Дисперсионный анализ

Назначение дисперсионного анализа. Формулировка гипотез в нем. Однофакторный дисперсионный анализ для несвязанных и связанных выборок. Ограничения дисперсионного анализа и подготовка данных. Дисперсионный анализ в контексте статистических методов.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 17.09.2009
Размер файла 43,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФАЖТ ГОУВПО РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Математика

Контрольная работа №7-8

тема: Дисперсионный анализ

Рязань, 2009 год

Содержание

Введение

1 Понятие, назначение дисперсионного анализа

1.1 Формулировка гипотез в дисперсионном анализе

1.2 Ограничения дисперсионного анализа и подготовка данных

2. Виды дисперсионного анализа

2.1 Однофакторный дисперсионный анализ для несвязанных выборок

2.2 Однофакторный дисперсионный анализ для связанных выборок

2.3 Многофакторный дисперсионный анализ

3 Дисперсионный анализ в контексте статистических методов

Заключение

Список использованных источников

Введение

Дисперсионный анализ (от латинского Dispersio - рассеивание) - статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации /1/.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.

1. Понятие, назначение дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I. В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

- перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

- иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений. Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать. В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия у2. Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:

,

где k - число групп;

nj - число единиц в j-ой группе;

- частная средняя по j-ой группе;

- общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия уj2.

.

Между общей дисперсией у02, внутригрупповой дисперсией у2 и межгрупповой дисперсией существует соотношение:

у02 = + у2.

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

1.1 Формулировка гипотез в дисперсионном анализе

Нулевая гипотеза:

«Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза:

«Средние величины результативного признака в разных условиях действия фактора различны».

1.2 Ограничения дисперсионного анализа и подготовка данных

Дисперсионный анализ следует применять тогда, когда известно (установлено), что распределение результативного признака является нормальным.

Для проверки следует провести расчеты ассимметрии и эксцесса по следующим формулам:

A = У (xi - xср)3 / n3

mA= v6/n

E = (У (xi - xср)4 / n4 ) - 3

mE= 2v6/n ,

где А и Е - ассимметрия и эксцесс, а mA и mE - их ошибки репрезентативности. После подстановки значений не должно оказаться так, чтобы ассимметрия и эксцесс превышали более, чем втрое свои ошибки репрезентативности. При соблюдении этого требования, распределение можно считать нормальным.

Будем называть данные, относящиеся к одному условию действия фактора (к одной градации) дисперсионным комплексом.

Дисперсионный анализ требует также, чтобы между комплексами соблюдалось равенство дисперсий. В литературе по этому вопросу предлагается (и доказана правомочность предложения) удовлетворять такое требование уравниванием числа значений в каждом из комплексов. Иными словами, если в тихой аудитории решали задачу 10 человек, то и в шумную мы должны посадить столько же; если белых кур набралось 100, черных - 80, а пестрых - 70, - мы обязаны взять только по 70 кур каждого цвета. Причем, отбор следует осуществлять случайным образом.

(В SPSS эта возможность представлена так: Данные - Выбор регистров - Случайный образец регистров (радиокнопка) - Образец… (кнопка)).

2. Виды дисперсионного анализа

Дисперсионный анализ схематически можно подразделить на несколько категорий. Это деление осуществляется, смотря по тому, сколько, во-первых, факторов принимает участие в рассмотрении, во-вторых, - сколько переменных подвержены действию факторов, и, в-третьих, - по тому, как соотносятся друг с другом выборки значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

- Анализ несвязанных (то есть - различных) выборок. Например, одна группа респондентов решает задачу в условиях тишины, вторая - в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

- Анализ связанных выборок. То есть: двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй - сходная задача - в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки. Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе.

2.1 Однофакторный дисперсионный анализ для несвязанных выборок

Назначение метода.

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака (зависимой переменной) под влиянием изменяющихся условий или градаций какого-либо фактора.

Влиянию каждой из градаций фактора подвержены разные выборки.

Должно быть не менее трех градаций фактора и не менее двух наблюдений в каждой градации.

