Векторная алгебра

Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.

Рубрика Математика
Вид конспект урока
Язык русский
Дата добавления 16.01.2010
Размер файла 14,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ВЕКТОРНАЯ АЛГЕБРА - раздел векторного исчисления в котором изучаются простейшие операции над (свободными) векторами. К числу операций относятся линейные операции над векторами: операция сложения векторов и умножения вектора на число.

Суммой a+b векторов a и b называют вектор , проведенный из начала a к концу b , если конец a и начало b совмещены. Операция сложения векторов обладает свойствами:

a+b=b+a (коммутативность)

(а+b)*с=а*(b+с)(ассоциативность)

a + 0=a (наличие нулевого элемента )

a+(-a)=0 (наличие противоположного элемента),

где 0 - нулевой вектор, -a есть вектор, противоположный вектору а. Разностью a-b векторов a и b называют вектор x такой, что x+b=a.

Произведением x вектора а на число в случае 0, аО называют вектор, модуль которого равен |||a| и который направлен в ту же сторону, что и вектор a, если >0, и в противоположную, если <0. Если =0 или (и) a =0, то a=0. Операция умножения вектора на число обладает свойствами:

*(a+b)= *a+*b(дистрибутивность относительно сложения векторов)

(+u)*a=*a+u*a (дистрибутивность относительно сложения чисел)

*(u*a)=(*u)*a(ассоциативность)

1*a=a(умножение на единицу)

Множество всех векторов пространства с введенными в нем операциями сложения и умножения на число образует векторное пространство (линейное пространство).

В Векторной алгебре важное значение имеет понятие линейной зависимости векторов. Векторы а, b, … , с называются линейно зависимыми векторами, если существуют числа , ,…, из которых хотя бы одно отлично от нуля, такие, что справедливо равенство:

a+b+…c=0.(1)

Для линейной зависимости двух векторов необходима и достаточна их коллинеарность, для линейной зависимости трех векторов необходима и достаточна их компланарность. Если один из векторов а, b, ...,c нулевой, то они линейно зависимы. Векторы a,b, ..,с называются линейно независимыми, если из равенства (1) следует, что числа , ,…, равны нулю. На плоскости существует не более двух, а в трехмерном пространстве не более трех линейно независимых векторов.

Совокупность трех (двух) линейно независимых векторов e1,e2,e3 трехмерного пространства (плоскости), взятых в определенном порядке, образует базис. Любой вектор а единственным образом представляется в виде суммы:

a=a1e1+a2e2+a3e3.

Числа a1,a2,a3 называют координатами (компонентами) вектора а в данном базисе и пишут a={a1,a2,a3}.

Два вектора a={a1,a2,a3} и b={b1,b2,b3} равны тогда и только тогда, когда равны их соответствующие координаты в одном и том же базисе. Необходимым и достаточным условием коллинеарности векторов a={a1,a2,a3} и b={b1,b2,b3} ,b0, является пропорциональность их соответствующих координат: a1=b1,a2=b2,a3=b3. Необходимым и достаточным условием компланарности трех векторов a={a1,a2,a3} , b={b1,b2,b3} и c={c1,c2,c3} является равенство:

| a1 a2 a3 |

| b1 b2 b3| = 0

| c1 c2 c3 |

Линейные операции над векторами сводятся к линейным операциям над координатами. Координаты суммы векторов a={a1,a2,a3} и b={b1,b2,b3} равны суммам соответствующих координат: a+b={a1+b1,a2+b2,a3+b3}. Координаты произведения вектора а на число равны произведениям координат а на :

а= {а1,a2, a3}.

Скалярным произведением (а, b) ненулевых векторов а и b называют произведение их модулей на косинус угла между ними:

(а, b) = | а |*| b | cos.

За принимается угол между векторами, не превосходящий . Если а=0 или b=0, то скалярное произведение полагают равным нулю. Скалярное произведение обладает свойствами:

(a, b)= (b, а) (коммутативность),

(a,b+с)= (a,b) + (а,с) (дистрибутивность относительно сложения векторов),

(a,b)=( a,b) =(a,6) (сочетательность относительно умножения на число),

(a,b)=0, лишь если а=0 или (и) b=0 или ab.

