Площади фигур

Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 04.12.2008
Размер файла 84,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5

План.

1.Введение.

2.Единицы измерения площадей.

3.Теоремы площадей фигур.

4.Задачи.

5.Заключение.

6.Используемая литература.

1.Введение.

Геометрия - важный раздел математики. Ее возникновение уходит в глубь тысячелетий и связано, прежде всего, с развитием ремесел, культуры, искусств, с трудовой деятельностью человека и наблюдением за окружающим миром. Об этом свидетельствуют названия геометрических фигур. Например, название фигуры «трапеция» происходит от греческого слова «трапезион» (столик), от которого также произошло слово «трапеза» и другие родственные слова. От греческого слова «конос» (сосновая шишка) произошло название «конус», а термин «линия» возник от латинского «линиум» (льняная нить). Одна из главных величин в геометрии - площадь. Площадь - это величина, характеризующая размер той части плоскости, которая заключена внутри плоской замкнутой фигуры. Обозначается буквой S.

5

Основная ее задача - измерить площадь, т.е. найти число, которое выражало бы эту величину. Другими словами необходимость установить некоторое соотношение между площадями фигур и числами, их выражающими. Чтобы измерить площадь фигуры, надо, прежде всего, выбрать единицу измерения площади. Такой единицей является квадрат, сторона которого равна некоторой единице измерения. Площади простейших фигур можно определить следующим образом: накладываем единичные квадраты на измеряемую площадь, столько раз, сколько возможно, и подсчитываем количество уместившихся квадратов. Полученное число и есть искомая площадь фигуры.

5

Египет.

Если не учитывать весьма малый вклад древних обитателей долины между Тигром и Евфратом, и Малой Азии, то геометрия зародилась в Древнем Египте где-то в 1700 году до н.э. Во время сезона тропических дождей Нил пополнял свои запасы воды и разливался. Вода покрывала участки обработанной земли, и в целях налогообложения

нужно было установить, сколько земли потеряно. Землемеры использовали в качестве измерительного инструмента туго натянутую веревку. Еще одним стимулом накопления геометрических знаний египтянам стали такие виды их деятельности, как возведение пирамид и изобразительное искусство. Египтяне при применении геометрических знаний всецело руководствовались интуицией и приближенными представлениями.

Греция.

Около 600 года до н.э. ионийские греки, совершившие путешествие в Египет, привезли на родину первые сведенья о геометрии. Самым известным путешественником в Египет был Фалес (ок. 640-ок.546 до н.э.). Он был преуспивающим купцом, посвятившим последние годы жизни науке и политике.

Фалес первым начал доказывать истинность геометрических соотношений, последовательно выводя их логически из некоторого набора метод дедуктивного

рассуждения, которому представало стать доминирующим в геометрии и фактически - во всей математике, сохраняя свое фундаментальное значение и в наши дни.

Геометрия XX века.

Истекшие годы первой четверти XX в. не только подводили итоги всему этому обширному циклу идей, но дали новое их развитие, новые применения, которые довели их до расцвета. Прежде всего XX век принес новую ветвь геометрии. Нельзя сказать, чтобы она возникла в этом веке. Но подобно тому, как проективная геометрия создалась из разрозненных материалов, скопившихся с Дезарга в течение двух веков, так из многообразных отрывочных идей, рассеянных по всей истории геометрии, в XX в. складывается особая дисциплина -- топология

К началу XX века относится зарождение векторно-моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Геометрия Эйнштейна -- Минковского.

Геометрическая сторона построенной Эйнштейном теории относительности, особенно оттененная Минковским, заключается в том, что мироздание, не в его статическом состоянии в определенный момент, а во всей его извечной динамике, Эйнштейн и Минковский рассматривают как многообразие, элемент которого определяется четырьмя координатами.