Описание метода.

Расчеты начинаются с расстановки всех данных по столбцам, относящимся к каждому из факторов соответственно.

Следующим действием будет нахождение сумм значений по столбцам (то есть - градациям) и возведение их в квадрат.

Фактически метод состоит в сопоставлении каждой из полученных и возведенных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте.

Графическое представление метода.

На рисунке схематически представлены три градации какого-либо фактора. Дисперсионный анализ позволяет определить, что преобладает: влияние фактора или случайная вариативность внутри групп (тенденция, выраженная кривой или размах отрезков, ограниченных кружками)?

Алгоритм расчета.

Промежуточные величины.

Tc

суммы индивидуальных значений по каждому из условий

У(T2c)

сумма квадратов суммарных значений по каждому из условий

с

количество условий (градаций фактора)

n

количество значений в каждом комплексе (испытуемых в каждой группе)

N

общее количество индивидуальных значений

(Уxi)2

квадрат общей суммы индивидуальных значений

У(xi)2 / N

константа, необходимая для вычитания из каждой суммы квадратов

xi

каждое индивидуальное значение

У(xi)2

сумма квадратов индивидуальных значений

Принятые в литературе сокращения:

СК или SS - сумма квадратов

SSфакт. - вариативность, обусловленная действием исследуемого фактора

SSобщ. - общая вариативность

SSсл. - случайная вариативность

MS - «средний квадрат» (математическое ожидание суммы квадратов, усредненная величина соответствующих SS)

df - число степеней свободы.

Основные вычисления.

Подсчитать SSфакт.

SSфакт. = 1/n УT2c - 1/n (Уxi)2

Подсчитать SSобщ.

SSобщ. = Уx2i - 1/N (Уxi)2

Подсчитать случайную остаточную величину SSсл.

SSсл. = SSобщ. - SSфакт.

Определить число степеней свободы

dfфакт. = с - 1

dfобщ. = N - 1

dfсл. = dfобщ. - dfфакт.

Разделить каждую SS на соответствующее число степеней свободы

MSфакт. = SSфакт. / dfфакт.

MS сл. = SS сл. / df сл.

Подсчитать значение Fэмп.

Fэмп. = MSфакт. / MS сл.

Определить по таблицам критические значения F и сопоставить с ним полученное эмпирическое значение

При Fэмп. >= Fкр. H0 отклоняется.

2.2 Однофакторный дисперсионный анализ для связанных выборок

Назначение метода.

Метод применяется в тех случаях, когда исследуется влияние разных условий действия фактора (градаций фактора) на одну и ту же выборку. (Одни и те же респонденты в разных условиях.)

Условий (градаций) должно быть не менее трех.

Индивидуальных значений по каждому условию должно быть не менее двух.

Описание метода.

В этом случае различия могут быть вызваны не только влиянием фактора, но и индивидуальными различиями между испытуемыми. При анализе несвязанных выборок это обстоятельство не оказывало воздействия за счет того, что выборки были различны, и сводилось к случайным причинам различий, - здесь же индивидуальные различия между элементами выборки (респондентами) необходимо особо учитывать. (Индивидуальные различия могут оказаться более значимыми, чем изменение условий действия фактора.) Исходя из сказанного, в расчеты вводятся дополнительные компоненты - суммы квадратов сумм индивидуальных значений.

Графическое представление.

Рисунок иллюстрирует пример решения анаграмм различной длины одними и теми же респондентами. Исследователей интересовало влияние длины анаграммы на время ее решения. (Выяснилось, что наибольшие трудности, что видно из диапазона времени, затраченного на решение, и его среднего значения, вызвала анаграмма из пяти букв.)

Расчет промежуточных величин.

