Основные законы логики

Признавая высказывание за истинное, мы вынуждены также признавать и отвергать многие другие, связанные с ним. Сфера применения формально-логического тождества. Понятие диалектического и формально-логического противоречия. Закон исключенного третьего.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 17.03.2009
Размер файла 28,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

20

План

Введение

Закон тождества. Сфера применения формально-логического тождества

Закон противоречия. Понятие диалектического и формально-логического противоречия

Закон исключенного третьего. Определение закона, его объективная основа

Заключение

Список использованной литературы

Введение

Закон в научном знании представляет собой не что иное, как необходимую связь между теми или иными явлениями. С его помощью, зная одни из них, можно предвидеть, каковы будут другие, связанные с первыми. Логические законы представляют собой необходимые, нерасторжимые связи между мыслями и с их помощью, установив истинность (или ложность) исходных высказываний, можно определить истинность или ложность других, обусловленных необходимыми связями с первыми. Или иначе: признавая какое-то высказывание за истинное, мы вынуждены признавать и многие другие, вытекающие из него высказывания, а также отвергать те, которые несовместимы с ним.

Как и во всякой иной науке, законов и правил логики очень много, даже неохватно много. Речь в данном случае пойдет только о самых первых, тех, по отношению к которым остальные являются производными. Три из них сформулированы Аристотелем: закон запрета противоречия, закон тождества, закон исключенного третьего, четвертый закон - достаточного основания - выдвинут немецким математиком и философом семнадцатого-восемнадцатого веков Лейбницем.

Цель контрольной работы - дать характеристику основным законам логики.

1. Закон тождества. Сфера применения формально-логического тождества

В этом законе непосредственно проявляется природа самых фундаментальных свойств логической мысли - определенности и последовательности. У самого основателя логики он формулируется неоднократно в его “Метафизике”. “Если слова ничего [определенного] не означают, то конец всякому рассуждению..., ибо невозможно что-либо мыслить, если не мыслят что-то одно; а если мыслить что-то одно возможно, то для него можно будет подобрать одно имя” (Аристотель. Соч. Т. 1. М., 1975. С. 127). “Каждое слово должно быть понятно и обозначать что-то, и именно не многое, а только одно; если же оно имеет несколько значений, то надо разъяснить, в каком из них оно употребляется” (Там же. Т. 2. С. 280). Этим выражается суть закона тождества, хотя современные учебники предпочитают иные, уточненные, формулировки. Одной из причин этого является, например, то, что в логике следует говорить не о словах, с помощью которых выражаются мысли, а о понятиях (хотя они - те же слова, но их смысл и содержание строго задаются).

Наиболее кратко этот закон можно выразить так: мысли о предметах, свойствах или отношениях должны оставаться неизменными по содержанию в процессе всего рассуждения о них. Иногда это записывают в символической форме: А = А. Поскольку всякая вещь должна быть равной самой себе, то и мысль о ней должна быть равной самой себе.

Известная поговорка “начал за здравие, а кончил за упокой” выражает как раз ошибку, порожденную нарушением этого закона. Иногда она совершается непроизвольно. Причем причиной ее возникновения чаще всего является многозначность слов. Как, скажем, понимать такое предложение: “Партия фортепиано доставила большой коммерческий успех”? Идет ли здесь речь о блестящем исполнении и большом сборе благодаря нему или имеются в виду проданные за хорошую цену музыкальные инструменты? Ответить на этот вопрос можно только после уточнения слова “партия”, ибо оно имеет даже не два значения, а больше. В задачнике по логике К.Г. Павловой приводится лозунг, который одно время был в ходу в учреждениях почтовой связи: “За связь без брака!” Звучит он даже несколько фривольно, потому что слово “брак”, помимо дефекта, может означать супружество.

Неоднозначность выражений может возникать и из-за двусмысленных грамматических конструкций. Путаница, вызванная такого рода обстоятельствами, знакома каждому благодаря знаменитому “казнить нельзя помиловать”. Разумеется, эта широко известная фраза не является единственной из числа тех, в которых отсутствует однозначность. В качестве примера можно указать на высказывание: “Беспечность порождает самонадеянность”. В нем нельзя понять, что имеется в виду под порождаемым, а что под порождающим. Совершенно аналогичны в этом отношении выражения вроде: “Взвод сменяет караул” или “Меньшинство подчиняет большинство”. Остроумно использовал двусмысленность выражения А.П. Чехов, вложив в уста одного из персонажей сообщение: “Перед вами череп обезьяны очень редкой разновидности. Таких черепов у нас всего два, один - в Национальном музее, другой - у меня”.

