ЭВАРИСТ ГАЛУА (1811-1832)

Краткий очерк жизни и творчества молодого французского математика Эвариста Галуа, его роль в развитии математики XIX века. Недолгая жизнь и бесславная смерть одаренного юноши. Политическая деятельность Галуа. Влияние Лежандра на формирование Галуа.

Рубрика Математика
Вид биография
Язык русский
Дата добавления 03.12.2008
Размер файла 361,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ЭВАРИСТ ГАЛУА (1811-1832)

ЭВАРИСТ ГАЛУА

(1811-1832)

Он прожил двадцать лет, всего пять лет из них занимался математикой. Математические работы, обессмертившие его имя, занимают чуть более 60 страниц.

В 15 лет Галуа открыл для себя математику и с тех пор, по словам одного из преподавателей, «был одержим демоном математики». Юноша отличался страстностью, неукротимым темпераментом, что постоянно приводило его к конфликтам с окружающими, да и с самим собой.

Галуа не задержался на элементарной математике и мгновенно оказался на уровне современной науки. Ему было 17 лет, когда его учитель Ришар констатировал: «Галуа работает только в высших областях математики». Ему было неполных 18 лет, когда была опубликована его первая работа. И в те же годы Галуа два раза подряд не удается сдать экзамены в Политехническую школу, самое престижное учебное заведение того времени. В 1830 г. он был принят в привилегированную Высшую нормальную школу, готовившую преподавателей. За год учебы в этой школе Галуа написал несколько работ; одна из них, посвященная теории чисел, представляла исключительный интерес.

Бурные июльские дни 1830 г. застали Галуа в стенах Нормальной школы. Его все более захватывает новая страсть - политика. Галуа присоединяется к набиравшей силы республиканской партии - Обществу друзей народа, недовольной политикой Луи-Филиппа. Возникает конфликт с директором школы, всеми силами противодействовавшим росту политических интересов у учащихся, и в январе 1831 г. Галуа исключают из школы. В январе 1831 г. Галуа передал в Парижскую академию наук рукопись своего исследования о решении уравнений в радикалах. Однако академия отвергла работу Галуа - слишком новы были изложенные там идеи. В это время Галуа находился в тюрьме. После освобождения уже в июле он вновь оказывается в тюрьме Сент-Пелажи после попытки организовать манифестацию 14 июля (в годовщину взятия Бастилии), на сей раз Галуа приговорен к 9 месяцам тюрьмы. За месяц до окончания срока заключения заболевшего Галуа переводят в больницу. В тюрьме он встретил свое двадцатилетие.

29 апреля он выходит на свободу, но ему было суждено прожить еще лишь только один месяц. 30 мая он был тяжело ранен на дуэли. На следующий день он умер. В день перед дуэлью Галуа написал своему другу Огюсту Шевалье письмо: «Публично обратись к Якоби или Гауссу с просьбой дать мнение не об истинности, а о значении тех теорем, развернутого доказательства которых я не даю, и тогда, надеюсь, кто-нибудь сочтет полезным разобраться во всей этой путанице». Работы Галуа содержали окончательное решение проблемы о разрешимости алгебраических уравнений в радикалах, то, что сегодня называется теорией Галуа и составляет одну из самых глубоких глав алгебры. Другое направление в его исследованиях связано с так называемыми абелевыми интегралами и сыграло важную роль в математическом анализе XIX в. Работы Галуа были опубликованы лишь в 1846 г. Ж. Лиувиллем, а признание к ним пришло еще позже, когда с 70-х гг. понятие группы постепенно становится одним из основных математических объектов.

За пять лет до гибели Пушкина сходная смерть на дуэли унесла молодого француза -- Эвариста Галуа. Его мало кто знал. К 20 годам он успел только поступить в Высшую Нормальную школу (это педагогический университет в Париже), но был исключен оттуда в числе прочих “бунтарей” в революционном 1830 году. Казалось, что вскоре о Галуа забудут, как о многих других несостоявшихся революционерах. Но позднее выяснилось, что Галуа успел состояться как математик -- да такой, каких Франция не рождала со времен Декарта. Этот удивительно ранний восход сделал короткую биографию Эвариста Галуа в высшей степени поучительной для братьев по мысли из последующих поколений.