Tc

Суммы индивидуальных значений по каждому из условий

УT2c

Сумма квадратов суммарных значений по каждому из условий

с

Количество значений у каждого респондента, то есть - количество условий

n

Количество респондентов

N

общее количество значений

Tn

Суммы индивидуальных значений по каждому респонденту

УT2n

Сумма квадратов сумм индивидуальных значений по респондентам

xi

каждое индивидуальное значение

(Уxi)2

квадрат общей суммы индивидуальных значений

1/N(Уxi)2

константа, необходимая для вычитания из каждой суммы квадратов

У(xi)2

сумма квадратов индивидуальных значений

Основные вычисления.

Подсчитать SSфакт.

SSфакт. = 1/n УT2c - 1/n (Уxi)2

Подсчитать SSресп.

SSресп. =1/c УT2n - 1/N (Уxi)2

Подсчитать SSобщ.

SSобщ. = Уx2i - 1/N (Уxi)2

Подсчитать случайную остаточную величину SSсл.

SSсл. = SSобщ. - SSфакт. - SSресп.

Определить число степеней свободы

dfфакт. = с - 1

dfресп. = n - 1

dfобщ. = N - 1

dfсл. = dfобщ. - dfфакт. - dfресп.

Разделить каждую SS на соответствующее число степеней свободы

MSфакт. = SSфакт. / dfфакт.

MS респ. = SS респ. / df респ.

MS сл. = SS сл. / df сл.

Подсчитать значения F

Fфакт.= MSфакт. / MS сл.

Fресп.= MSресп. / MS сл.

Определить по таблицам критические значения F и сопоставить с ними полученные эмпирические значения

При Fэмп. >= Fкр. H0 отклоняется.

2.3 Многофакторный дисперсионный анализ

Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным дисперсионным анализом нет. Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного дисперсионного анализа (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие /3/.

Общая схема двухфакторного эксперимента, данные которого обрабатываются дисперсионным анализом имеет вид:

Рисунок 1.1 - Схема двухфакторного эксперимента

Данные, подвергаемые многофакторному дисперсионному анализу, часто обозначают в соответствии с количеством факторов и их уровней.

В таблице 1.3 представлен общий вид вычисления значений, с помощью дисперсионного анализа.

Таблица 1.3 - Базовая таблица дисперсионного анализа

Компоненты дисперсии

Сумма квадратов

Число степеней свободы

Средние квадраты

Межгрупповая (фактор А)

m-1

Межгрупповая (фактор B)

l-1

Взаимодействие

(m-1)(l-1)

Остаточная

mln - ml

Общая

mln - 1

Отклонение от основных предпосылок дисперсионного анализа -- нормальности распределения исследуемой переменной и равенства дисперсий в ячейках (если оно не чрезмерное) -- не сказывается существенно на результатах дисперсионного анализа при равном числе наблюдений в ячейках, но может быть очень чувствительно при неравном их числе. Кроме того, при неравном числе наблюдений в ячейках резко возрастает сложность аппарата дисперсионного анализа. Поэтому рекомендуется планировать схему с равным числом наблюдений в ячейках, а если встречаются недостающие данные, то возмещать их средними значениями других наблюдений в ячейках. При этом, однако, искусственно введенные недостающие данные не следует учитывать при подсчете числа степеней свободы /1/.

3. Дисперсионный анализ в контексте статистических методов

Статистические методы анализа - это методология измерения результатов деятельности человека, то есть перевода качественных характеристик в количественные.

Основные этапы при проведении статистического анализа:

- содержательный анализ исследуемого объекта, системы или процесса. На этом этапе определяется набор входных и выходных параметров (X1 ,..., Xp; Y1 ,..., Yq);

- составление плана сбора исходных данных - значений входных переменных (X1,...,Xp), числа наблюдений n. Этот этап выполняется при активном планировании эксперимента.

- получение исходных данных и ввод их в компьютер. На этом этапе формируются массивы чисел (x1i ,..., xpi ; y1i ,..., yqi), i=1,..., n, где n - объем выборки.

- первичная статистическая обработка данных. На данном этапе формируется статистическое описание рассматриваемых параметров:

а) построение и анализ статистических зависимостей;

б) корреляционный анализ предназначен для оценивания значимости влияния факторов (X1,...,Xp) на отклик Y;

в) дисперсионный анализ используется для оценивания влияния на отклик Y неколичественных факторов (X1,...,Xp) с целью выбора среди них наиболее важных;

г) регрессионный анализ предназначен для определения аналитической зависимости отклика Y от количественных факторов X;

- интерпретация результатов в терминах поставленной задачи /13/.