Наряду с неумышленными нарушениями закона тождества не так уж редко встречается также и сознательное искажение смысла высказываний. Иногда это бывает в дискуссии, когда в полемическом запале вместо поиска истины начинается соревнование амбиций. Чрезмерно увлеченные оппоненты намеренно усиливают слабые стороны противоположной стороны, искажают подлинный смысл утверждений. Довольно часто приходится сталкиваться с этим в судебно-следственной практике, когда на место бескорыстного служения истине и справедливости приходят соображения выгоды любой ценой.

История политики знает немало случаев сознательного искажения смысла сообщений, чтобы направить течение событий в угодное русло. Недаром известный дипломат Талейран говорил, что язык дан для того, чтобы скрывать свои мысли. Знаменитый немецкий канцлер Бисмарк ловко сократил текст так называемой Эмсской депеши - телеграммы из г. Эмса о результатах переговоров между прусским королем и французским посланником; после редактирования она приобрела резкий, оскорбительный для французского правительства тон и переданная в таком виде в печать толкнула французское правительство на объявление Германии войны, которую оно затем проиграло.

Неточный, расплывчатый смысл слов и выражений является настоящим бедствием для логического процесса и науки в целом. Мышление в таком случае беспорядочно перескакивает с одного предмета на другой, или, начиная анализировать какие-то признаки, незаметно для себя смещает внимание на иные. Тем самым закрывается дорога к получению правильных, обоснованных выводов и утверждений. Чтобы этого не происходило, чтобы мысль не была путанной и сбивчивой, надо каждый раз точно и однозначно формулировать понятия, которые используются в процессе рассуждения, и потом неуклонно придерживаться их заданного содержания, не подменяя другим. Именно это и выражается с помощью формулы А = А.

Следует, однако, помнить, что суть закона тождества не сводится к этой символической записи. Дело в том, что у него есть еще один аспект, который не укладывается в эту формулу и даже в некотором смысле противоречит ей. Открывается это тогда, когда приходится осмысливать не одни только вещи или их отдельные свойства и признаки, но и присущие им необходимые связи, благодаря которым все они соединяются в некое нерасторжимое единство. Нам легче пояснить это сначала на примере. Допустим, предметом рассуждения у нас будет Северный полюс. Эта точка на Земле может быть охарактеризована несколькими разными признаками: она является местом, где сходятся все меридианы, или еще местом, где параллель стягивается в точку, может она быть названа и местом, откуда все направления ведут на юг. Каждый из этих признаков неотъемлемо присущ самой северной точке планеты. Поэтому никакой ошибки не будет, если мы заменим понятие “Северный полюс” на понятие “точка северного полушария, где сходятся все меридианы” или любое другое из перечисленных. Однако тождество типа А = А здесь уже не выдерживается, потому что признаки эти различны, задают хотя и один и тот же объект, но как бы с разных сторон: один раз через меридианы, другой раз через параллели, в третьем случае через направление на юг. И можно было бы назвать множество еще и других признаков, характерных для того же самого Северного полюса: место, где земная ось пересекает земную поверхность, место, где оборот вокруг земной оси можно сделать в несколько шагов, место, где видимые звезды не заходят за горизонт при суточном вращении Земли, и многое другое.

В этих примерах открывается уже не определенность мысли, выраженная через закон тождества, а другое фундаментальное свойство из числа ранее названных - последовательность. Логический процесс предполагает получение содержательно новых выводов. Представить анализируемое содержание в точно определенном виде, как об этом говорилось до сих пор, - лишь одно из условий успешного осуществления логических операций. Наряду с этим надо быть также последовательным, то есть извлекать все следствия из используемых понятий и в дальнейшем столь же непоколебимо придерживаться их, в такой же мере неукоснительно признавать их, насколько обязательно в течение всего рассуждения сохранять неизменным содержание используемых понятий. Короче, назвав данную точку Северным полюсом, мы обязаны называть ее также и тем местом, где звезды не заходят за горизонт, и так далее.

