История развития десятичной системы счисления
История возникновения современной десятичной системы счисления. Индийская нумерация. Десятичная система счисления в Европе. Структура десятичной системы счисления. Системы счисления. Алфавит системы счисления. Взаимодействие различных систем счисления.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 13.01.2009 |
Размер файла | 115,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 8 -
КФ МГТУ имени Н.Э. Баумана
Реферат
по информатике
на тему
"История развития десятичной системы счисления"
Проверил:
Максимова Е.А.
Калуга 2007
Содержание:
1. История возникновения современной десятичной системы счисления.
2. Роль десятичной системы счисления в ряду других. Взаимодействие
различных систем счисления.
История возникновения современной десятичной системы счисления.
В настоящее время для обычного рядового человека довольно привычно выглядят цифры от 0 до 9, их участие в быту, например на ценниках прилавков магазинов; дети в школах считают карандаши, используя те же цифры, десятичную систему счисления. А ведь образование данной системы длилось веками, уходя своими корнями за нашу эру. Попробуем восстановить основные вехи формирования столь важного для существующего общества изобретения.
Мы называем изобретенные индийцами цифры 1, 2, .., 9 и нуль арабскими, так как заимствовали их у арабов, но сами арабы называли эти цифры индийскими, а арифметику, основанную на десятичной системе -- “индийским счетом” (хисаб ал-Хинд). Епископ Север Себохт, 662 г. н.э.
Русский перевод из F. Nau. Notes d'astroaonie syrieane. Juornal Asiatiqus, ser. 6, 1910, v. 16, p. 225.
В долине Инда существовала цивилизация, одним из центров которой был город, раскопанный вблизи холмов Мохенджо-Даро. Эта цивилизация, основанная первоначальным населением Индии, была разрушена арийскими племенами (Племенами Русов), пришедшими с Гималаев. Арийские жрецы создали священные книги брахманов “Веды” (“Знания”). К VII--V вв. до н. э. относятся первые индийские письменные математические памятники… Большинство научных трактатов индийцев написаны на санскрите -- языке религиозных книг брахманов. Этот язык завоевателей объединял многочисленные народы Индии, говорившие на различных языках.
Индийская нумерация.
Счет целых чисел в Индии с древних арийских времен носил десятичный характер. Санскрит -- индоевропейский язык, родственный индоевропейским языкам Европы (для сравнения приведем числительные 1 -- эка, 2 -- дви, 3 -- три). В названиях чисел применялся и аддитивный и субстрактивный принципы; например, 19 можно было назвать и “навадаша”, (девять-десять) и “экауна -- вимсати” (без одного двадцать). В отличие от других индоевропейских языков, в санскрите существуют названия для 10" до п>50.
Начиная с VI в. до н. э., в Индии были широко распространены цифры “брахми”. В пятом столбце той же таблицы изображены цифры брахми, воспроизводящие надписи в пещере Назик. В отличие от цифр карошти, цифры брахми записывались слева направо, как индийское письмо. До сотни в обоих случаях применялся чисто аддитивный принцип, а начиная с сотен этот принцип соединялся с мультипликативными: в нумерации брахми последний принцип применялся не только к знаку для 100, но и к знаку для 1000.
Эта особенность цифр брахми стала предпосылкой создания в Индии десятичной позиционной нумерации.
Первая известная нам запись с помощью цифр брахми, в которой применяются только первые девять цифр, а десятки и сотни обозначаются теми же цифрами, что и единицы, относится к VI в. н. э.: это дарственная запись от 595 г. н.э., в которой 346-й год записан цифрами брахми 346. Нуля не было, вместо него на счетной доске оставлялся пустой столбец.
Наряду с цифровой записью в Индии широко применялась словесная система обозначения чисел, этому способствовал богатый по своему словарному запасу санскритский язык, имеющий много синонимов. При этом нуль обозначался словами “пустое”, “небо”, “дыра”; единица -- предметами, имеющимися только в единственном числе: Луна, Земля; двойка -- словами “близнецы”, “глаза”, “ноздри”, “губы”; четверка -- словами “океаны”, “стороны света” и т. д.