Руководясь тем, что гравитационные силы в мире действуют всегда, тогда как другие силы (электрические, магнитные) в каждом месте то появляются, то исчезают, Эйнштейн поставил себе целью построить риманову геометрию этого четырехмерного многообразия так, чтобы охватить одной общей схемой как пространственные, так и гравитационные соотношения, царящие в мироздании. Задача заключалась, следовательно, в таком выборе основной дифференциальной формы, при которой система правильно отображает эти соотношения в бесконечно малом элементе мира и в порядке интегрирования дает возможность выразить процессы конечные во времени и пространстве.

Роль геометрии в естествознании достигла в этом замысле своего кульминационного пункта. Был поставлен вопрос о геометризации физики. Самая, возможность такой постановки вопроса достаточно показательна. Более того, возможность и тех достижений, которые Эйнштейну удалось получить, основана, если можно так выразиться, на геометризации самой римановой геометрии.

2.Единицы измерения площадей.

Старые русские меры площадей.

В «Русской правде»- законодательном памятнике, который относился к 11-13 векам, употребляется земельная мера плуг. Это была мера земли, с которой платили дань. Есть некоторые основания считать плуг равным 8-9 гектарам. Как и во многих других странах, за меру площади участок принимали количество ржи, необходимое для засева этой площади. В 13-15 веках основной единицей площади была кадь- площадь, для засева которой нужно было примерно 400 кг ржи. Половина этой площади, получившая название десятина, стала основной мерой площадей в дореволюционной Руси. Она равнялась примерно 1,1 гектара. Десятина иногда называлась коробьей.

Другая единица, равная половине десятины, называлась четверть.

Налоговой единицей земли была соха (количество пахотной земли, которое был в состояние обработать один пахарь). В Новгороде - обжа, которая имела различные размеры в зависимости от качества земли и социального положения (духовенство, крестьяне, служильные).

Десятина, которая в быту местами имела и другие размеры, делилась на 2 четверти, четверть в свою очередь делилась на 2 осьмины, осьмины - на 2 полуосьмины, полуосьмина - на 2 четвертика и т.д.

Затем, при рождении метрической системе мер, за единицу измерения площадей стали принимать квадратный метр.

Не метрические единицы, применяемые в англоязычных странах.

Площадь.

Квадратная миля (США) (stature square mile) 2,58999 кв.км.

Акр (acre) 4046,86 м2=0,404686 га.

Квадратный ярд (square yard) 0,836127 кв.м.

Квадратный фут (square foot) 926,030 кв.см.

Давно забытые единицы измерения русской системы мер.

1 кв. верста = 250000 кв. саженей 1,138 кв.км.

1 кв. сажень = 9 кв. аршинов 4,093 кв.м.

1 десятина = 2400 кв. саженей 1,093 га.

1 кв. аршин = 256 кв. вершков 0,506 кв.м.

1 кв. вершок 19,758 кв.см.

1 кв. линия 6,451 кв.мм.

3.Теоремы площадей фигур.

Теорема 1.

Площадь квадрата равна квадрату его стороны.

Докажем что площадь S квадрата со стороной a равна a2 . Возьмем квадрат со стороной 1 и разобьем его на n равных квадратов так, как показано на рисунке 1.

Рисунок 1.

5

Так как сторона квадрата равна 1, то площадь каждого маленького квадрата равна

. Сторона каждого маленького квадрата равна , т.е. равна а. Из этого следует что

. Теорема доказана.

Теорема 2.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне (рис.2.):

S = a * h.

Пусть ABCD - данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности угол A острый (рис.2.).

Рисунок 2.

5

Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE * AD. Отрезок AE - высота параллелограмма, опущенная к стороне AD , и, следовательно,

S = a * h. Теорема доказана.

Теорема 3.

Площадь треугольника равна половине произведения его стороны на проведенную к ней высоту (рис.3.):

Рисунок 3.

Доказательство.

5

Пусть ABC - данный треугольник. Дополним его до параллелограмма ABCD, как показано на рисунке (рис.3.1.).

Рисунок 3.1.

5

Площадь параллелограмма равна сумме площадей треугольников ABC и CDA. Так как эти треугольники равны, то площадь параллелограмма равна удвоенной площади треугольника ABC. Высота параллелограмма, соответствующая стороне CB, равна высоте треугольника, проведенной к стороне CB. Отсюда следует утверждение теоремы, Теорема доказана.

