Понятие числового ряда и его суммы
Геометрический и арифметический ряды. Свойства равномерно сходящихся рядов. Необходимый признак сходимости рядов. Интегральный признак сходимости ряда, ряд Дирихле. Знакочередующиеся и знакопеременные ряды. Абсолютная и условная сходимость рядов.
Рубрика | Математика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 20.06.2009 |
Размер файла | 75,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1 Понятие числового ряда и его суммы
Пусть задана бесконечная последовательность чисел u1, u2, u3…
Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.
Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un
Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.
2 Геометрический и арифметический ряды
Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или
а+ аq +…+aqn-1
a 0 первый член q - знаменатель. Сумма ряда:
следовательно конечный предел последовательности частных сумм ряда зависит от величины q
Возможны случаи:
1 |q|<1
т. е. ряд схд-ся и его сумма 2 |q|>1 и предел суммы так же равен бесконечности
т. е. ряд расходится.
3 при q = 1 получается ряд: а+а+…+а… Sn = na ряд расходится
4 при q1 ряд имеет вид: а-а+а … (-1)n-1a Sn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.
Рассмотрим ряд из бесконечных членов арифметической прогрессии: u - первый член, d - разность. Сумма ряда
при любых u1 и d одновременно 0 и ряд всегда расходится.
3 Свойства сходящихся рядов
Пусть даны два ряда: u1+u2+…un =(1) и v1+v2+…vn = (2)
Произведением ряда (1) на число R наз ряд: u1+u2+…un =(3)
Суммой рядов (1) и (2) наз ряд:
(u1+v1)+(u2+v2)+…(un+vn) = (для разности там только - появится)
Т1 Об общем множителе
Если ряд (1) сходится и его сумма = S, то для любого числа ряд = тоже сходится и его сумма S' = S Если ряд (1) расходится и 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.
Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S', то и ряд: тоже сходится и если его сумма, то = S+S'. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то их сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=vn)
Для ряда (1) ряд называется n - ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: rn =
Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + rn
Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.
4 Необходимый признак сходимости рядов
Если ряд сходится, то предел его общего члена равен нулю:
Док-во:
Sn=u1+u2+…+un
Sn-1\u1+u2+…+un-1
un=Sn-Sn-1, поэтому:
Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.
5 Интегральный признак сходимости ряда. Ряд Дирихле
Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают: u1>=u2>=u3…>=un
Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на [1,+] такая, что f(n) = Un, n N, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).
Применим сей признак для исследования ряда Дирихле: Вот он: , R Сей ряд называют обобщенным гармоническим рядом, при >0 общий член оного un=1/n 0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/x (x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:
Возможны три случая:
1 >1,
Интеграл а потому и ряд сходится.
2 0<<1,
Интеграл и ряд расходится
3 =1,
Интеграл и ряд расходится
6 Признаки сравнения
Т(Признаки сравнения)
Пущай и ряды с неотрицательными членами и для любого n выполняется нер-во:
un<=vn (1)тогда
1 Если ряд vn сходится, то сходится и ряд un
2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!!
Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно.
Т3 Засекреченная
Если сущ вышеописанные неотр. ряды, то если сущ предел:
(0<k<+) тада оба эти ряда сходятся.
7 Признаки Даламбера и Коши
Т(Признак Даламбера)
Пущай для ряда un с положит членами существует предел:
, то
1 Если k<1, то ряд сходится
2 Если k>1 ряд расходится
Т(Признак Коши)
Пусть для того же самого ряда (т. е. положительного) существует предел:, тогда
1 Если k<1, то ряд сходится
2 Если k>1 ряд расходится
А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать нельзя.
8 Знакочередующиеся ряды. Признак Лейбница.
Ряд называется знакочередующимся если каждая пара соседних членов имеет разные, если считать каждый член сего ряда положительным то его можно записать в виде:
Т (Признак Лейбница)
Если для знакочередующегося ряды выполняются условия:
1) u1>=u2>=u3…>=un>=un+1…
2)
то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0<=S<=un и |rn|<=un+1
Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница.
Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится.
9 Знакопеременные ряды. Абсолютная и условная сходимость рядов.
Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд:
u1+u2…+un=(1), где un - может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда:
|u1|+|u2|…+|un|=(2),
Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно.
Т. Признак абсолютной сходимости:
Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом:
<=
Доквы:
т. к. 0<=|un|+un<=2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+…+un|<=|un| n N, то переходя к пределу получим:
<=
Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un - Sn. А вот с условно сходящимися рядами все гораздо запущенней.
Т(Римана)
Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых
10 Сходимость функциональных последовательностей и рядов
Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения.