Применение позиционного принципа в словесной нумерации, в котором одно и то же слово в зависимости от места имеет разное числовое значение, а названия разрядов опускаются, зафиксировано еще в V в. Например, число 1021 записывалось словами “Луна -- дыра -- крылья -- Луна”. Одно из названий нуля -- “шунья” (пустое) стало впоследствии основным. Когда в VIII в. индийские сиддханты переводили на арабский язык, слово “шунья” перевели арабским словом “сыфр”, имеющим то же значение. Слово “сыфр” при переводе арабских сочинений на латынь было оставлено без перевода в виде ciffra, откуда происходит французское и английское название нуля zero, немецкое слово Ziffer и наше слово “цифра”, также первоначально означавшее нуль.
Но в это же время на судьбу нумерации значительное влияние оказали математики. В области вычислений требовались более удобные системы счисления, и Ариабхата предложил записывать цифры санскритскими буквами.
Первое достоверное свидетельство о записи нуля относится к 876 г., в настенной надписи из Гвалиора (Индия) имеется число 270.
На основе цифр брахми выработались современные индийские цифры “деванагари” (божественное письмо), применяющиеся в десятичной позиционной системе, от которой происходят десятичные позиционные системы арабов и европейцев.
Первым свидетельством об индийской десятичной позиционной системе являются слова сирийского христианского епископа Севера Себохта, жившего в одном из монастырей в верховьях Евфрата в VII в. В рукописи 662 г. Себохт писал: “Я не стану касаться науки индийцев... их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счет производится с помощью девяти знаков”.
Десятичная система счисления в Европе.
В Европу десятичная нумерация проникла из Исламского Востока. Наиболее ранние рукописи на арабском языке, содержащие индийскую позиционную запись чисел, относятся к 9-му столетию нашей эры. Одним из первых в Европе понял преимущества новой нумерации французский церковнослужитель и математик Герберт, который в 999 году стал римским папой под именем Сильвестра II. Новоиспеченный папа попытался провести реформу в преподавании математики и ввести новую систему нумерации. Однако нововведение встретило яростный гнев со стороны инквизиции. Папу обвинили в том, что он «продал душу сарацинским дьяволам». Реформу постарались провалить, и папа-математик вскоре умер. Но и после смерти его не оставили в покое. Несколько столетий ходили слухи, что из мраморного саркофага папы непрерывно сочится серный дым и слышится шорох чертей.
Хотя первые записи арабско-индийскими цифрами встречаются в испанских рукописях еще в 10-м веке, десятичная система начинает закрепляться в Европе только, начиная с 12-го века. Новая нумерация в Европе встретила ожесточенное сопротивление как со стороны официальной схоластической науки того времени, та и со стороны отдельных правительств. Так, например, в 1299 г. во Флоренции купцам было запрещено пользоваться новыми цифрами, в бухгалтерии приказано было либо пользоваться римскими цифрами, либо писать числа словами.
Убежденным сторонником использования арабско-индийской системы счисления в торговой практике был известный итальянский математик Леонардо Пизанский (Фибоначчи), получивший математическое образование в арабских странах. В своем сочинении «Liber abaci» (1202) он писал:
«Девять индусских знаков - суть следующие: 9, 8, 7, 6, 5, 4, 3, 2, 1. С помощью этих знаков и знака 0, который называется по-арабски «zephirum», можно написать какое угодно число».
Несмотря на кажущуюся простоту, десятичная система содержит глубокую математическую идею. Известный французский математик, физик, астроном Пьер Симон Лаплас по этому поводу писал так:
«Мысль выражать все числа 9 знаками, придавая им, кроме значения по форме, ещё значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этой методе, мы видим на примере величайших гениев греческой учёности Архимеда и Аполлония, от которых эта мысль осталась скрытой». В начале 17-го века новая нумерация проникает в Россию, но православная церковь встречает ее в штыки и объявляет новую нумерацию колдовской и безбожной. Закрепилась десятичная нумерация в России только после издания в 1703 году знаменитой «Арифметики» Магницкого, в которой все вычисления в тексте производились исключительно с использованием десятичной системы счисления.
Применима запись чисел в форме:
и наоборот:
Структура десятичной системы счисления.
Основание этой системы счисления p равно десяти. В этой системе счисления используется десять цифр. В настоящее время для обозначения этих цифр используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число в десятичной системе счисления записывается как сумма единиц, десятков, сотен, тысяч и так далее. То есть веса соседних разрядов различаются в десять раз. Точно также записываются и числа, меньшие единицы. В этом случае разряды числа будут называться как десятые, сотые или тысячные доли единицы.