Содержание логического процесса, в конечном счете, сводится к получению новых высказываний из исходных. Однако поскольку для этого необходимо правильно отождествлять разные понятия, то этот аспект закона тождества уже нельзя выразить упомянутой формулой А = А. Смена понятий при этом, наоборот, происходит и даже делается необходимой, чтобы мысль не топталась на месте, не повторяла одно и то же, как это звучит в универсальном рецепте средневековых алхимиков: возьми то, что требуется, сделай то, что нужно, и получишь то, что желаешь. Но только смена должна регулироваться законом тождества, то есть извлекаться должны выводы, которые действительно вытекают из данных высказываний, хотя и отличаются от них. Так, понятие “точка Земли, где длина параллели равна нулю”, правильно будет отождествлять с понятием “точка, где видимые звезды описывают круги с центром над головой наблюдателя”, хотя в признаках второго понятия трудно узнать при-знаки первого. Но закон тождества будет нарушен, если любое из этих же понятий будет отождествлено, скажем, с “точкой, где длина параллели равна одному километру”, или с “точкой, где центр вращения звезд смещен на один градус от вертикали”, хотя отличие последних признаков от соответствующих первых двух не такое разительное.

В юридической практике нередко сталкиваются с обстоятельствами, когда квалификация проступка и определение ответственности за него зависят от возраста правонарушителя: может оказаться, что за один день до определенной даты он еще не совершеннолетний и несет лишь ограниченную ответственность, на следующий день оценка тех же действий будет уже иная. Иногда люди относятся к таким градациям, как к надуманным, бессмысленным тонкостям. На деле, однако, без установления разницы в ответственности не обойтись, иначе придется отправлять в тюрьму иной раз даже младенца, который, играя со спичками, вызвал пожар.

Для понимания сложных комплексных систем в их динамике выделение отдельных этапов и периодов совершенно необходимо, какие бы трудности это ни порождало.

2. Закон противоречия. Понятие диалектического и формально-логического противоречия

Закон противоречия раскрывает те же самые свойства определенности и последовательности, но только выражает их в отрицательной форме. Если по закону тождества требуется, чтобы мысль о не изменяющихся предметах оставалась равной самой себе, то закон противоречия запрещает считать ее той и не той одновременно: А не может быть не-А (А не есть не-А). Или, говоря немного конкретнее, согласно этой норме мышления, в рассуждениях не должно быть одновременных утверждений и отрицаний относительно чего бы то ни было. Поэтому закон этот следовало бы назвать законом запрета противоречия, так как иначе может возникнуть обманчивое впечатление, будто в нем речь идет об оперировании противоречащими утверждениями, между тем на самом деле этот закон их исключает, не допускает.

У самого родоначальника науки о правильном мышлении запрет на одновременные утверждения и отрицания в качестве нормы и коренного условия для получения достоверных выводов упоминается многократно. И данные им формулировки закона, налагающего запрет на противоречия, и поныне могут считаться корректными и точными: “Невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении” (Аристотель. Соч. Т. 1. С. 125). Доказать этот закон нельзя, считает Аристотель, потому что для доказательства нужны какие-то уже твердо установленные первоначальные основоположения, между тем данный закон является как раз самым первым, что мы открываем в мышлении, и он становится как бы шаблоном, по которому проверяется потом любое рассуждение. “Поэтому все, кто приводит доказательство, - говорится несколькими строками далее, - сводят его к этому положению как к последнему, ведь по природе оно начало даже для других аксиом” (Там же.). Вместе с тем, не имея возможности доказать, можно, однако, возразить тем, кто возьмется его отвергать, добавляет затем Аристотель, потому что свое отрицание они должны выразить определенно: например, им нельзя сказать, что закон верен и неверен. “Но если такую необходимость признают, то доказательство уже будет возможно; в самом деле, тогда уже будет налицо нечто определенное. Однако почву для ведения доказательства создает не тот, кто доказывает, а тот, кто поддерживает рассуждение: возражая против рассуждений, он поддерживает рассуждение”. Получается, даже отвергать этот закон можно лишь при условии его соблюдения.

