Случайные величины, их виды и примеры

Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 02.02.2010
Размер файла 161,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

20

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА

ФАКУЛЬТЕТ УПРАВЛЕНИЯ

«Случайные величины их виды и примеры»

Контрольная работа

по дисциплине

«Теория вероятностей и математическая статистика»

Выполнил:

Фисай Александр Александрович

Студент 2-го курса

заочной формы обучения

Москва 2009г

Содержание

  • Введение 3
  • 1. Случайные величины 4
  • 2. Закон распределения дискретной случайной величины 5
  • 3. Биноминальное распределение 9
  • 4. Распределение Пуассона 12
  • 5. Числовые характеристики дискретных случайных величин 14
  • 6. Зависимые и независимые случайные величины 14
  • 7. Система случайных величин 18
  • Список использованной литературы 20
  • Введение
  • Одним из основных понятий в теории вероятностей является понятие случайной величины. Случайная величина является числовой характеристикой результата эксперимента, которая принимает свои значения в зависимости от элементарного события. Примером случайной величины могут быть: число очков, выпадающих при одном бросании игральной кости, число граждан, которые имеют высшее образование среди взятых наугад n человек, число бракованных изделий в партии из N штук, время безотказной работы прибора и т.д.

1. Случайные величины

Для получения количественной характеристики вводится понятие случайной величины.

Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно. Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Закон распределения дискретной случайной величины

Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины. Закон распределения может быть задан аналитически, в виде таблицы или графически. Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения. Графическое представление этой таблицы называется многоугольником распределения. При этом сумма всех ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.

Пример 1. По цели производится 5 выстрелов. Вероятность попадания для каждого выстрела равна 0,4. Найти вероятности числа попаданий и построить многоугольник распределения. Вероятности пяти попаданий из пяти возможных, четырех из пяти и трех из пяти были найдены выше по формуле Бернулли и равны соответственно:

, ,

Аналогично найдем:

,

,

Пример 2. В первой коробке содержится 10 шаров, из них 8 белых; во второй коробке 20 шаров, из них 4 белых. Из каждой коробки наугад извлекли по одному шару, а затем из этих двух шаров наугад берут один шар. Найти вероятность того, что этот шар белый. Вероятность того, что взятый из первой коробки шар белый - что не белый - . Вероятность того, что взятый из второй коробки шар белый - что не белый -  Вероятность того, что повторно выбран шар, извлеченный из первой коробки и вероятность того, что повторно выбран шар, извлеченный из второй коробки, равны 0,5.

Вероятность того, что повторно выбран шар, извлеченный из первой коробки, и он белый -

Вероятность того, что повторно выбран шар, извлеченный из второй коробки, и он белый -

Вероятность того, что повторно будет выбран белый шар, равна

Пример 3. Имеется пять винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит цель при выстреле из винтовки с оптическим прицелом, равна 0,95, для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что цель будет поражена, если стрелок произведет один выстрел из наугад выбранной винтовки.

Вероятность того, что выбрана винтовка с оптическим прицелом, обозначим , а вероятность того, что выбрана винтовка без оптического прицела, обозначим .

Вероятность того, что выбрали винтовку с оптическим прицелом, и при этом цель была поражена , где Р(ПЦ/O) - вероятность поражения цели из винтовки с оптическим прицелом.

Аналогично, вероятность того, что выбрали винтовку без оптического прицела, и при этом цель была поражена , где Р(ПЦ/БO) - вероятность поражения цели из винтовки без оптического прицела.

Окончательная вероятность поражения цели равна сумме вероятностей Р1 и Р2, т.к. для поражения цели достаточно, чтобы произошло одно из этих несовместных событий.

Пример 4. Трое охотников одновременно выстрелили по медведю, который был убит одной пулей. Определить вероятность того, что медведь был убит первым стрелком, если вероятности попадания для этих стрелков равны соответственно 0,3, 0,4, 0,5. В этой задаче требуется определить вероятность гипотезы уже после того, как событие уже совершилось. Для определения искомой вероятности надо воспользоваться формулой Бейеса. В нашем случае она имеет вид:

 

В этой формуле Н1, Н2, Н3 - гипотезы, что медведя убьет первый, второй и третий стрелок соответственно. До произведения выстрелов эти гипотезы равновероятны и их вероятность равна .

P(H1/A) - вероятность того, что медведя убил первый стрелок при условии, что выстрелы уже произведены (событие А).

Вероятности того, что медведя убьет первый, второй или третий стрелок, вычисленные до выстрелов, равны соответственно:

Здесь q1 = 0,7; q2 = 0,6; q3 = 0,5 - вероятности промаха для каждого из стрелков, рассчитаны как q = 1 - p, где р - вероятности попадания для каждого из стрелков.

Подставим эти значения в формулу Бейеса:

Пример 5. Последовательно послано четыре радиосигнала. Вероятности приема каждого из них не зависят от того, приняты ли остальные сигналы, или нет. Вероятности приема сигналов равны соответственно 0,2, 0,3, 0,4, 0,5. Определить вероятность приема трех радиосигналов.