В таблице 3.1 приведены статистические методы, с помощью которых решаются аналитические задачи. В соответствующих ячейках таблицы находятся частоты применения статистических методов:

- метка «-» - метод не применяется;

- метка «+» - метод применяется;

- метка «++» - метод широко применяется;

- метка «+++» - применение метода представляет особый интерес /14/.

Дисперсионный анализ подобно t-критерию Стьюдента, позволяет оценить различия между выборочными средними; однако, в отличие от t-критерия, в нем нет ограничений на количество сравниваемых средних. Таким образом, вместо того, чтобы поставить вопрос о различии двух выборочных средних, можно оценить, различаются ли два, три четыре, пять или k средних.

Дисперсионный анализ позволяет иметь дело с двумя или более независимыми переменными (признаками, факторами) одновременно, оценивая не только эффект каждой из них по отдельности, но и эффекты взаимодействия между ними /15/.

К большинству сложных систем применим принцип Парето, согласно которому 20 % факторов определяют свойства системы на 80 %. Поэтому первоочередной задачей исследователя имитационной модели является отсеивание несущественных факторов, позволяющее уменьшить размерность задачи оптимизации модели.

Анализ дисперсии оценивает отклонение наблюдений от общего среднего. Затем вариация разбивается на части, каждая из которых имеет свою причину. Остаточная часть вариации, которую не удается связать с условиями эксперимента, считается его случайной ошибкой. Для подтверждения значимости используется специальный тест - F-статистика.

Дисперсионный анализ определяет, есть ли эффект. Регрессионный анализ позволяет прогнозировать отклик (значение целевой функции) в некоторой точке пространства параметров. Непосредственной задачей регрессионного анализа является оценка коэффициентов регрессии /16/.

Слишком большая размерность выборок затрудняет проведение статистических анализов, поэтому имеет смысл уменьшить размер выборки.

Применив дисперсионный анализ можно выявить значимость влияния различных факторов на исследуемую переменную. Если влияние фактора окажется несущественным, то этот фактор можно исключить из дальнейшей обработки.

Таблица 3.1 - Применение статистических методов при решении аналитических задач

Аналитические задачи, возникающие в сфере бизнеса, финансов и управления

Методы описательной статистики

Методы поверки статисти-ческих гипотез

Методы регресси-онного анализа

Методы дисперси-онного анализа

Методы анализа категории-альных данных

Методы много-мерного анализа

Методы дискрими-нантного анализа

Методы кластер-ного анализа

Методы анализа выжива-емости

Методы анализа и прогноза временных рядов

Задачи горизонталь-ного (временного) анализа

++

+

-

+

+

-

-

-

-

-

Задачи вертикального (структурного) анализа

++

-

-

+

++

++

+

+

-

-

Задачи трендового анализа и прогноза

++

-

+++

++

-

-

-

-

++

+++

Задачи анализа относительных показателей

++

+

+

-

+

+++

++

++

-

++

Задачи сравнитель- ного (пространствен-ного) анализа

++

-

+

+

++

+++

++

++

-

+

Задачи факторного анализа

+

+

++

-

++

+++

+

++

-

+

Заключение

Современные приложения дисперсионного анализа охватывают широкий круг задач экономики, биологии и техники и трактуются обычно в терминах статистической теории выявления систематических различий между результатами непосредственных измерений, выполненных при тех или иных меняющихся условиях.

Благодаря автоматизации дисперсионного анализа исследователь может проводить различные статистические исследования с применение ЭВМ, затрачивая при этом меньше времени и усилий на расчеты данных. В настоящее время существует множество пакетов прикладных программ, в которых реализован аппарат дисперсионного анализа. Наиболее распространенными являются такие программные продукты как:

- MS Excel;

- Statistica;

- Stadia;

- SPSS.