Теорема 3.1.

Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (рис 3.2.).

Рисунок 3.2.

5

Доказательство.

Введем систему координат с началом в точке С так, чтобы B лежала на положительной полуоси Cx , а точка А имела положительную ординату. Площадь данного треугольника можно вычислить по формуле , где h - высота треугольника. Но h равна ординате точки А, т.е. h=b sin C. Следовательно, . Теорема доказана.

Теорема 4 .

Площадь трапеции равна произведению полусуммы его оснований на высоту (рис.4.).

Рисунок 4.

5

Доказательство.

Пусть ABCD - данная трапеция (рис.4.1.).

Рисунок 4.1.

5

Диагональ AC трапеции разбивает ее на два треугольника: ABC и CDA. Следовательно, площадь трапеции равна сумме площадей этих треугольников. Площадь треугольника ACD равна площадь треугольника ABC равна . Высоты AF и CE этих треугольников равна расстоянию h между параллельными прямыми BC и AD, т.е. высоте трапеции. Следовательно,

. Теорема доказана.

4.Задачи.

Задача по теореме 1.

5

Задача по теореме 2.

Дано: ABCD - параллелограмм, h - высота равная 3 см. сторона a = 5 см.

Найти: SABCD

Решение: ABCD - параллелограмм, из теоремы площади параллелограмма известно что из этого следует что

Ответ:

Задача по теореме 3.

5

Задача по теореме 3.1.

5

Задача по теореме 4.

5

5.Заключение.

Площади фигур имеют огромное значение в геометрии, как в науке. Ведь площадь это одна из важнейших величин в геометрии. Без знания площадей невозможно решить множество геометрических задач, доказать теоремы, обосновать аксиомы. Площади фигур имели огромное значение много веков назад, но не утратили своего значения в современном мире. Понятия площадей используются во многих профессиях. Они применяются в строительстве, проектирование и во многих других видах деятельности человека. Из этого можно сделать вывод ,что без развития геометрии, в частности понятий о площадях, человечество не смогло бы такой большой прорыв в области наук и технике.

6. Используемая литература.

1. «Геометрия 7 - 9 класс». Авторы - И. И. Юдина, Э. Г. Позняк, В. Ф. Бутузов.

2. «Справочник по начальной математике» Автор - С. Лукьянченко.

3. «Справочник по высшей математике» Автор - С. Лукьянченко.

4. «Математическая энциклопедия» Авторы - М. Ю. Серебряков, Л. В. Кузнецова.


Подобные документы

  • Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.

    презентация [527,9 K], добавлен 23.03.2011

  • Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

    реферат [32,3 K], добавлен 14.07.2004

  • Геометрия как раздел математики, изучающий пространственные структуры, отношения и их обобщения. Планиметрия, стереометрия, проективная геометрия. История развития науки. Исследование свойств плоских фигур. Сущность понятий "полупрямая", "треугольник".

    презентация [1,1 M], добавлен 16.10.2014

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа [581,4 K], добавлен 29.05.2006

  • Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.

    дипломная работа [884,6 K], добавлен 24.06.2015

  • Повторение и обобщение типов задач, в том числе фигур сложной геометрической конфигурации. Классификация задач, систематизация способов решения. Развитие коммуникативных компетенций (умения работать в группе). Развитие интеллектуальной деятельности.

    презентация [1,9 M], добавлен 29.05.2019

  • Геометрия как научная дисциплина, причины и предпосылки, история и основные этапы ее возникновения и развития. Евклид как основатель геометрии, его вклад в развитие новой науки, характеристика, содержание ее главных разделов - планиметрии и стереометрии.

    презентация [55,3 K], добавлен 28.12.2010

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Использование геометрических форм и линий в практической деятельности человека. Геометрия у древних людей. Природные творения в виде геометрических фигур, их распространение в животном мире. Геометрические комбинации в архитектуре, сфере транспорта, быту.

    реферат [21,5 K], добавлен 06.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.