The construction of the model for damage level assessment of critical infrastructure objects
The model is based on a regional convolutional neural network architecture that can identify and classify different types of damage, including those caused by natural disasters, accidents, or deliberate warfare attacks, such as shelling and bombardment.
Рубрика | Производство и технологии |
Вид | статья |
Язык | английский |
Дата добавления | 12.12.2024 |
Размер файла | 7,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
8. Nex F., Duarte D., Tonolo F. G., Kerle N. Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art CNN in Operational Conditions // Remote Sensing. - 2019. - Т. 11, № 23. - С. 2765. - DOI: 10.3390/rs11232765.
9. Guo C., Chen X., Chen Y., Yu C. Multi-Stage Attentive Network for Motion Deblurring via Binary Cross-Entropy Loss // Entropy (Basel). - 2022. - Т. 24, № 10. - С. 1414. - DOI: 10.3390/e24101414.
10. Sutanto A. R., Kang D. K. A Novel Diminish Smooth L1 Loss Model with Generative Adversarial Network. / A. R. Sutanto, D.K. Kang // IHCI 2020: Intelligent Human Computer Interaction. - С. 361-368. - DOI: 10.1007/978-3-030-68449-5_36.
11. Galera-Zarco C., Floros G. A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making // Annals of Operations Research. - 2023. - DOI: 10.1007/s10479-023-05247-z.
12. Wang Q., Ma Y., Zhao K., Tian Y. A Comprehensive Survey of Loss Functions in Machine Learning // Annals of Data Science. - 2022. - Т. 9. - С. 187-212. - DOI: 10.1007/s40745- 020-00253-51.
13. Ribani R., Marengoni M. A Survey of Transfer Learning for Convolutional Neural Networks. /R. Ribani, M. Marengoni // 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T). - Rio de Janeiro, Brazil. - 2019. - С. 47-57. - DOI: 10.1109/SIBGRAPI-T.2019.00010.
14. He K., Gkioxari G., Dollar P., Girshick R. Mask R-CNN. / K. He, G. Gkioxari, R. Girshick // 2017 IEEE International Conference on Computer Vision (ICCV). - (Venice, Italy). - 2017. - С. 2980-2988. - DOI: 10.1109/ICCV.2017.322.
15. Girshick R. Fast R-CNN. / R. Girshick // 2015 IEEE International Conference on Computer Vision (ICCV). - (Santiago, Chile). - 2015. - С. 1440-1448. - DOI: 10.1109/ICCV.2015.169.
16. Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2017. - Т. 39, № 6. - С. 1137-1149. - DOI: 10.1109/TPAMI.2016.2577031.
17. Dai J., Li Y., He K., Sun J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. // NIPS. - 2016. - С. 379-387. - DOI: 10.48550/arXiv.1605.06409.
18. Lin T. Y., Dollar P., Girshick R., He K., Hariharan B., Belongie S. Feature Pyramid Networks for Object Detection. / T.Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). - Honolulu, HI, USA. - 2017. - С. 936-944. - DOI: 10.1109/CVPR.2017.106.
19. Li Q., Zhang J., Jiang H. Incorporating multi-source remote sensing in the detection of earthquake-damaged buildings based on logistic regression modelling // Nat. Hazards Earth Syst: Sci. Discuss. - 2019. - DOI: 10.5194/nhess-2019-20.
20. Xiong J., Zheng L., Xu C., Cen R., Zheng Y., Li Y. Multiple-Input Convolutional Neural Network Model for Large-Scale Seismic Damage Assessment of Reinforced Concrete Frame Buildings // Applied Sciences. - 2021. - Т. 11, № 17. - С. 8258. - DOI: 10.3390/app11178258.
21. Dutta A., Zisserman A. The VIA annotation software for images, audio and video. / A. Dutta, A. Zisserman // Proceedings of the 27th ACM International Conference on Multimedia (MM '19). - 2019. - С. 2276-2279. - DOI: 10.1145/3343031.3350535.
22. Borji A. Complementary datasets to COCO for object detection [Електронний ресурс] / A. Borji. - 2022. - Режим доступу: https://doi.org/10.48550/arXiv.2206.11473.
23. Zhao F., Zhang C. Building Damage Evaluation from Satellite Imagery using Deep Learning [Електронний ресурс] / F. Zhao, C. Zhang // IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). - Las Vegas, NV, USA. - 2020. - С. 82-89. - DOI: 10.1109/IRI49571.2020.00020.
24. Tan C., Uddin N., Mohammed Y. M. Deep Learning-Based Crack Detection Using Mask R-CNN Technique [Електронний ресурс] / C. Tan, N. Uddin, Y. M. Mohammed. In: 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure. - Режим доступу: https://par.nsf.gov/biblio/10147424.
25. Liu Z., Wang J., Li J., Liu P., Ren K. A Novel Improved Mask RCNN for Multiple Targets Detection in the Indoor Complex Scenes. ArXiv. - 2023. - Режим доступу: https://doi.org/10.48550/arXiv.2302.05293.
26. Henderson P., Ferrari V. End-to-End Training of Object Class Detectors for Mean Average Precision. / P. Henderson, V. Ferrari // Computer Vision - ACCV 2016. Lecture Notes in Computer Science. - T. 10115. - Springer, Cham. - 2017. - DOI: 10.1007/978-3-319-54193-8_13.
27. Gyu Z. An Introduction to Evaluation Metrics for Object Detection [Електронний ресурс] / Z. Gyu. Zenggyu's Blog. - 2018. - Режим доступу: https://blog.zenggyu.com/posts/en/ 2018-12-16-an-introduction-to-evaluation-metrics-for-object-detection/index.html.
