадрату приходится и при решении других задач, например при отыскании длины стороны квадрата по его площади. Введем следующее определение:

Определение. Неотрицательное число, квадрат которого равен неотрицательному числу а, называется квадратным корнем из а. Это число обозначают

Таким образом

Пример. Так как

Из отрицательных чисел нельзя извлекать квадратные корни, так как квадрат любого числа или положителен, или равен нулю. Например, выражение не имеет числового значения.

В записи знак называют знаком радикала (от латинского "радикс" - корень), а число а - подкоренным числом. Например, в записи подкоренное число равно 25. Так как

Это означает, что квадратный корень из числа, записанного единицей и 2n нулями, равен числу, записываемому единицей и n нулями:

= 10…0

2n нулей n нулей

Аналогично доказывается, что 2n нулей n нулей

Например,

Вычисление квадратных корней

Мы знаем, что не существует рационального числа, квадрат которого равен 2. Это означает, что не может быть рациональным числом. Он является иррациональным числом, т.е. записывается в виде непериодической бесконечной десятичной дроби, причем первые десятичные знаки этой дроби имеют вид 1,414... Чтобы найти следующий десятичный знак, надо взять число 1.414х, где х может принимать значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, возвести по порядку эти числа в квадрат и найти такое значение х, при котором квадрат меньше, чем 2, но следующий за ним квадрат больше, чем 2. Таким значением является х=2. Далее повторяем то же самое с числами вида 1,4142х. Продолжая этот процесс, получаем одну за другой цифры бесконечной десятичной дроби, равной .

Аналогично доказывается существование квадратного корня из любого положительного действительного числа. Разумеется, последовательное возведение в квадрат весьма трудоемкое занятие, и потому существуют способы быстрее находить десятичные знаки квадратного корня. С помощью микрокалькулятора можно найти значение с восемью верными цифрами. Для этого достаточно ввести в микрокалькулятор число а>0 и нажать клавишу - на экране высветится 8 цифр значения . В некоторых случаях приходится использовать свойства квадратных корней, которые мы укажем ниже.

Если точность, даваемая микрокалькулятором, недостаточна, можно воспользоваться способом уточнения значения корня, даваемым следующей теоремой:

Теорема. Если а - положительное число и - приближенное значение для по избытку, то - приближенное значение для по недостатку.

Доказательство.

По условию x1> и потому х12 >a, <1. Но 2 = = a. Т.к. <1, то a<a. Значит, а и - приближенное значение для по недостатку.

Аналогично доказывается, что если - приближенное значение для по недостатку, то - приближенное значение по избытку.

Поскольку и являются приближенными значениями для по избытку и по недостатку, то в качестве лучшего приближения для

6

естественно выбрать среднее арифметическое этих чисел, т. е. число

х2 = .

А чтобы получить еще более точное значение для , надо взять среднее арифметическое чисел

, т. е. число х3 = .

Так вычисляются одно за другим все лучшие и лучшие приближенные значения для . Приближения ведут до тех пор, пока два полученных значения не совпадут в пределах заданной точности. Можно доказать, что каждое приближение примерно удваивает число верных десятичных знаков.

Пример 1. Уточним по формуле

х2 = приближение

х1 = 1,414 для .

Решение. В нашем случае а=2. Поэтому

х1 = (1,414 + 1,4144271) + 1,4142135…

Выполнив еще одно приближение, мы убедимся, что все выписанные знаки полученного ответа верны, т. е. число верных знаков удвоилось.

Пример 2. Найдем приближенное значение для с точностью до 0,0001.

Решение. Выберем за первое приближение для число 2. Тогда второе приближение вычисляется так:

х2 = = 2,25

Далее имеем

х3 == 2,2361,

х4==2,2361.

Значит, с точностью до 0,0001 имеем =2,2361.

Геометрические приложения

К извлечению квадратных корней сводятся многие геометрические задачи. Например, в курсе геометрии доказывают теорему Пифагора: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов длин катетов этого треугольника. Индийцы две тысячи лет тому назад доказывали ее с помощью следующего чертежа.

Рис.1

Видим, что площади заштрихованных фигур в обоих квадратах равны, но в одном случае площадь равна , а в другом - . Значит, .

Из теоремы Пифагора следует, что расстояние между точками

Рис.2

MN=. (1)

Пример 1. Найдем расстояние от вершины дерева до конца его тени, если высота дерева равна 12 м, а длина тени -- 16 м.

Решение. По теореме Пифагора имеем

Так как , т. е. расстояние равно 20 м.

Пример 2. Найдем расстояние между точками М(3; 1)и N(8; -11) координатной плоскости.

Решение. По формуле (1) имеем

MN = = =13

Основные тождества для квадратных корней

Из определения квадратного корня вытекает, что равенство=х, где а0, верно в том и только в том случае, когда х2=а, причем х0. Заменяя в равенстве х2=а переменную х на , получаем тождество 2=а, (1)

верное для всех а0. Заменяя в равенстве =х переменную а на х2, получаем тождества = х, (2) которое верно для всех х0.

Например,

2 = 25;2 = 8; 2 = 0,11; = 6; =0,24.

Формулы и показывают, что для неотрицательных чисел операции возведения в квадрат и извлечения квадратного корня взаимно обратны Т.е. если выполнить над каким - нибудь неотрицательным числом сначала одну из этих операций, а потом другую, то число не изменится.

Если а - отрицательное число, то равенство неверно, так как не имеет числового значения. При отрицательных значениях х неверно и равенство . Например, 2 ==5, а не -5. Так как х2 =2, а при х < 0 имеем -х> 0, то при х< 0 верно равенство

=2 = - х (3)

Итак,

x, если х 0,

= -х, если х < 0.

