Производные и их приложения
Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.02.2010 |
Размер файла | 2,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.
Литература
1. Алексеев В.М., Галеев Э.М., Тихомиров В.М. Сборник задач по оптимизации. - М.: Наука, 1984.
2. Васильев Ф.П. Численные методы решения экстремальных задач. - М.: Наука, 1980.
3. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. - М.: Мир, 1985.
4. Лесин В.В., Лисовец Ю.П. Основы методов оптимизации. - М.: Изд-во МАИ, 1995.
5. Летова Т.А., Пантелеев А.В. Экстремум функций в примерах и задачах. M.: Изд-во МАИ, 1998.
6. Пшеничный Б.И., Данилин Ю.М. Численные методы в экстремальных задачах. - М.: Наука, 1975.
7. http://www.Wikipedia.ru/Википедия.
8. http://www.dic.academic.ru/словари и энциклопедии.
Подобные документы
Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.
презентация [334,8 K], добавлен 14.11.2014Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа [61,5 K], добавлен 14.01.2015Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа и их доказательство. Локальные экстремумы функции, исследование ее на выпуклость и вогнутость, понятие точки перегиба. Асимптоты и общая схема построения графика функции.
реферат [430,7 K], добавлен 12.06.2010Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.
курсовая работа [1,0 M], добавлен 25.11.2010Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация [332,2 K], добавлен 21.09.2013Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.
контрольная работа [283,1 K], добавлен 01.03.2011Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций [445,7 K], добавлен 27.05.2010Понятие и характерные свойства обобщенных функций и обобщенных производных, их отличительные признаки и направления анализа. Решение и определение данных величин на основе специальных теорем. Сущность и структура, элементы пространства Соболева.
презентация [179,4 K], добавлен 30.10.2013Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
курсовая работа [1,3 M], добавлен 30.12.2021Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.
статья [122,0 K], добавлен 11.01.2004