Признавать какое-либо положение и тут же от него отказываться всегда означает путаницу, отсутствие ясных и точных представлений. И когда нам надо показать несостоятельность, недопустимость тех или иных рассуждений или взглядов, то, прежде всего мы стремимся указать на наличие в них нелепых, несовместимых положений. Так, тургеневский Рудин очень метко изобличает своего оппонента Пигасова в непоследовательности, когда тот делает воинствующе-нигилистические заявления насчет того, что никаких убеждений нет и быть не может, причем отстаивает это свое пессимистическое мировоззрение горячо и убежденно.

- Так вы говорите: никаких убеждений нет? - спрашивает его Рудин.

- Нет и быть не может.

- Это ваше убеждение?

- Да.

- Как же вы говорите, что их нет? Вот вам одно на первый случай.

Научные споры часто сводятся к поиску у оппонентов несовместимых положений. Например, длившееся веками выяснение истины насчет вращения Земли вокруг Солнца поначалу наталкивалось на обыденный опыт людей, который вдобавок получил отражение в библейских текстах: признавать движение Земли означало отказ от привычных, видимых каждый день восходов, перемещений по небесному своду и закатов Солнца. Понадобилась длительная, напряженная работа настоящих титанов науки, чтобы оказалось, что наблюдаемые каждодневно движения не противоречат тому, что утверждает астрономия.

Может показаться странным, что в законе делается оговорка насчет одного и того же времени запрещаемых утверждений и их отрицаний, ведь тогда получается, что в разное время делать противоречащие высказывания об одном и том же вполне допустимо. Например, если на этой странице написать, что ртуть - жидкий металл, а мрамор - декоративный камень, то само собой понятно, отвергать это нельзя не только одновременно, но и через пять страниц и вообще всегда, поскольку речь будет идти об обычных условиях температуры и давления для ртути и об архитектуре цивилизованного общества, а не доисторических эпох для мрамора. Между тем закон противоречия в его буквальном понимании (вместе с указанной оговоркой) исключает, как кажется, только утверждения и отрицания в одном и том же предложении, как будто ртуть перестанет быть жидкой, а мрамор выйдет из употребления в отделке зданий.

Указание на одновременность необходимо, однако, для того, чтобы этот закон логики распространялся и на изменяющиеся предметы и явления. Правда, в этом случае оговорка представляет собой сильную идеализацию. Непреложно необходимо соблюдение этого дополнительного требования только тогда, когда осмысливаются объекты, претерпевающие непрерывные изменения. Только в краткие промежутки времени они не могут быть теми и не теми (скажем, росток имеет теперь высоту в 20 сантиметров, стало быть, не может иметь сейчас другую), однако при всем при том на протяжении длительных временных интервалов они в силу происходящей в них смены качеств и свойств, наоборот, могут быть охарактеризованы как те и не те. А вот с объектами, изменяющимися, так сказать, скачкообразно, рывками, или вообще неизменными дело обстоит иначе. В отношении их это условие хотя тоже всегда должно выполняться, но при этом помимо одновременных утверждений и отрицаний также и разнесенные во времени тоже будут нарушением закона логики. Поэтому обязательность запрета противоречия именно с указанием на одновременность снижается, когда изменения не непрерывные или медленные, сходя совсем на нет, там, где они вообще отсутствуют.

Еще одна оговорка в том же законе, касающаяся утверждений и отрицаний в одном и том же отношении, тоже требует точно отделять один и тот же предмет от других, но уже не во времени, а по качественно-количественным признакам. Это условие может вызвать трудности в понимании, тем более что вокруг нее еще в древней философии стали возникать споры. По временам они вспыхивают и поныне. Проще всего пояснить необходимость этого условия на примере многозначных слов и выражений.

