Комплексные числа

Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 06.03.2010
Размер файла 47,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Комплексные числа

Реферат по математике

ученицы 8г класса Ваулиной Светы

Муниципальное образовательное учреждение

гимназия 47

г.Екатеринбург 2000 г.

Введение

Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н.Е. Жуковский (1847-1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.

Цель настоящего реферата знакомство с историей появления комплексных чисел, с действиями с комплексными числами, решение уравнений с комплексным переменным.

Понятие о комплексных числах

Для решения алгебраических уравнений недостаточно действительных чисел. Поэтому естественно стремление сделать эти уравнения разрешимыми, что в свою очередь приводит к расширению понятия числа. Например, для того чтобы любое уравнение

х+а = в

имело корни, положительных чисел недостаточно и поэтому возникает потребность ввести отрицательные числа и нуль.

Древнегреческие математики считали, что а = с и в = а только натуральные числа, но в практических расчетах за два тысячелетия до нашей эры в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за 2 века до нашей эры. Отрицательные числа применял в 3 веке нашей эры древнегреческий математик Диофант, знавший уже правила действий над ними, а в 7 веке нашей эры эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменение величин. Уже в 8 веке нашей эры было установлено, что квадратный корень из положительного числа имеет два значение - положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа х, чтобы х2 = -9. В 16 веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень, например, для уравнения

х3+3х-4=0,

а если оно имело 3 действительных корня, например,

х3-7х+6=0,

то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим 3 корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 предложил ввести числа новой природы. Он показал, что система уравнений

х+у = 10,

ху = 40 не имеющая решений в множестве действительных чисел, имеет решение всегда х = 5 , у = 5 , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что

= -а.

Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считая их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в котором были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637 г. французский математик и философ Р. Декарт, а в 1777 г. один из крупнейших математиков VIII века Х. Эйлер предложил использовать первую букву французского числа i = (мнимой единицы), этот символ вошел во всеобщее употребление благодаря К. Гауссу (1831 г).

В течение 17 века продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалась техника операций над комплексными числами. На рубеже 17-18 веков была построена общая теория корней n-й степени сначала из отрицательных, а впоследствии и из любых комплексных чисел.

В конце 18 века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянным коэффициентом. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде.

Я. Бернулли применил комплексные числа для вычисления интегралов. Хотя в течении 18 века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведение, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами. В конце 18- начале 19 веков было получено геометрическое истолкование комплексных чисел. Датчанин Г.Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число z=a+bi точкой М(а,b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой М, а вектором ОМ, идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами.

Геометрические истолкования комплексных чисел позволили определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости, в теоретической электротехнике.

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые: Р.И. Мусхелишвили занимался ее приложениями к теории упругости, М.В. Келдыш и М.А. Лаврентьев - к аэродинамике и гидродинамике, Н. Н. Боголюбов и В.С. Владимиров - к проблемам квантовой теории поля.

Действия с комплексными числами

Рассмотрим решение квадратного уравнения

х2 +1 = 0.

Отсюда х2 = -1. Число х, квадрат которого равен -1, называется мнимой единицей и обозначается i. Таким образом , i2 = -1, откуда i =. Решение квадратного уравнения, например,

х2 - 8х + 25 = 0,

можно записать следующим образом:

х = 4 = 4 = 4 = 4 3 = 4 3i.

Числа вида 4+3i и 4-3i называют комплексными числами. В общем виде комплексное число записывается

а + bi,

где a и b- действительные числа,

i - мнимая единица.

Число а называется действительной частью комплексного числа, bi-мнимой частью этого числа, b- коэффициентом мнимой части комплексного числа.

Сложение комплексных чисел

Суммой двух комплексных чисел

z1 = a + bi и z2 = c + di

называется комплексное число

z = (a+c) + (b+d)i.

Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу

2а, (а+bi) + (а-bi) = 2а.

Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комплексные числа равны, если равны их действительные части и коэффициенты мнимых частей:

а+bi = c+di,

если a = c, b = d.

Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е.

z = a + bi = 0,

если a = 0,b = 0.

Действительные числа являются частным случаем комплексных чисел. Если b = 0, то

a + bi = a

- действительное число.

Если а = 0, b 0, то

a + bi = bi

- чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что

х = а-с, у = b-d.