Рассмотрим пример записи десятичного числа. Для того чтобы показать, что в примере используется именно десятичная система счисления, используем индекс 10. Если же кроме десятичной формы записи чисел не предполагается использования никакой другой, то индекс обычно не используется:
A10=247,5610=2*102+4*101+7*100+5*10-1 +6*10-2
=20010+4010+710+0,510+0,0610
Здесь самый старший разряд числа будет называться сотнями. В приведённом примере сотням соответствует цифра 2. Следующий разряд будет называться десятками. В приведённом примере десяткам соответствует цифра 4. Следующий разряд будет называться единицами. В приведённом примере единицам соответствует цифра 7. Десятым долям соответствует цифра 5, а сотым - 6.
Десятичная система счисления, наиболее распространённая система счисления. Основанием Д. с. с. является число 10, которое образует единицу 2-го разряда, единицей 3-го разряда будет 100 = 102, вообще единица каждого следующего разряда в 10 раз больше единицы предыдущего (полагают, что выбор в качестве основания Д. с. с. числа 10 связан со счётом на пальцах). Д. с. с. основана на позиционном принципе, т. е. в ней один и тот же знак (цифра) имеет различные значения в зависимости от того места, где он расположен. В связи с этим для записи всех чисел нуждаются в особых символах только первые 10 чисел. Символы эти, обозначаемые знаками 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называются цифрами. Для записи числа определяют, сколько в нём содержится единиц наивысшего разряда; затем в остатке определяют число единиц разряда, на единицу меньшего, и т.д. Полученные цифры записывают рядом: например 4*102 + 7*101 + 3*100 = 473. Действия над числами производятся поразрядно, т. е. отдельно над цифрами каждого разряда; если при этом получаются числа больше 10 (при сложении, умножении), то прибавляют одну или несколько единиц к следующему, более высокому разряду; при делении и вычитании приходится разбивать разряды на более мелкие.
Роль десятичной системы счисления в ряду других. Взаимодействие различных систем счисления.
Счисление (нумерация), способ выражения и обозначения чисел. В системах счисления некоторое число n единиц (например, десять) объединяется в одну единицу 2-го разряда (десяток), то же число единиц 2-го разряда объединяется в единицу 3-го разряда (сотню) и т. д. Число n называют основанием системы счисления, а знаки, употребляемые для обозначения количеств единиц каждого разряда, -- цифрами. Наиболее употребительная система счисления -- десятичная, с цифрами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Происхождение десятичной системы счисления связано с пальцевым счетом. Некоторые народы пользовались пятеричной системой счисления; в Древнем Вавилоне была распространена шестидесятеричная система, следы которой сохранились в делении часа и градуса на 60 мин и минуты на 60 с. В ЭВМ часто применяется двоичная система счисления, в которой каждое число выражается при помощи двух цифр 0 и 1.
Для повседневных вычислений используется десятичная система счисления, предшественницей которой является индусская десятичная система, возникшая примерно в XII-м столетии В современной науке с развитием компьютерной техники на первые роли выдвинулась двоичная система счисления. Ее зачатки наблюдаются у многих народов. Например, у древних египтян широкое распространение получили методы умножения и деления, основанные на принципе удвоения. Изобретение двоичного способа нумерации приписывают китайскому императору Фо Ги, жизнь которого относится к 4-му тысячелетию до новой эры. Оказывается, к открытию двоичной системы счисления имели отношение многие математики, в частности, Фибоначчи.
Системы счисления. Алфавит системы счисления.
Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами.
Алфавит составляет базу системы счисления. Символы алфавита называют цифрами. Системы счисления различаются алфавитом и правилами образования из базовых цифр остальных чисел. Любая предназначенная для практического применения система счисления должна обеспечивать: возможность представления любого числа в рассматриваемом диапазоне величин, единственность представления (каждой комбинации символов должна соответствовать одна и только одна величина), простоту оперирования числами.
Позиционные и непозиционные системы счисления.
Все системы счисления делятся на позиционные и непозиционные. Непозиционными системами являются такие системы счисления, в которых каждый символ сохраняет свое значение независимо от места его положения в числе.
Примером непозиционной системы счисления является римская система. К недостаткам таких систем относятся наличие большого количества знаков и сложность выполнения арифметических операций.