Событие приема трех сигналов из четырех возможно в четырех случаях:

Для приема трех сигналов необходимо совершение одного из событий А, В, С или D. Таким образом, находим искомую вероятность:

Пример 6. Двадцать экзаменационных билетов содержат по два вопроса, которые не повторяются. Экзаменующийся знает ответы только на 35 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого достаточно ответить на два вопроса одного билета или на один вопрос одного билета и на указанный дополнительный вопрос из другого билета.

В общей сложности имеется 40 вопросов (по 2 в каждом из 20 билетов). Вероятность того, что выпадает вопрос, на который ответ известен, очевидно, равна .

Для того, чтобы сдать экзамен, требуется совершение одного из трех событий:

1) Событие A - ответили на первый вопрос (вероятность ) и ответили на второй вопрос (вероятность ). Т.к. после успешного ответа на первый вопрос остается еще 39 вопросов, на 34 из которых ответы известны.

2) Событие В - на первый вопрос ответили (вероятность ), на второй - нет (вероятность ), на третий - ответили (вероятность ).

3) Событие С - на первый вопрос не ответили (вероятность ), на второй - ответили (вероятность ), на третий - ответили (вероятность ).

Вероятность того, что при заданных условиях экзамен будет сдан равна:

3. Биноминальное распределение

Если производится п независимых испытаний, в каждом из которых событие А может появиться с одинаковой вероятностью р в каждом из испытаний, то вероятность того, что событие не появится, равна q = 1 - p.

Примем число появлений события в каждом из испытаний за некоторую случайную величину Х.

Чтобы найти закон распределения этой случайной величины, необходимо определить значения этой величины и их вероятности.

Значения найти достаточно просто. Очевидно, что в результате п испытаний событие может не появиться вовсе, появиться один раз, два раза, три и т.д. до п раз. Вероятность каждого значения этой случайной величины можно найти по формуле Бернулли.

Эта формула аналитически выражает искомый закон распределения. Этот закон распределения называется биноминальным.

Пример 1. В партии 10% нестандартных деталей. Наугад отобраны 4 детали. Написать биноминальный закон распределения дискретной случайной величины Х - числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.

Вероятность появления нестандартной детали в каждом случае равна 0,1. Найдем вероятности того, что среди отобранных деталей:

1) Вообще нет нестандартных.

2) Одна нестандартная.

3) Две нестандартные детали.

4) Три нестандартные детали.

5) Четыре нестандартных детали.

Построим многоугольник распределения.

Пример 2. Две игральные кости одновременно бросают 2 раза. Написать биноминальный закон распределения дискретной случайной величины Х - числа выпадений четного числа очков на двух игральных костях.

Каждая игральная кость имеет три варианта четных очков - 2, 4 и 6 из шести возможных, таким образом, вероятность выпадения четного числа очков на одной кости равна 0,5.

Вероятность одновременного выпадения четных очков на двух костях равна 0,25.

Вероятность того, что при двух испытаниях оба раза выпали четные очки на обеих костях, равна:

Вероятность того, что при двух испытаниях один раз выпали четные очки на обеих костях:

Вероятность того, что при двух испытаниях ни одного раза не выпаде четного числа очков на обеих костях:

4. Распределение Пуассона

Пусть производится п независимых испытаний, в которых появление события А имеет вероятность р. Если число испытаний п достаточно велико, а вероятность появления события А в каждом испытании мало (pЈ0,1), то для нахождения вероятности появления события А k раз находится следующим образом. Сделаем важное допущение - произведение пр сохраняет постоянное значение:

Практически это допущение означает, что среднее число появления события в различных сериях испытаний (при разном п) остается неизменным.

По формуле Бернулли получаем:

Найдем предел этой вероятности:

Получаем формулу распределения Пуассона:

5. Числовые характеристики дискретных случайных величин

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

6. Зависимые и независимые случайные величины

Случайные величины называются независимыми, если закон распределения одной из них не зависит от того какое значение принимает другая случайная величина. Понятие зависимости случайных величин является очень важным в теории вероятностей. Условные распределения независимых случайных величин равны их безусловным распределениям. Определим необходимые и достаточные условия независимости случайных величин.

Теорема. Для того, чтобы случайные величины Х и Y были независимы, необходимо и достаточно, чтобы функция распределения системы (X, Y) была равна произведению функций распределения составляющих.

Аналогичную теорему можно сформулировать и для плотности распределения:

Теорема. Для того, чтобы случайные величины Х и Y были независимы, необходимо и достаточно, чтобы плотность совместного распределения системы (X, Y) была равна произведению плотностей распределения составляющих.

Корреляционным моментом mxy случайных величин Х и Y называется математическое ожидание произведения отклонений этих величин.

Практически используются формулы:

Для дискретных случайных величин:

Для непрерывных случайных величин:

Корреляционный момент служит для того, чтобы охарактеризовать связь между случайными величинами. Если случайные величины независимы, то их корреляционный момент равен нулю.

Корреляционный момент имеет размерность, равную произведению размерностей случайных величин Х и Y. Этот факт является недостатком этой числовой характеристики, т.к. при различных единицах измерения получаются различные корреляционные моменты, что затрудняет сравнение корреляционных моментов различных случайных величин.