Но мы знаем, что х, если х 0,

=

-х, если х < 0.

Поэтому для всех чисел х верно равенство

= . (4)

Например, ==8, 2 = = 12.

Упростим выражение

+2 + - 2.

Так как

2 = 3, 2 = 2, то +2 + - 2 =2 +

2 + 2 +2 - 2 + 2 =2 2 + 2 2 = 2 3 + 2 2 = =10.

Найдем значения выражения при а = 2,1; b = 3,6

При любом значении х выполняется равенство

= . Поэтому = . Но == 1,5. Значит, при а = 2,1; b =3,6 имеем =1,5.

Извлечение квадратного корня из произведения, дроби и степени

Выражения и имеют одно и то же значение 6.

В самом деле, = 3, = 2, = 6, поэтому = 3 2 = 6 и = == 6. Равенство = - часный случай общего утверждения:

Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел, т.е. при а 0, b 0 имеем

= (1)

Доказательство. Пусть число а и b неотрицательны.

Тогда по правилу возведения в степень имеем

2 = = а b

Кроме того, - неотрицательное число как произведение двух неотрицательных чисел и . Поэтому

=

Найдем значения выражения

Мы имеем

= 25, = 16, = 0,01,

и потому

= 25160,01= 4.

Аналогично доказывается,что

= (2)

Прeобразование выражений

При преобразовании выражении, содержащих квадратные корни, оказывается полезной следующая формула:

= ,

где А2 В (в обеих частях равенства одновременно берутся знаки “ плюс “ и “ минус “). Чтобы доказать это равенство, заметим, во-первых, что и левая, и правая его части являются при А 0, В 0, А2 - В 0 неотрицательными числами. Возведем теперь обе части равенства в квадрат. В левой части имеем А , в правой части по формуле квадрата суммы или разности получаем

2 + =

= А 2 = А 2 =

= А 2 = А 2 = А .

Таким образом, квадраты обеих частей равенства оказались одинаковыми, а поскольку эти части - неотрицательные числа, то равенство доказано.

Упростим выражение .

В одном случае имеем А = 5, В = 21, А2 - В =

= 52 - 21 = 4, и поэтому по формуле

= - = - .

Приведем подкоренное выражение к полному квадрату:

5 - = = =

== = .

Поэтому

= =

= + =

= + =

= = =

= =

Поэтому

=

= 10

= 28 - 10= 25 - 10+3 =

= 52 - 10=

Поэтому

2 = 5 -

= 28 + 10= 25 + 10 + 3 =

Поэтому

= 5 + =

= 5 - = 5 + 5 = 10

ЗАКЛЮЧЕНИЕ

Настоящий реферат посвящен квадратным корням. Рассмотрены правила действий с квадратными корнями, способы преобразования выражений, содержащих квадратные корни, геометрические приложе-ния. В реферате приведены примеры действий с квадратными корнями и преобразования выражений с ними.

Кроме того, мной освоены правила работы на компьютере в операционной системе Windows и текстовом редакторе Word.

Таким образом, цель реферата достигнута, задачи выполнены.

СПИСОК ЛИТЕРАТУРЫ

Алгебра: Учеб. Для 8 кл. сред.шк.\ Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. - 2 изд.М.:-Просвещение, 1994г.

Алгебра: Для 8 кл.: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. Математики \ Н.Я Виленкин, А.Н.Виленкин, Г.С.Сурвилло и др., Под ред. Н.Я.Виленкина. - М.: Просвещение, 1995.

Петраков И.С. «Математические кружки в 8-10 классах»: Кн. Для учителя.- М.: Просвещение, 1987.


Подобные документы

  • Понятие и математическая сущность квадратного корня, его назначение и методика вычисления. Теоремы, отображающие свойства квадратного коря, их обоснование и доказательство. Применение характеристик квадратных корней в решении геометрических задач.

    реферат [132,1 K], добавлен 05.01.2010

  • Извлечение квадратного корня - операция нахождения квадратного корня из неотрицательного числа. Сравнительный анализ способов приближенного извлечения квадратных корней. Характеристика арифметического способа. Вавилонский способ (первый метод Герона).

    реферат [48,7 K], добавлен 15.05.2012

  • Система линейных алгебраических уравнений. Основные формулы Крамера. Точные, приближенные методы решения линейных систем. Алгоритм реализации метода квадратных корней на языке программирования в среде Matlab 6.5. Влияние мерности, обусловленности матрицы.

    контрольная работа [76,6 K], добавлен 27.04.2011

  • Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.

    курсовая работа [90,2 K], добавлен 15.06.2010

  • История возникновения уравнений, понятие их решения и виды упрощения. Анализ способов решения ряда занимательных задач с помощью уравнений. Обращение Аль-Хорезми с уравнениями как с рычажными весами. Параметры и переменные, область определения и корень.

    реферат [38,0 K], добавлен 01.03.2012

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Линейные уравнения с параметрами. Методы и способы решения систем с неизвестным параметром (подстановка, метод сложения уравнений и графический). Выявление алгоритма действий. Поиск значения параметров, при которых выражение определяет корень уравнения.

    контрольная работа [526,5 K], добавлен 17.02.2014

  • Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.

    презентация [1,6 M], добавлен 16.05.2012

  • Сущность и методика определения алгебраического числа, оценка существующего поля. Рациональные приближения алгебраических чисел. Задача построения уравнения с заданными корнями. Приводимые и неприводимые многочлены. Трансцендентные числа Лиувилля.

    курсовая работа [219,6 K], добавлен 23.03.2015

  • Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.

    курсовая работа [1,2 M], добавлен 04.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.