Вспомним, что Декарт прославил свое имя в математике одной блестящей идеей: нало придать наглядный смысл всем алгебраическим уравнениям и их решениям! Из этой идеи вырос координатный метод в геометрии. Евклидова плоскость и пространство подчинились числам, и курс элементарной геометрии превратился в один из разделов новой алгебры. Наилучший учебник по новой “аналитической” геометрии написал в 1794 году безработный академик Адриен Лежандр для студентов Высшей Нормальной школы.

Дело в том, что годом раньше французские революционеры распустили Парижскую Академию Наук, как безнадежно монархическое учреждение. Но после свержения Робеспьера самые здравомыслящие из революционеров поняли, что народное просвещение отменить нельзя. Кто-то должен учить будущих учителей -- и вот для них была открыта Высшая Нормальная школа. Адриен Лежандр стал одним из первых ее профессоров. До рождения Эвариста Галуа оставалось 16 лет.

Следующий рывок вперед сделал через два года молодой Карл Гаусс. Он перевел привычную технику геометрических построений на новый язык алгебраических действий с комплексными числами. Оказалось, что суть дела -- в комплексных корнях разных многочленов. Добраться до такого корня с помощью линейки и циркуля можно лишь в том случае, если он достижим посредством цепочки квадратных уравнений. Поэтому, например, правильный 7-угольник нельзя построить в рамках “греческой” геометрии. Но в рамках алгебры он вполне доступен: его вершины суть комплексные корни уравнения Х.. -- 1 = 0.

Достигнув этого рубежа, Гаусс остановился, не задавая следующий вопрос: какие задачи остаются неразрешимыми в рамках алгебры комплексных чисел? Например, всякое ли уравнение-многочлен разрешимо в радикалах -- то есть, можно ли добраться до его корней с помощью арифметических действий и извлечения корня? Или: всякая ли точка на числовой оси является корнем многочлена с целыми коэффициентами? Оба эти вопроса очевидны, важны и интересны -- но Гаусс уже исчерпал свой порыв в этой области, и для новых подвигов понадобились новые богатыри.

Первый из них -- норвежец Нильс Абель -- заявил о себе в 1824 году (когда Эварист Галуа был уже школьником). Абелю удалось доказать, что большинство уравнений-многочленов степени, большей 4, НЕ РАЗРЕШИМО в радикалах. Значит, итальянцы Кардано и Феррари, решив в 16 веке уравнения степеней 3 и 4, достигли предела в этой области -- хотя сами не подозревали о таком чуде. Следующий вопрос возник сам собою: как узнать по виду уравнения, разрешимо ли оно в радикалах? Абель начал заниматься этой проблемой -- но не успел достичь цели, ибо умер от воспаления легких в 1829 году. Через год Парижская Академия Наук присудила Абелю посмертную премию за его открытия. В том же году Эварист Галуа вышел на передний край математической науки.

Его взлет начался в 16 лет, когда в руки школьнику попал учебник геометрии Лежандра. Эварист прочел эту книгу взахлеб, как роман -- за двое суток. Он был потрясен: вот как рассуждают творцы современной математики! И он все это понимает; значит, он тоже может и должен делать математические открытия! Надо раздобыть другие книги Лежандра, чтобы узнать: что в математике уже сделано, а какие задачи остались на его долю?

Сказано -- сделано: в руках Галуа оказался солидный двухтомник “Теория чисел”, где Лежандр изложил открытия Гаусса, наряду со своими находками. Тут Галуа вновь ощутил восхитительный резонанс рассуждений автора со своими мыслями и понял, чего ему хочется больше всего. Надо понять самому и объяснить другим, почему уравнения высших степеней не решаются в радикалах!