Во времена Пушкина французский язык был обязательным для преподавания, и за границей были убеждены, что в России каждый дворянин говорит по-французски. Сообщения об этом можно найти и у Бальзака, и у Стендаля, и у других писателей. Между тем в “Дубровском” Пушкин в весьма карикатурных тонах изображает современного ему представителя образованного сословия, который в разговоре с учителем французского языка пользуется главным образом только жестикуляцией да спрягает на французский манер русские слова. Тем не менее, и та, и другая оценка знаний языка могут считаться одинаково верными, если каждую из них считать лишь так называемой собирательной характеристикой образования того времени. Такие характеристики распространены в художественной литературе. Нельзя понимать их буквально. Они дают представление о комплексе в целом, затрагивая каждый элемент его только косвенно, и описывают признаки каждого отдельного индивида лишь с большим или меньшим приближением. Утверждение о том, что русское дворянство XIX века знало французский язык, означает только, что среди его представителей всегда можно было найти таких, кто действительно владел языком. Но авторы этих утверждений, конечно, не были столь наивными, чтобы полагать, будто знают абсолютно все одинаково; данная ими характеристика описывает общество, а не каждого в отдельности. Она не исключает того, что попадаются и такие, кто не освоил иностранного языка. Поэтому обе взаимоисключающие оценки дворянства и его образования хотя и относятся к одному и тому же сословию, но имеют в виду разных людей в нем и не образуют противоречия в одном и том же отношении.

Кроме того, слово “знать”, как и многие другие слова, почти всегда имеет расплывчатые смысловые границы. Поэтому в разных случаях оно может передавать совершенно разную информацию. Что, например, означает высказывание: “Данный человек знает иностранный язык”? Иной может довольно бойко говорить с иностранцем на его языке о каких-нибудь знакомых им обоим вещах, но откажется вести синхронный перевод. Дело в том, что в беседах достаточно воспринимать, как в радио- или телепередачах, только сорок процентов сообщаемых слов, остальное улавливается по смыслу. И абсолютная правильность разговорной речи тоже никогда не соблюдается. При переводах же, где нужна аутентичность, нарушения не допускаются. И если, далее, кто-то делает более или менее сносные письменные переводы с иностранного языка на свой, то это еще не значит, что у него получится переводить на иностранный язык со своего, потому что там требуется усвоить некоторые дополнительные тонкости, например сочетаемости слов, которые не отражаются ни в каких грамматических правилах. Можно знать иностранный язык достаточно, чтобы общаться с представителями других стран, но слабо знать для работы переводчиком и совершенно не знать для выполнения более сложных задач, скажем, для редактирования текстов или сочинения на чужом языке. Можно, следовательно, в некотором смысле знать иностранный язык и в то же время в некотором другом смысле не знать его.

В аспекте определенности как фундаментального свойства логической мысли, выражаемого через закон противоречия, мы имеем дело с так называемыми прямыми противоречиями: предмет белый и небелый, поступок добрый и недобрый и т.д. Их недопустимость очевидна даже для неподготовленных умов. В другом аспекте - последовательности - противоречия непрямые. Здесь вступают, если можно так выразиться, в конфликт следствия, часто очень далекие и радикально отличающиеся по содержанию от исходных утверждений. Использование закона противоречия здесь уже не так просто. Допустим, кто-нибудь скажет, что снег в этом месте покрыт налетом сажи. Тогда про этот снег уже нельзя утверждать, что он растает позднее, чем тот, который такого налета не имеет. Прямо очень трудно увидеть связь между наличием сажи и способностью таять. И, кажется, между ними нет ничего общего: если одно высказывание о снеге считать А, то другое должно быть отнесено к не-А. Однако физика доказывает, что затемненные предметы лучше поглощают теплоту Солнца, следовательно, где снег покрыт темным налетом любого происхождения, там он растает раньше, а не позже.

Закон противоречия, как и закон тождества, задает определенность и последовательность в качестве самых фундаментальных свойств логического мышления. Уточнение смысла этих законов для конкретных условий не допускает прямолинейности, как это чаще всего бывает и со всеми другими фундаментальными принципами научного знания. Такие положения всегда содержат определенную долю идеализации.

Законы логики не составляют в этом смысле исключения.

3. Закон исключенного третьего. Определение закона, его объективная основа

В логике принято различать два вида противоположности: контрарную (собственно противоположность) и контрадикторную (противоречие). Когда два понятия находятся в отношении контрарности, то это означает максимальную противоположность между ними. Выражается это в двух обстоятельствах: какой-нибудь признак, присущий одному из понятий, во-первых, отсутствует у другого и, во-вторых, вместо этого признака у него имеется несовместимый с ним. Таковы понятия “утро” и “вечер”, “добрый” и “злой”, “экспорт” и “импорт”, “белый” и “черный”. Некоторые признаки утра не присущи вечеру, однако, это еще не представляет собой самой характерной отличительной черты последнего, потому что день и ночь тоже не являются утром; вечер, сверх этого, противоположное утру время суток и в отображающее его понятие включаются признаки, противоположные тем, которые есть у начала дня: солнце идет вниз, а не вверх, темнеет, а не светает и пр. То же самое можно было бы сказать и про остальные контрарные понятия.