Для того, чтобы устранить этот недостаток применятся другая характеристика - коэффициент корреляции.

Коэффициентом корреляции rxy случайных величин Х и Y называется отношение корреляционного момента к произведению средних квадратических отклонений этих величин.

Коэффициент корреляции является безразмерной величиной. Коэффициент корреляции независимых случайных величин равен нулю.

Свойство: Абсолютная величина корреляционного момента двух случайных величин Х и Y не превышает среднего геометрического их дисперсий.

Свойство: Абсолютная величина коэффициента корреляции не превышает единицы.

Случайные величины называются коррелированными, если их корреляционный момент отличен от нуля, и некоррелированными, если их корреляционный момент равен нулю.

Если случайные величины независимы, то они и некоррелированы, но из некоррелированности нельзя сделать вывод о их независимости.

Если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными.

Часто по заданной плотности распределения системы случайных величин можно определить зависимость или независимость этих величин.

Наряду с коэффициентом корреляции степень зависимости случайных величин можно охарактеризовать и другой величиной, которая называется коэффициентом ковариации. Коэффициент ковариации определяется формулой:

Пример. Задана плотность распределения системы случайных величин Х и Y.

Выяснить являются ли независимыми случайные величины Х и Y.

Для решения этой задачи преобразуем плотность распределения:

Таким образом, плотность распределения удалось представить в виде произведения двух функций, одна из которых зависит только от х, а другая - только от у. Т.е. случайные величины Х и Y независимы. Разумеется, они также будут и некоррелированы.

7. Система случайных величин

Рассмотренные выше случайные величины были одномерными, т.е. определялись одним числом, однако, существуют также случайные величины, которые определяются двумя, тремя и т.д. числами. Такие случайные величины называются двумерными, трехмерными и т.д.

В зависимости от типа, входящих в систему случайных величин, системы могут быть дискретными, непрерывными или смешанными, если в систему входят различные типы случайных величин. Более подробно рассмотрим системы двух случайных величин. Законом распределения системы случайных величин называется соотношение, устанавливающее связь между областями возможных значений системы случайных величин и вероятностями появления системы в этих областях.

Функцией распределения системы двух случайных величин называется функция двух аргументов F(x, y), равная вероятности совместного выполнения двух неравенств X<x, Y<y.

Отметим следующие свойства функции распределения системы двух случайных величин:

1) Если один из аргументов стремится к плюс бесконечности, то функция распределения системы стремится к функции распределения одной случайной величины, соответствующей другому аргументу.

2) Если оба аргумента стремятся к бесконечности, то функция распределения системы стремится к единице.

3) При стремлении одного или обоих аргументов к минус бесконечности функция распределения стремится к нулю.

4) Функция распределения является неубывающей функцией по каждому аргументу.

5) Вероятность попадания случайной точки (X, Y) в произвольный прямоугольник со сторонами, параллельными координатным осям, вычисляется по формуле:

Список использованной литературы

1. Андронов А.М. Теория вероятностей и математическая статистика, Питер, 2004

2. Волковец А.И. Теория вероятностей и математическая статистика, конспект лекций, М.: Инфра-М,2003

3. Гмурман В.Е. Теория вероятностей и математическая статистика, М.: АСТ, 2003

4. Колемаев В.А. Теория вероятностей и математическая статистика, М.: Инфра-М, 1997

5. Ларин А.А. Теория вероятностей и математическая статистика, М.: ЭФ НГУ, 2003

6. Письменный Д. М. Конспект лекций по теории вероятностей и математической статистике, М.: Академия, 2004

7. Топчий В.А., Дворкин П.Л. Теория вероятности, ОФИМ СО РАН, 1999

8. Чернова Н.И. Теория вероятностей: курс лекций, Новосибирск: НГУ, 2006

9. Соколов Г.А., Чистякова Н.А. Теория вероятностей, Экзамен, 2005

10. Нахман А.Д. Ряды. Теория вероятностей и математическая статистика, Тамбов: ТГТУ, 2002

11. Пучков Н.П., Ткач Л.И. Математика случайного. Методические рекомендации, Тамбов: ТГТУ, 2005

12. Соловьев А.А. Лекции по теории вероятностей и математической статистике, ЧелГУ, 2003

13. Розанов Ю.А. Теория вероятностей, случайные процессы и математическая статистика, М.: Наука, 1989

14. Прохоров А.В. Задачи по теории вероятностей, М.: Наука,1986


Подобные документы

  • Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.

    презентация [1,4 M], добавлен 19.07.2015

  • Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.

    дипломная работа [797,0 K], добавлен 25.02.2011

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат [146,5 K], добавлен 19.08.2015

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат [325,3 K], добавлен 23.01.2011

  • Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа [705,1 K], добавлен 22.11.2013

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа [103,1 K], добавлен 15.06.2012

  • Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция [285,3 K], добавлен 17.12.2010

  • Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.

    презентация [1,4 M], добавлен 19.07.2015

  • Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.

    задача [45,4 K], добавлен 15.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.