Пусть задана последовательность числовых ф-ций {un(x)} Формально написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) - его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+…+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2… - его n-ным остатком. при каждом фиксированном х = х0 Е получим из (1) числовую последовательность {fn(x0)}, а из (2) - числовой ряд, которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости.
Если посл(1) сход на м-ж Е, то ф-ция f, определенная при x E f(x) = называется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при x Е равенством
S(x)=
называется суммой ряда (2).
Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через rn(ч), то S(x) = Sn(x)+rn(x)
Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует
и
, то ряд (2) абсолютно сходится при k(x)<1 и расходится при k(x)>1.
11 Равномерная сходимость функциональных последовательностей и рядов.
Признак Вейерштрасса.
Ф-циональную последовательность {fn)x)} x E наз. равномерно сходящейся ф-цией f на м-ж Е, если для >0, сущ номер N, такой, что для т х E и n >N выполняется -во: |fn(x)-f(x)|<. Если м-ж {fn)x)} равномерно сходится на м-ж Е, то она и просто сходится в ф-ции f на сем м-ж. тогда пишут: fn f.
наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы. , т. ен. равномерная сходимость ряда означает:Sn(x) f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся - есть сходящийся (не, вот это наверное лет 500 выдумывали.)
Т. (Признак Вейерштрасса равномерной сходимости ряда)
Если числовой ряд: (7),
где >=0 сходится и для x E и n = 1,2… если выполняется нер-во |un(x)|<=n(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е.
Док-вы:
Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) - сумма ряда (9), а Sn(x) - его частичная сумма.
Зафиксируем произвольное >0 В силу сходимости ряда (7) сущ. номера N, n >N и вып. нерво
Следовательно: |S(x)-Sn(x)| =
Это означает, что Sn(x) S(x) что означает равномерную сходимость ряда..
12 Свойства равномерно сходящихся рядов
Т1 Если ф-ция un(x), где х Е непрерывна в т. х0 E и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0.
Т2 (Об поюленном интегрировании ряда)
Пусть сущ. ф-ция un(x) R и непрерывная на отр. [a,b] и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 [a, b] (4) тоже равномерно сходится на [a,b]. В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать.
Т3 (о почленном дифференцировании ряда)
Пусть сущ. ф-ция un(x) R и непрерывная на отр. [a,b] и ряд её производных (6) равномерно сходящийся на отр [a,b] тогда, если ряд сходится хотя бы в одной точке x0 [a,b] то он сходится равномерно на всем отрезке [a,b], его сумма S(x) = является непрерывно дифференцируемой ф-цией и
S'(x)= (9)
В силу ф-л ы (8) последнее равенство можно записать:
()' =
So ряд (7) можно почленно дифференцировать
13 Степенные ряды. Теорема Абеля
Степенным рядом наз функциональный ряд вида: a0+a1x+a2x2+… + anxn = (1) x R членами которого являются степенные ф-ции. Числа an R, наз коэффициентами ряда(1). Степенным рядом наз также ряд:
a0+a1(x-x0)+a2(x-x0)2… + an(x-x0)n = (2)
Степенной ряд (1) сходится абсолютно по крайней мере в т. х = 0, а ряд (2) в т х = х0, т .е в этих случаях все лены кроме 1 равны 0. Ряд (2) сводится к ряду (1) по ф-ле у = х-х0.
Т Абеля
1Если степенной ряд (1) сходится в т. х0 0, то он сходится абсолютно при любом х, для которого |x|<|x0|.
2Если степеннгой ряд (1) расходится в т. х0, то он расходится в любой т. х, для которой |x|>|x0|
14 Радиус сходимости и интервал сходимости степенного ряда.
Рассмотрим степенной ряд:
(1) Число (конечное или бесконечное) R>=0 наз радиусом сходимости ряда (1) если для любого х такого, что |x|<R ряд (1) сходится, а для х таких. что |x|>R ряд расходится Интервал на числовой оси состоящий из т. х для которых |x|<R, т. е. (-R, +R) наз. интервалом сходимости.
Т1 Для всякого степенного ряда (1) существует радиус сходимости R 0<=R<=+ при этом, если |x|<R, то в этой т. х ряд сходится абсолютно
Если вместо х взять у = х-х0, то получится: интервал сходимости: |x-x0<R| будет: (x0-R, x0+R)При этом если |x-x0|<R? то ряд сходится в т. x абсолютно иначе расходится. На концах интервала, т. е. при x = -R, x=+R для ряда (1) или x = x0-R, x=x0+R для ряда (3) вопрос о сходимости решается индивидуально. У некоторых рядов интервал сходимости может охватывать всю числовую прямую при R = + или вырождаться в одну точку при R = 0.
Т2 Если для степенного ряда (1) существует предел (конечный или бесконечный): , то радиус сходимости будет равен этому пределу.