Когда же у другого понятия отмечается только отсутствие какого-либо признака и ничего не говорится о том, какой ему вместо него присущ, то тогда возникает отношение контрадикторности или противоречия: “белый” и “небелый”, “утро” и “не утро”, “добрый” и “недобрый”, “экспорт” и “не экспорт”. Противоречащие понятия, в отличие от противоположных, делят весь массив родственных предметов строго на две разновидности: обладающих каким-то признаком и не обладающих им. Цвет - либо белый, либо небелый, никаких других альтернатив не существует; про белое и черное так сказать было бы нельзя, потому что помимо этих двух есть и другие цвета. Поступок - либо добрый, либо недобрый, торговая операция - либо экспортная, либо не экспортная (к последним, очевидно, относятся как импорт, так и все торговые дела, относящиеся к сфере внутреннего обмена).

Выражаясь словами Аристотеля, “не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо, что бы то ни было одно - либо утверждать, либо отрицать” (Аристотель. Соч. Т. 1. С. 141).

Отрицать любое данное высказывание противоположным или противоречащим ему можно не только с помощью использования соответствующих понятий - контрарных и контрадикторных. Отрицание обоих видов может создаваться и иным путем. Возьмем суждение “Все планеты имеют спутники”. Если нам понадобится отвергать такое утверждение, то достигнуть этого можно двумя выражениями: 1) “Некоторые планеты не имеют спутников”, 2) “Ни одна планета не имеет спутников”. Первое из них, как легко увидеть, всего лишь отрицает истинность исходного суждения, суть такого отрицания можно при желании выразить и такими словами: “Неверно, что все планеты имеют спутники”. Второй же вариант добавляет сверх этого, что признак “иметь спутники” вообще по сути дела неприложим к планетам. Поэтому второй способ отрицания сильнее первого и должен быть отнесен к разряду контрарных, в то время как первый - контрадикторный. Таким образом, пара суждений “Все планеты имеют спутники” и “Некоторые планеты не имеют спутников” образует противоречие. Никаких иных средних альтернатив между ними придумать невозможно. Поэтому одно из пары высказываний обязательно истинно, а другое обязательно ложно. Про другую пару высказываний - “Все планеты имеют спутники”, “Ни одна планета не имеет спутников” - так сказать было бы нельзя, поскольку контрарные суждения бывают ложными оба (как это и есть в данном случае).

Закон исключенного третьего применим, следовательно, к высказываниям противоречащим и не-применим к высказывания противоположным. Правда, здесь есть одно существенное исключение. Оно касается индивидуальных, строго единичных предметов или явлений, применительно к которым бессмысленно говорить “все” или “некоторые”. Противоположные и противоречащие высказывания в этом случае не различаются.

Более кратко закон исключенного третьего можно сформулировать так: Из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано.

В процессе рассуждения надо доводить дело до альтернативного разделения: имеет данный предмет какой-либо признак или не имеет его. Когда это удается достигнуть, остается проверить какую-то одну из указанных возможностей - соответствует она истине или нет, тогда в отношении второй все решится автоматически. Например, предложение может быть высказано в форме единственного числа или в форме множественного числа; и если выяснится, что оно не имело формы множественного числа, то тогда значит оно высказано в форме единственного числа. То же самое - услуга бывает платной и бесплатной, шахматная партия начинается белыми или черными.

Применяя закон исключенного третьего, надо помнить, что он ничего не говорит о том, какое из двух противоречащих суждений является истинным. Закон указывает лишь на то, что истинно одно и только одно из них, а другое обязательно ложно. Это значит, когда нам удалось установить значение истинности одного из двух противоречащих суждений, то тем самым определилось и значение истинности другого тоже. Отдельно устанавливать его уже не надо, потому что оно однозначно задается значением истинности сопряженного с ним понятия. Но какое из них именно должно быть оценено так, а какое иначе - для этого требуется отдельное исследование. Причем одной только логики для него уже, как правило, недостаточно и зачастую приходится вообще выйти за ее пределы и обратиться к специальным наукам.