Система счисления называется позиционной, если одна и та же цифра имеет различное значение, определяющееся позицией цифры в последовательности цифр, изображающей число. Это значение меняется в однозначной зависимости от позиции, занимаемой цифрой, по некоторому закону.
Примером позиционной системы счисления является десятичная система, используемая в повседневной жизни.
Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание можно принять любое натуральное число - два, три, четыре, шестнадцать и т.д. Следовательно, возможно бесконечное множество позиционных систем.
Двоичная система счисления.
Алфавит двоичной системы счисления: {0, 1}
Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически.
Восьмеричная система счисления.
Алфавит восьмеричной системы счисления: {0, 1, 2, 3, 4, 5, 6, 7}
Цифра 1, указанная в самом младшем разряде, означает - как и в десятичном числе - просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т.д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.
Шестнадцатеричная система счисления.
Алфавит шестнадцатеричной системы счисления: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, B, C, D, E, F}
Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем - 16 (десятичное), в следующем - 256 (десятичное) и т.д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное).
Перевод чисел в десятичную систему счисления.
Перевод чисел в десятичную систему осуществляется путем составления степенного ряда с основанием той системы, из которой число переводится. Затем подсчитывается значение суммы.
Пример.
а) Перевести 10101101.1012 - "10" с.с.
Здесь и в дальнейшем при одновременном использовании нескольких различных систем счисления основание системы, к которой относится число, будем указывать в виде нижнего индекса.
10101101.1012= 1*2^7+ 0*2^6+ 1*2^5+ 0*2^4+ 1*2^3+ 1*2^2+ 0*2^1+ 1*2^0+ 1*2^-1+ 0*2^-2+ 1*2^-3 = 173.62510
б) Перевести 703.048 - "10" с.с.
703.048 = 7*8^2+ 0*8^1+ 3*8^0+ 0*8^-1+ 4*8^-2 = 451.062510
в) Перевести B2E.416 - "10" с.с.
B2E.416 = 11*16^2+ 2*16^1+ 14*16^0+ 4*16^-1 = 2862.2510
Схема Горнера.
Запишем в одной строке исходное число, а строкой ниже будем получать число в нужной нам системе счисления. Для этого первую цифру перепишем без изменения, а под каждой следующей цифрой будем писать число, полученное сложением этой цифры с произведением слева стоящего числа на основание системы счисления.
На рисунке показано исполнение этого алгоритма для двоичного числа 100111011:
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
|
1 |
2 |
4 |
9 |
19 |
39 |
78 |
157 |
315 |
Ответ:1001110112 - 31510
Как видите, эти вычисления легко проделать и устно. Называется этот алгоритм схемой Горнера.
Перевод целых десятичных чисел в недесятичную систему счисления
Перевод целых десятичных чисел в недесятичную систему счисления осуществляется последовательным делением десятичного числа на основание той системы, в которую оно переводится, до тех пор, пока не получится частное меньшее этого основания. Число в новой системе записывается в виде остатков деления, начиная с последнего.
Пример. Число 2210 перевести в двоичную систему счисления.
Пример. Число 57110 перевести в восьмеричную систему счисления.
Пример. Число 746710 перевести в шестнадцатеричную систему счисления.
- 8 -
Ответ:2210 - 101102
Ответ:57110 - 10738
Ответ:746710 - 1D2B16
Перевод правильных дробей из десятичной системы счисления в недесятичную.
Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.
Перевести 0.312510 - "8" с.с.
Результат: 0.312510 = 0.248
Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.
Пример.
Перевести 0.6510 - "2" с.с. Точность 6 знаков.
- 8 -
Результат: 0.6510 - 0.10(1001)2
Перевод неправильной десятичной дроби в систему счисления с недесятичным основанием.
Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.
Пример.
Перевести 23.12510 - "2" с.с.
1) Переведем целую часть: 2) Переведем дробную часть:
- 8 -
Таким образом: 2310 = 101112; 0.12510 = 0.0012.
Результат: 23.12510 = 10111.0012.
Необходимо отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.
Перевод восьмеричного или шестнадцатеричного числа в двоичную форму.
Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) или четырехразрядным двоичным числом (тетродом), при этом отбрасывают ненужные нули в старших и младших разрядах.
Пример.
а) Перевести 305.48 - "2" с.с.