Док-вы: Рассмотрим ряд из абсолютных величин и по Даламберу исследуем его на сходимость:
(5)
1)Рассмотрим случай, когда конечен и отличен от 0. Обозначив его через R запишем (5) в виде При числовом значении х степенной ряд становится числовым рядом, поэтому по Даламберу ряд (1) сходится если |x|/R<1, т. е. |x|<R, тогда по признаку абсолютной сходимости ряд (1) сходится абсолютно при |x|<R иначе ряд расходится.
2)Пусть = тогда из(5) следует, что для любого х R Итак ряд (1) сходится при любом х причем абсолютно.
3) Пусть =0 тогда из (5) следует, что и ряд расходится для любого х. Он сходится только при х = 0 В этом сл-е R = 0.
Т3 Если существует предел конечный или бесконечный , то (10)
5 Свойства степенных рядов
Т1 Если степенной ряд (1) имеет радиус сходимости R>0, то на любом отрезке действительной оси вида |x|<=r, 0<r<R (2) (или [-r,r]) целиком лежащем внутри интервала сходимости ряд (1) сходится равномерно.
Для ряда отрезком равномерной сходимости будет отрезок |x-x0|<=r или ([x0-r,x0+r])
Т2 На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией.
Т3 Радиусы сходимости R, R1, R2 соответственно рядов (5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд.
Пусть ф-ция f(x) является суммой степенного ряда (9)
Т4 Дифференцирование степенного ряда
Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная f'(x) находится дифференцированием ряда (9):
f'(x)= При этом радиус сходимости полученного ряда = R
Т5 О интегрировании степенного ряда
Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.
Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться.
16 Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена.
Пусть(1) сходится при |x-x0|<R а его сумма является ф-лой f(x)= (2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1) .
Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то
и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно.
Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд:(6) наз рядом Тейлора ф-ции f в т, х0
При х0=0 ряд Тейлора принимает вид:
(6') и называется ряд Маклорена.
Ряд Тейлора может:
1 Расходится всюду, кроме х=х0
2 Сходится, но не к исходной ф-ции f(x), а к какой-нибудь другой.
3 Сходится к исходной ф-ции f(x)
Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения дополнительных условий треб. ф-ла Тейлора.
Т2 Если ф-ция f(x) (n+1) раз дифференцируема на интервале (x0-h, x0+h) h>0, то для всех x (x0-h, x0+h) имеет место ф-ла Тейлора:
где остаток rn(x) можно записать:
(8)
(9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) - формулой Лагранжа.
Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.
Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е x U(x0) |f(n)(x)|<=C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности.
17 Разложение элементарных ф-ций в ряд Тейлора (Маклорена)
1Разложение ф-ции ех
ряд Маклорена.
радиус сходимости:
R= следовательно ряд абсолютно сходится на всей числовой прямой.
2Разложение sinx и cosx В степенной ряд Маклорена
сходится на всей числовой оси
сходится на всей числовой оси
3. f(x) = (1+x)
Наз. биномиальный ряд с показателем Различают 2 случая:
1- N, тогда при любом х все члены ф-лы исчезают, начиная с ( +2) поэтому ряд Маклорена содержит конечное число членов и сходится при всех х. Получается формула Бинома Невтона: , где биномиальный коэффициент.
2- R>N ( 0 х 0) и ряд сходится абсолютно при |x|>1
4 Разложение ф-ции ln(1+x)
сходится при -1<x<=1
5 Разложение arctgx в степенной ряд Маклорена
сходится при -1<=x<=1
Подобные документы
Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.
лекция [137,2 K], добавлен 27.05.2010Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.
методичка [514,1 K], добавлен 26.06.2010Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.
реферат [190,9 K], добавлен 06.12.2010Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.
контрольная работа [131,9 K], добавлен 14.12.2012Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.
курсовая работа [263,6 K], добавлен 14.06.2015Основные понятия числового и знакопеременного ряда. Необходимые и достаточные признаки сходимости. Признак Лейбница. Исследование на абсолютную и условную сходимость ряда. Действия с суммой бесконечного числа слагаемых, расстановка скобок. Формула Эйлера.
курсовая работа [501,8 K], добавлен 12.06.2014Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.
реферат [89,3 K], добавлен 08.06.2010Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.
контрольная работа [127,2 K], добавлен 07.09.2010Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.
презентация [86,5 K], добавлен 18.09.2013Основное свойство рядов с неотрицательными членами. Необходимое и достаточное условие сходимости. Предельный признак сравнения. Расходящийся гармонический ряд. Ряды с положительными членами; определение конечного предела отношения их общих членов.
презентация [215,8 K], добавлен 18.09.2013