Методология реорганизации систем технической подготовки производства на основе моделей инженерного консалтинга
Изучение методов подготовки производства на основе создания и применения инженерного консалтинга. Анализ состава организационной структуры, реализующей комплексное решение задачи технического перевооружения, обеспечивающей реструктуризацию производства.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 08.02.2018 |
Размер файла | 871,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для системного развития принципов обработки на современных ОЦ предложено понятийное обновление общеизвестной технологической системы СПИД. На рис. 7 представлены две технологические системы: общеизвестная СПИД и предлагаемая “СПИД+”, являющаяся ее современной и развитой версией. Появление новых элементов отражает факт их существенного влияния на свойства обновлённой технологической системы.
Рис. 7. Схема анализа технологической системы
Технологическая система “СПИД+” является обновлением традиционной версии системы СПИД по трём пунктам: добавлен элемент «Заготовка»; «Инструмент» дополнен элементами «Режимы резания» и «Траектории обработки»; введён новый, интеллектуальный технологический элемент «Управление размерами».
В шестой главе рассматриваются вопросы построения организационно-методического обеспечения системы инженерного консалтинга. Успешное раскрытие этой проблематики делает возможным применение разработанной методологии. Рассмотрены вопросы:
- построения новых организационных форм;
- представления методической схемы практической реализации проектов;
- примеры реально выполненных проектов, нацеленных на решение самых различных задач - от модернизации существующего производства до создания нового;
- методического обеспечения нормативных баз предприятий в проектах реинжиниринга производственных систем;
- вопросы ответственности ИКФ в устранении проблем и ошибок, возникающих в реализуемых проектах;
- оценки эффективности решений.
Опыт практической работы показывает, что технические изменения ничего не дадут предприятию, если не будут поддержаны и усилены организационно-структурными изменениями. В инженерном консалтинге разработана и успешно используется система организационно-структурных изменений, осуществляемых при реализации описанной методологии трех проектов. На этапе экспериментального проекта проектируются, а на этапе проекта внедрения создаются основные элементы новой организационной системы предприятия, основными объектами которой являются управляющий совет и проектные группы.
Механизм проектных групп заслуживает особенного внимания, поскольку он вместе с моделью четырех уровней бизнеса, системой трех проектов и нормативной базой, фактически составляет методологическую основу инженерного консалтинга (рис. 8). В отличие от инжиниринговых и учебных структур, где четко разделено, где заказчик, а где исполнитель работ, в данном случае барьеры изначально должны быть сломаны. В проектной группе общей целью объединяются специалисты предприятия, хорошо знающие его специфику и особенности, и внешние специалисты, прекрасно владеющие новыми технологиями, но мало знакомые со спецификой предприятия. В зависимости от целей и задач проекта в такую группу, могут входить экономисты предприятия, бизнес-консультанты, специалисты по персоналу, по организации командной работы.
Рис. 8. Проектные группы в методологии трех проектов
Феномен проектной группы в том, что кроме знаний и опыта, она обладает еще и целенаправленной волей к достижению результата. В итоге возникает мощный синергетический эффект, объясняемый еще и скрещиванием разнообразных внутренних и внешних «опытов». Цели проектной группы должны быть увязаны с правами (полномочиями), ответственностью, мотивацией и отчетностью. Это касается как конкретных топ-менеджеров, так и подразделений. Если из этой «цепочки» что-то выдернуть, например, возложить ответственность, но без прав, отчетности и мотивации, цели достигнуты не будут.
Проектная группа - не статичное, а динамично изменяющееся образование. В зависимости от вида проекта, этапа работы роль «лидеров» в этой группе должны брать на себя разные специалисты. Так, в экспериментальных проектах основная нагрузка падает на специалистов по информации, «набивших руку» на создании электронных моделей изделий, деталей, узлов. Технологи в таких проектах консультируют этих специалистов, а час их технологического «соло» приходит позже, в проектах внедрения, где важен большой производственный опыт, доскональное знание возможностей и особенностей станочного парка, инструмента, оснастки. На этой стадии IT-специалисты только консультируют технологов.
Выполнена разработка методического обеспечения нормативных баз предприятий в проектах реинжиниринга производственных систем. Нормативная база, задачи нормирования работ, их роль и значение являются во многом определяющими успех практической реализации проектов:
1. Работа начинается с нормирования подготовки производства и производства деталей. Нормативная база, определяя и контролируя сроки, качество, затраты, балансирует первый, второй и третий уровни бизнеса, а через конкурентоспособность продукции влияет и на четвертый уровень.
2. Нормативная база - важнейший организационно-технический элемент новой технологии - должна быть освоена и усвоена руководителями и специалистами предприятия. Инженерный консалтинг предлагает путь обязательной сертификации специалистов на степень владения созданной нормативной базой. Сертификации подлежат конструкторы, технологи, операторы станков, наладчики, начальники цехов и т.п. При этом обучение остается, но оно становится лишь первым этапом сертификации. А сама сертификация основана на конкретных деталях-представителях, для каждой из которых разрабатывается специальная система контрольных вопросов для каждой категории специалистов
Сертификация перестает быть формальной: по итогам сертификации ряд специалистов может получить отрицательные отзывы и рекомендации по замене или их перемещению.
В проекте внедрения, который создает основу исполнения всех технико-экономических показателей, заявленных в экспериментальном проекте, главным исполнительным механизмом проекта внедрения является механизм построения нормативной базы нового производственного процесса. Нормативная база представляет собой набор направляющих матриц (НМ), информационно поддерживающих производственные процессы для достижения запланированного бизнес-результата. Предварительные значения нормативных характеристик производственного процесса формируются уже на этапе ЭП, а на этапе проекта внедрения эти значения уточняются и сопровождаются разрабатываемой документацией.