Значит,

(а+bi) - (c+di) = (a-c) + (b-d)i.

Произведение комплексных чисел

z 1= a + bi и z2 = c + di

называется комплексное число

z = (ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на -1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу:

(a + bi)(a - bi) = a2 + b2

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:

(a + bi):(c + di) = = = + i.

Степень числа i является периодической функцией показателя с периодом 4. Действительно,

i2 = -1, i3 = -i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1 = i, i4n+2 = -1, i4n+3 = -i.

Решение уравнений с комплексным переменным

Рассмотрим сначала простейшее квадратное уравнение

z2 = a,

где а - заданное число,

z - неизвестное.

На множестве действительных чисел это уравнение:

1) имеет один корень z = 0, если а = 0;

2) имеет два действительных корня z1,2 = , если а>0;

3) не имеет действительных корней, если а<0.

На множестве комплексных чисел это уравнение всегда имеет корень .

Задача 1. Найти комплексные корни уравнения z2 = a, если:

1)а = -1; 2)а = -25; 3)а = -3.

1)z2 = -1. Так как i2 = -1, то это уравнение можно записать в виде

z2 = i2,

или

z2 - i2 = 0.

Отсюда, раскладывая левую часть на множители, получаем

(z-i)(z+i) = 0, z1 = i, z2 = -i.

Ответ. z1,2 = i.

2) z2 = -25. Учитывая, что

i2 = -1,

преобразуем это уравнение:

z2 = (-1)25,

z2 = i2 52, z2 - 52 = 0, (z-5i)(z+5i) = 0,

откуда

z1 = 5i, z2 = -5i.

Ответ.z 1,2 = 5i.

3) z2 = -3,

z2 = i2()2, z2 - ()2i2 = 0,

(z - i)(z + i) = 0,

z1 = i, z 2 = - i.

Ответ. z1,2 = i.

Вообще уравнение

z2 = a,

где а < 0

имеет два комплексных корня: Z1,2= i.

Используя равенство

i2 = -1,

квадратные корни из отрицательных чисел принято записывать так:

= i, = i = 2i, = i.

Итак, определен для любого действительного числа а (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение

az2 + bz + c = 0,

где а,b,с- действительные числа,

а 0,

имеет корни. Эти корни находятся по известной формуле:

Z1,2 = .

Задача 2. Решить уравнение

z2-4z+13=0.

По формуле находим:

z1,2 = = = = =2 3i.

Заметим, что найденные в этой задаче корни являются сопряженными:

z1=2+3i и z2=2-3i.

Найдем сумму и произведение этих корней:

z1+z2=(2+3i)+(2-3i)=4,

z1z2=(2+3i)(2-3i)=13.

Число 4- это 2-й коэффициент уравнения

z2-4z+13=0,

взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 - корни уравнения

az2+bz+c = 0,

z1+z2 = -,

z1z2 =.

Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень

z1=-1-2i.

Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть

z2=-1+2i.

По теореме Виета находим

P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0.

Заключение

В настоящем реферате дано понятие комплексных чисел, история их возникновения. Рассмотрены примеры действий с комплексными числами. Приведены примеры решения уравнений с комплексным переменным, что позволяет решить любые квадратные уравнения, даже с отрицательным дискриминантом.

В реферате также рассмотрена геометрическая интерпретация комплексных чисел в виде векторов.

Список литературы

1. Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров, Н.Е. Федорова, М.И.Шабунин. Учебник для 8 класса по алгебре.- М.: Просвещение, 1994.-С.134-139.

2. И.С. Петраков. Математические кружки в 8-10 классах.- М.: Просвещение, 1987.- С.50-52.

3. А.П. Савин. Энциклопедический словарь юного математика. - М.: Педагогика, 1989.- С. 143-147.


Подобные документы

  • История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.

    реферат [325,7 K], добавлен 25.10.2012

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа [1,1 M], добавлен 10.12.2008

  • Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.

    лекция [464,6 K], добавлен 12.06.2011

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат [532,7 K], добавлен 10.11.2009

  • Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.

    презентация [147,4 K], добавлен 17.09.2013

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.

    контрольная работа [25,7 K], добавлен 29.05.2012

  • Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.

    презентация [226,6 K], добавлен 08.12.2011

  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа [395,4 K], добавлен 10.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.