Для вычисления скалярных произведений векторов часто пользуются декартовыми прямоугольными координатами, т.е. координатами векторов в базисе, состоящем из единичных взаимноперпендикулярных векторов (ортов) i, j, k ( ортонормированный базис). Скалярное произведение векторов:

a={a1,a2,a3} и b={b1,b2,b3}

заданных в ортонормированном базисе, вычисляется по формуле:

(a,b)=a1b1+a2b2+a3b3

Косинус угла между ненулевыми векторами a={a1,a2,a3} и b={b1,b2,b3}

может быть вычислен по формуле:

где и

Косинусы углов вектора a={a1,a2,a3} с векторами базиса i, j, k называют. направляющими косинусами вектора а:

, ,.

Направляющие косинусы обладают следующим свойством:

cos2+cos2+cos2=1

Осью называется прямая с лежащим на ней единичным вектором е-ортом, задающим положительное направление на прямой. Проекцией Пр. е а вектора a на ось называют направленный отрезок на оси, алгебраическое значение которого равно скалярному произведению вектора а на вектор е. Проекции обладают свойствами:

Пр. е (a+b)= Пр. е a+ Пр. е b (аддитивность),

Пр. е a = Пр. е a(однородность).

Каждая координата вектора в ортонормированном базисе равна проекции этого вектора на ось, определяемую соответствующим вектором базиса.

В пространстве различают правые и левые тройки векторов. Тройка некомпланарных векторов а, b, с называется правой, если наблюдателю из их общего начала обход концов векторов a, b, с в указанном порядке кажется совершающимся по часовой стрелке. В противном случае a,b,c - левая тройка. Правая (левая) тройка векторов располагается так, как могут быть расположены соответственно большой, несогнутый указательный и средний пальцы правой (левой) руки(см. рис).Все правые (или левые) тройки векторов называются одинаково ориентированными.

bb

c c

a a

правило левой руки правило правой руки

Ниже тройку векторов i,j,k следует считать правой.

Пусть на плоскости задано направление положительного вращения (от i к j). Псевдоскалярным произведением aVb ненулевых векторов a и b называют произведение их модулей на синус угла положительного вращения от a к k:

aVb=| a || b |*sin

Псевдоскалярное произведение нулевых векторов полагают равным нулю. Псевдоскалярное произведение обладает свойствами:

aVb=-bVa (антикоммутативность),

aV (b+c)=aVb+aVc (дистрибутивность относительно сложения векторов),

(aVb)=aVb (сочетательность относительно умножения на число),

aVb=0, лишь если а=0 или (и) b=0 или а и b коллинеарны.

Если в ортонормированном базисе векторы а и и имеют координаты {a1,a2} {b1,b2}, то :

aVb=a1b1-a2b2.


Подобные документы

  • Линейные операции над векторами. Скалярное произведение двух векторов. Векторное произведение векторов. Графическое решение систем неравенств. Построение графиков функций с помощью геометрических преобразований. Простейшие геометрические преобразования.

    методичка [2,0 M], добавлен 15.06.2015

  • Раздел математики, непосредственно относящийся к задачам физической и инженерной практики. Элементы векторной и линейной алгебры; описание способов выполнения различных операций над векторами: сложение, вычитание, геометрически смешанное произведение.

    презентация [411,9 K], добавлен 02.05.2012

  • Изучение свойств геометрических объектов при помощи алгебраических методов. Основные операции над векторами. Умножение вектора на отрицательное число. Скалярное произведение векторов. Нахождение угла между векторами. Нахождение координат вектора.

    контрольная работа [56,3 K], добавлен 03.12.2014

  • Вектор - направленный отрезок, имеющий начало и конец, его свойства. Виды определения векторов, действия над ними. Правила сложения векторов, их сумма. Скалярное произведение векторов. Особенности использования векторов. Решение геометрических задач.

    контрольная работа [640,1 K], добавлен 18.01.2013

  • Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.

    презентация [373,9 K], добавлен 16.11.2014

  • Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    творческая работа [481,5 K], добавлен 23.06.2009

  • Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.

    контрольная работа [102,5 K], добавлен 04.12.2013

  • Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.

    контрольная работа [605,8 K], добавлен 06.05.2012

  • Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.

    реферат [80,9 K], добавлен 28.03.2014

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация [98,6 K], добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.