28. Hand D. J., Christen P., Kirielle N. F*: an interpretable transformation of the F- measure // Machine Learning. - 2021. - Т. 110. - С. 451-456. - DOI: 10.1007/s10994-021-05964-1.
29. Lin T.Y., Goyal P., Girshick R., He K., Dollar P. Focal Loss for Dense Object Detection. / T.Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar // 2017 IEEE International Conference on Computer Vision (ICCV). - 2017. - С. 2999-3007. - DOI: 10.1109/ICCV.2017.324.
30. Marrakchi Y., Makansi O., Brox T. Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art CNN in Operational Conditions // Remote Sensing. - 2019. - Т. 11, № 23. - С. 2765. - DOI: 10.3390/rs11232765.
31. Xu S., Lan S., Zhu Q. A Comprehensive Survey of Loss Functions in Machine Learning // Annals of Data Science. - 2022. - Т. 9. - С. 187-212. - DOI: 10.1007/s40745-020-00253-51.
32. Pham S. V. H., Nguyen K. V. T. Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages // Applied Sciences. - 2023. - Т. 13. - С. 12445. - DOI: 10.3390/app132212445.
33. Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once: Unified, RealTime Object Detection [Електронний ресурс] / J. Redmon, S. Divvala, R. Girshick, A. Farhadi. ArXiv:1506.02640 [cs.CV]. - 2016. - Режим доступу: https://doi.org/10.48550/arXiv.1506.02640.
34. Osco L. P., Wu Q., de Lemos E. L., Gonqalves W. N., Ramos A. P. M., Li J., Marcato J. The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot // International Journal of Applied Earth Observation and Geoinformation. - 2023. - Т. 124. - С. 103540. - DOI: 10.1016/j.jag.2023.103540.
35. Abedi M., Shayanfar J., Al-Jabri K. Infrastructure Damage Assessment via Machine Learning Approaches: a systematic review // Asian Journal of Civil Engineering. - 2023. - Т. 24. - С. 3823-3852. - DOI: 10.1007/s42107-023-00748-5.
36. Jin T., Bercea G.-T., Le T. D., Chen T., Su G., Imai H., Negishi Y., Leu A., O'Brien K., Kawachiya K., Eichenberger A. E. Compiling ONNX Neural Network Models Using MLIR [Електронний ресурс] / T. Jin et al. ArXiv preprint arXiv:2008.08272. - 2020. - Режим доступу: https://doi.org/10.48550/arXiv.2008.08272.
37. Zhou Y., Yang K. Exploring TensorRT to Improve Real-Time Inference for Deep Learning. / Y. Zhou, K. Yang // 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th International Conference on Data Science & Systems. - 2022. - С. 2011-2018. - DOI: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00299.
Размещено на Allbest.ru
Подобные документы
Характеристика, деятельность предприятия, план работы с персоналом. Структура предприятия и отдела. Технология ActiveX Data Objects ADO в Delphi. Концепция и базовые объекты ADO. Компоненты Delphi для поддержки ADO. Схема связи с объектом ADO в Delphi.
реферат [26,4 K], добавлен 22.11.2010"Damage control" как современная концепция лечения пострадавших с критической политравмой. Хирургическое лечение всех повреждений в первые 24 часа. Одновременное выполнение бригадами хирургов трепанации черепа и остеосинтеза закрытого перелома бедра.
презентация [393,4 K], добавлен 01.04.2014The chiral model of graphene based on the order parameter is suggested in the long-wave approximation, the ideal graphene plane being determined by the kink-like solution. Corrugation of the graphene surface is described in the form of ripple and rings.
статья [211,7 K], добавлен 23.05.2012Issues about housing prices formation process. Analytical model of housing prices. Definition a type of relationship between the set of independent variables and housing prices. The graph of real housing prices of all Russian regions during the period.
курсовая работа [1,6 M], добавлен 23.09.2016The air transport system in Russia. Project on the development of regional air traffic. Data collection. Creation of the database. Designing a data warehouse. Mathematical Model description. Data analysis and forecasting. Applying mathematical tools.
реферат [316,2 K], добавлен 20.03.2016The applied science model. The basic assumptions underlying this model. Received and experiential knowledge. Oldest form of professional education. The most advanced modern teaching strategies. Projects for the development of creative abilities.
презентация [156,0 K], добавлен 09.03.2015The concept, types and importance of enterprise infrastructure. Provided producing technologically-advanced enterprise infrastructure. Problems of infrastructure in enterprises of Ukraine. Reproduction and development of enterprise infrastructure.
реферат [30,0 K], добавлен 29.10.2011Critical literature review. Apparel industry overview: Porter’s Five Forces framework, PESTLE, competitors analysis, key success factors of the industry. Bershka’s business model. Integration-responsiveness framework. Critical evaluation of chosen issue.
контрольная работа [29,1 K], добавлен 04.10.2014Процессоры Duron на ядре Spitfire (Model 3), Morgan (Model 7), Applebred (Model 8), Mobile Duron Camaro. Схема материнской платы EP-8KHAL+. Микросхема "Северный мост". Звуковой чип ALC201A. Конфигурация системной памяти. Регулятор заглушки шины RT9173.
курсовая работа [3,6 M], добавлен 26.03.2013The computer systems and unique possibilities for fulfillment before unknown offenses. The main risks and threats to information systems security in the internet. Internet as a port of escape of the confidential information and its damage minimization.
контрольная работа [19,6 K], добавлен 17.02.2011