В современных статистических программных продуктах реализованы большинство статистических методов. С развитием алгоритмических языков программирования стало возможным создавать дополнительные блоки по обработке статистических данных.

Подводя итоги, можно сказать, что целью дисперсионного анализа является проверка статистической значимости различия между средними (для групп или переменных). Эта проверка проводится с помощью разбиения суммы квадратов на компоненты, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Дисперсионный анализ является мощным современным статистическим методом обработки и анализа экспериментальных данных в психологии, биологии, медицине и других науках. Он очень тесно связан с конкретной методологией планирования и проведения экспериментальных исследований.

Дисперсионный анализ применяется во всех областях научных исследований, где необходимо проанализировать влияние различных факторов на исследуемую переменную.

Список литературы

1. Кремер Н.Ш. Теория вероятности и математическая статистика. М.: Юнити - Дана, 2002.-343с.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2003.-523с.

3. Гусев А.Н. Дисперсионный анализ в экспериментальной психологии. - М.: Учебно-методический коллектор «Психология», 2000.-136с.


Подобные документы

  • Дисперсионный анализ. Применение дисперсионного анализа в различных задачах и исследованиях. Дисперсионный анализ в контексте статистических методов. Векторные авторегрессии. Факторный анализ.

    курсовая работа [139,8 K], добавлен 29.05.2006

  • Общее понятие о дисперсионном анализе, его сущность и значение. Использование INTERNET и компьютера для проведения дисперсионного анализа, особенности работы в среде MS Excel. Примеры применения однофакторного и двухфакторного дисперсионного анализа.

    курсовая работа [820,4 K], добавлен 17.02.2013

  • Построение статистических таблиц. Оценка достоверности влияния организованных и неучтенных факторов на величину результативного признака. Определение числа степеней свободы в однофакторном комплексе. Обработка двухфакторного дисперсионного комплекса.

    презентация [134,4 K], добавлен 14.04.2013

  • Изучение раздела математической статистики, посвященного методам выявления влияния отдельных факторов на результат эксперимента. Эффекты взаимодействия. Использование однофакторного дисперсионного анализа для сравнения средних значений нескольких выборок.

    презентация [110,0 K], добавлен 09.11.2014

  • Дисперсионный анализ по одному признаку для проверки равенства нескольких средних. Множественная линейная регрессия. Зависимость ВАШБП и ВАШСП от показателей активности в динамике. Дисперсионный анализ и линейная регрессия, артрит реактивный.

    курсовая работа [2,2 M], добавлен 08.08.2010

  • Проведение аналитической группировки и дисперсионного анализа данных, с целью количественно определить тесноту связи. Определение степени корреляции между группировочными признаками и вариационной зависимости переменной, обусловленной регрессией.

    контрольная работа [140,5 K], добавлен 17.08.2014

  • Оценка надежности аналитической методики. Дисперсионный анализ результатов опытов и аппроксимация результатов эксперимента. Расчет линейного уравнения связи. Определение полного квадратного уравнения. Вычисление типа и объема химического реактора.

    курсовая работа [229,2 K], добавлен 06.01.2015

  • Определение вероятности, что машина с неисправной ходовой частью имеет также неисправный мотор. Методика вычисления дисперсии. Проверка статистических гипотез и дисперсионный анализ. Формирование контрольных карт, их содержание и принципы построения.

    курсовая работа [686,4 K], добавлен 31.01.2015

  • Вычисление среднего одномерных случайных величин. Определение доверительного интервала для математического ожидания и для дисперсии. Построение эмпирической и приближенной линий регрессии Y по X. Дисперсионный анализ греко-латынского куба второго порядка.

    курсовая работа [698,0 K], добавлен 08.05.2012

  • Ознакомление с механизмом проверки гипотезы для случая единственной выборки, двух и нескольких независимых выборок. Проверка совпадений карт, выбор фильмов разных жанров. Обоснование результатов, полученных после проверки статистических гипотез.

    курсовая работа [726,2 K], добавлен 26.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.