В некоторых случаях применение этого закона даже с противоречащими понятиями затруднительно, а порой, возможно, даже недопустимо. Это относится к явлениям, предметам, процессам таких видов и категорий, которые имеют очень расплывчатые, неопределенные границы. Скажем, растения можно разделить на ядовитые и неядовитые. И кажется, что никаких проблем не возникает при разделении их на эти категории. Но ведь все мы знаем: даже обычный чай или кофе в больших количествах вредят организму, хотя в нормальных дозах они полезны. Еще сложнее дело обстоит с разделением по указанному основанию лекарственных растений, многие из них показаны в состоянии болезни, но могут привести к расстройствам, если их принимает здоровый человек; к тому же, применяя их, в любом случае необходимо помнить о дозе. Так же и деление на мир и войну как возможные состояния жизни общества содержит много условного. Конечно, проблема с разделением таких понятий исчезнет, как только они будут уточнены. Мы можем считать, например, неядовитым все то, что оказывает только благотворное воздействие и больше никакого, все остальное будет отнесено тогда к ядовитому; можно считать неядовитыми такие растения, употребление которых хотя и дает нежелательные побочные явления, но вместе с тем от них имеется (причем более значительное) благотворное воз-действие, так что в целом оздоровляющий эффект преобладает; можно наконец даже табак и подобные ему растения считать неядовитыми, раз уж они не вызывают немедленную смерть и до поры до времени нейтрализуются организмом. Разделение в этом случае будет четким и однозначным.

Закон исключенного третьего совершенно неприменим к событиям и явлениям лишь возможным, в частности к будущему.

Заключение

Завершая работу можно прийти к выводу, что в практике умственной деятельности чаще приходится решать такую задачу: имея уже выполненное рассуждение, проверить, в самом ли деле оно соответствует законам логики, то есть, вытекают ли сделанные в нем выводы из тех мыслей, которые взяты в нем за исходные.

Существует несколько основных законов логики: закон тождества, закон противоречия, закон исключенного третьего.

Знание законов логики и умение пользоваться ими избавляет от ошибок в рассуждениях, исключает необоснованные выводы, предохраняет от путаницы.

Список использованной литературы

1. Ерышев А. А. и др. Логика: Курс лекций / А. А. Ерышев, Н. П. Лукашевич, Е. Ф. Сластенко. -- Киев: МАУП, 2000. -- 184 с.

2. Ивлев Ю.В. Логика. - М., 1994.

3. Кириллов В.И., Старченко А.А. Логика. - М., 2000.

4. Мендельсон Э. Математическая логика. - М., 1974.


Подобные документы

  • Операции логики с понятием "суд". Объединённая классификация суждений, их логические обозначения. Составные части сложного суждения, запись их с помощью символов, пропозициональных союзов. Полный разбор силлогизма. Запись формально-логического закона.

    контрольная работа [131,4 K], добавлен 23.10.2013

  • Объединенная классификация суждений, их анализ и практическое применение круговых схем Эйлера. Установление вида сложного суждения, оценка его составных частей и составление его логической схемы. Определение формально-логического закона и его нарушений.

    контрольная работа [48,3 K], добавлен 26.08.2011

  • Составление таблицы истинности. Получение уравнений функций алгебры логики для заданных выходов. Реализация схемы логического автомата на электромагнитных реле РП-23, на диодной матрице. Реализация структурной схемы логического автомата, на микросхемах.

    курсовая работа [862,4 K], добавлен 12.12.2012

  • Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.

    контрольная работа [83,3 K], добавлен 26.04.2011

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

  • Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.

    контрольная работа [178,2 K], добавлен 20.01.2011

  • Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.

    реферат [63,3 K], добавлен 06.12.2010

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Логические константа и переменная. Последовательность выполнения логических операций в логических формулах. Логическая информация и основы логики. Общие, частные и единичные высказывания. Старшинство логических операций. Импликация и эквивалентность.

    курсовая работа [1,0 M], добавлен 27.04.2013

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.