Гаусс изобрел в этой области замечательную конструкцию. Можно присоединить к полю коэффициентов многочлена его корни, и получить новое поле -- расширение прежнего поля. Эту процедуру можно повторять много раз; в итоге возникает нечто вроде растущего кристалла, оси и грани которого обладают особой симметрией. И возможно, что от этой симметрии зависит разрешимость исходного уравнения!

Такова была дерзкая догадка Галуа; она оказалась верна, поэтому автора считают гением. Но не только поэтому! Еще важнее то, что Галуа сумел довести свою гипотезу до строгой теоремы. Для этого ему пришлось создать первую математическую теорию произвольных симметрий -- так называемую Теорию Групп.

Именно Галуа ввел в науку такие понятия, как группа и подгруппа, изоморфизм и гомоморфизм групп. Он заметил, что ядро гомомоморфизма (то есть, прообраз единицы в группе) не может быть какой угодно подгруппой. Это должна быть НОРМАЛЬНАЯ подгруппа, переходящая сама в себя при внутренних изоморфизмах группы. Только при этом условии факторизация группы по ее подгруппе порождает новую группу, -- иначе получается обычное множество, без алгебраических операций среди его элементов.

Если мы хотим, чтобы все элементы большого поля F получались из элементов меньшего поля F1 с помощью арифметических действий и извлечения корней, то факторгруппа симметрий поля F по симметриям поля F1 должна не только существовать, но и быть ЦИКЛИЧЕСКОЙ. При этом группа всех симметрий поля F разложится в конечную цепочку нормальных подгрупп с циклическими факторгруппами. Таким свойством обладают группы перестановок 2, 3 или 4 символов. Поэтому все корни многочленов этих степеней выражаются через коэффициенты многочленов с помощью радикальных формул. Напротив, группы перестановок 5 или большего числа символов НЕ ИМЕЮТ цепочки подгрупп с циклическими факторгруппами. Оттого соответствующие уравнения не разрешимы в радикалах.

Такова суть теории Галуа, созданной им в 19 лет. Даже в наши дни она выглядит сложно, для неподготовленного человека. Каково же было современникам Галуа -- даже самым маститым академикам? Не удивительно, что при жизни Галуа (а жить ему оставалось два года!) никто не оценил его открытия по достоинству, хотя Эварист щедро рассылал свои тексты разным парижским математикам. Увы, -- Лежандр был уже глубокий старик, и не мог понимать новинки даже в родной ему области алгебры...

Литература

1. Бородин А.И, Бугай А.С, "Биографический словарь деятелей в области математики", Киев, "Радянська школа", 1979 г.

2. Богомолов А.Н., "Математики, механики",Киев,"Наукова думка",1983 г. http://www.Referat.ru

http://www.Rambler.ru

http://www.Narod.ru и др.


Подобные документы

  • Открытия О. Хайяма в области астрономии, математики и физики. Трактат о доказательствах задач алгебры и алмукабалы. Комментарии к трудностям во введениях Евклида. Закономерности поведения корней, приложимые к каждому конкретному уравнению (Э. Галуа).

    реферат [22,5 K], добавлен 14.12.2009

  • История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

    реферат [50,0 K], добавлен 28.05.2014

  • Изучение абстрактных систем замыканий на множестве. Теорема о взаимосвязи между системами замыканий и операторами замыкания. Понятие и структура алгебраических систем замыканий. Анализ соответствия Галуа как наиболее важного примера систем замыканий.

    дипломная работа [155,2 K], добавлен 27.05.2008

  • Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.

    контрольная работа [71,8 K], добавлен 05.11.2011

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.

    презентация [1,6 M], добавлен 16.05.2012

  • Математика как чрезвычайно мощный и гибкий инструмент при изучении окружающего мира. Роль математики в промышленной сфере, строительстве, медицине и жизни человека. Место математического моделирования в создании разнообразных архитектурных моделей.

    презентация [566,8 K], добавлен 31.03.2015

  • Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.

    презентация [124,5 K], добавлен 17.05.2012

  • Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.

    реферат [25,8 K], добавлен 29.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.