- 8 -
б) Перевести 7B2.E16 - "2" с.с
- 8 -
Переход от двоичной к восьмеричной (шестнадцатеричной) системе
Для перехода от двоичной к восьмеричной (шестнадцатеричной) системе поступают следующим образом: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя при необходимости нулями, крайние левую и правую группы. Затем триаду (тетроду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой.
Пример.
а) Перевести 1101111001.11012 - "8" с.с.
б) Перевести 11111111011.1001112 - "16" с.с.
Перевод чисел из восьмеричной в шестнадцатеричную систему и обратно.
Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрод.
Пример. Перевести 175.248 - "16" с.с.
- 8 -
Двоичная арифметика.
Правила выполнения арифметических действий над двоичными числами задаются таблицами двоичных сложения, вычитания и умножения.
Таблица двоичного сложения |
Таблица двоичного вычитания |
Таблица двоичного умножения |
|
0+0=0 0+1=1 1+0=1 1+1=10 |
0-0=0 1-0=1 1-1=0 10-1=1 |
0*0=0 0*1=1 1*0=0 1*1=1 |
Сложение и вычитание двоичных чисел
При сложении двоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.
Пример. Выполнить сложение двоичных чисел:
а) X=1101, Y=101; б) X=1101, Y=101, Z=111;
- 8 -
Результат 1101+101=10010.
Результат 1101+101+111=11001.
При вычитании двоичных чисел в данном разряде при необходимости занимается 1 из старшего разряда. Эта занимаемая 1 равна двум 1 данного разряда.
Пример. Заданы двоичные числа X=10010 и Y=101.
Вычислить X-Y:
- 8 -
Результат 10010 - 101=1101.
Умножение и деление двоичных чисел
Умножение двоичных чисел производится по тем же правилам, что и для десятичных с помощью таблиц двоичного умножения и сложения.
Пример. 1001101=?
- 8 -
Результат 1001101=101101.
Деление двоичных чисел производится по тем же правилам, что и для десятичных. При этом используются таблицы двоичного умножения и вычитания.
Пример. 1100.011 : 10.01=?
- 8 -
Результат 1100.011: 10.01=101.1.
Таблица представления чисел в различных позиционных системах счисления
Десятичная |
Двоичная |
Восьмеричная |
Шестнадцатеричная |
|
0 |
0 |
0 |
0 |
|
1 |
1 |
1 |
1 |
|
2 |
10 |
2 |
2 |
|
3 |
11 |
3 |
3 |
|
4 |
100 |
4 |
4 |
|
5 |
101 |
5 |
5 |
|
6 |
110 |
6 |
6 |
|
7 |
111 |
7 |
7 |
|
8 |
1000 |
10 |
8 |
|
9 |
1001 |
11 |
9 |
|
10 |
1010 |
12 |
А |
|
11 |
1011 |
13 |
B |
|
12 |
1100 |
14 |
C |
|
13 |
1101 |
15 |
D |
|
14 |
1110 |
16 |
E |
|
15 |
1111 |
17 |
F |
|
16 |
10000 |
20 |
10 |
|
17 |
10001 |
21 |
11 |
Таким образом, десятичная система счисления за всю свою историю неоднократно преобразовывалась. Сильное воздействие на неё оказали различные исторические события. Захватывая всё большие пространства своего использования, она совершенствовалась различными обществами, в которые попадала, пока, наконец, не достигла общемирового признания. История десятичной системы счисления довольно увлекательна, и её необходимо изучать, как и любую другую историю.
Литература:
С.Б. Гашков. «Системы счисления и их применение».
Л.Н. Беляева. «Системы счисления и признаки делимости».
Русский перевод из F. Nau. Notes d'astroaonie syrieane. Juornal Asiatiqus, ser. 6, 1910, v. 16, p. 225.
Подобные документы
Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.
курсовая работа [46,8 K], добавлен 29.04.2017История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.
курсовая работа [5,3 M], добавлен 21.06.2010Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.
контрольная работа [892,8 K], добавлен 04.11.2013Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.
реферат [42,5 K], добавлен 13.04.2008Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.
реферат [459,5 K], добавлен 25.12.2014Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.
презентация [713,4 K], добавлен 20.06.2011Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.
реферат [75,2 K], добавлен 09.07.2009Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.
презентация [419,8 K], добавлен 10.11.2010Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.
презентация [1,1 M], добавлен 15.04.2015Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.
презентация [128,9 K], добавлен 12.01.2014