В процессе технического перевооружения машиностроительных предприятий возникает множество вопросов, связанных с эффективностью процесса перехода к новым технологиям, с определением срока окупаемости инвестиций. Предложена новая динамическая модель определения периода, в которой, наряду со стоимостью оборудования и технологий, важное значение приобретают длительность переходного процесса и «траектория» перехода (в том числе, организационного) на эффективное использование инноваций.
Переходный процесс от существующих производственных технологий с ежемесячной интегральной трудоемкостью изготовления заданной номенклатуры деталей (в зоне ответственности проекта) Тсущ к новым технологиям с Тнов иллюстрирует график на рис. 9.
Рис. 9. Период окупаемости
t1 - это начало работ; t2 - это завершение создания прототипа новых технологических процессов; t3 - это завершение полного освоения новой технологии изготовления; tвн= t2 - t1 - период внедрения; tосв= t3 - t2. - период освоения.
Из анализа переходного процесса от t1 до t3 (рис 10) следует, что имеет место потеря или снижение экономии трудоемкости (затрат) за период внедрения и освоения, которая составляет:
tк |
, |
(11) |
||||||
LПЭ = ЭПид - ЭПфакт =[(Тсущ - Тнов)Ч(t3 - t1)]- |
((Тсущ - ТПнов) dt |
= |
||||||
tн |
||||||||
= ЭТЧ(tвн+tосв) - SADC = SADCB - SADC = SABC |
где:
ТПнов - функция (по времени) новой трудоемкости в переходный период;
SADCB - площадь прямоугольника ADCB;
SADC - площадь криволинейного треугольника ADC, как экономия трудоемкости (затрат) за период внедрения и освоения новых технологий;
SDGNC - площадь прямоугольника DGNC, как экономия трудоемкости (затрат) за период после полного освоения новых технологий (период эксплуатации новых технологий);
SABC - площадь криволинейного треугольника ABC;
ЭТ - ежемесячная экономия трудоемкости после полного освоения новых технологий, которая просто определяет расчетный срок окупаемости Ток оборудования стоимостью Соб:
(12) |
Характер кривой АС на рис. 9 зависит от скорости перевода деталей заданной номенклатуры (в период внедрения и освоения) с существующей технологии на новую технологию (рис. 10).
Рис. 10. “Траектории” освоения технологий
При средней скорости освоения Vср (см. рис. 12) и ЭТ=Соб/Ток, что следует из (12), потеря экономии LПЭ или SАВС равна:
(13) |
Период окупаемости инвестиций в оборудование Ток по (12) является некоторой расчетной идеальной характеристикой. Если учесть наличие переходного процесса и соответствующую ему потерю экономии по (11), (13), то конечную координату точки окупаемости - t4 можно определить на основе уравнения:
SADC + SDGNC = I ,(14)
где:
I - размер инвестиций в создание новых технологий (равен стоимости нового оборудования - Соб).
Учитывается, что для средней скорости освоения (рис.11) |
, а |
, размер инвестиций можно представить как |
|||
при t1=0 |
(15) |
Таким образом, при средней скорости освоения фактический период окупаемости инвестиций с учетом переходного процесса от существующих технологий к новым больше расчетного Ток (Ток определяется в ЭП на основе моделирования новых и анализа существующих технологических операций) на величину полупериода этого переходного процесса. Следовательно, в среднем «точка старта» расчетного периода окупаемости находится на середине периода переходного процесса к новым технологиям.
При высокой скорости V+ внедрения и освоения новых технологий (рис. 10) SADC~SADCB получаем:
(16) |
откуда при t1=0
(17) |
Соответственно при низкой скорости V - внедрения и освоения новых технологий SADC0 :
(18) |
|||||
откуда |
или |
(19) |
Зависимости (15), (17) и (19) являются фундаментальными для описания влияния процесса внедрения (деталей-прототипов с формированием и освоением нормативных баз) и процесса полного освоения изготовления заданной номенклатуры деталей по новым технологиям (на основе нормативных баз) на фактический период окупаемости инвестиций t4.
Зависимости (17) и (19), по-существу, определяют и предельные положения «точек старта» расчетного периода окупаемости Ток:
- при высокой скорости освоения (V+ > Vср) точка старта для Ток стремится к точке t1 - точке окончания пуско-наладочных работ по оборудованию;
- при низкой скорости освоения (V- < Vср) точка старта для Ток стремится к точке t3 - точке окончания переходного периода освоения новых технологий.
Зависимость (15) определяет положение «точки старта» для Ток между ее указанными предельными положениями при средней скорости освоения Vср (рис. 10). Эту «точку старта» и следует считать базовой для расчета фактического периода окупаемости t4 инвестиций.
Необходимая минимизация фактического периода окупаемости t4 возможна за счёт минимизации времени организационно-технического переходного процесса к новым технологиям t3. Вместе с тем, минимизация этого времени есть задача скорейшего выхода на новый более высокий уровень качества изделий, а также выхода на рост производительности производства (сокращение циклов изготовления), как важнейшего показателя конкурентоспособности предприятия. Минимизация фактического периода окупаемости t4 напрямую связана и с минимизацией расчетного периода окупаемости Ток, как одного из основных критериев эффективности проекта технического перевооружения предприятия «стоимость оборудования / экономия стоимости операционного поддержания технологии производства». Но t3 - это время, которым можно реально управлять за счет правильной организации процесса внедрения новых технологий на основании методологии инженерного консалтинга и достигнуть значительного снижения фактического периода окупаемости t4 даже при относительно высоком показателе Ток. Зачастую Ток и t3 - это близкие по величине времена, и очень важно минимизировать каждое из них.
Общие Выводы и результаты работы
Разработана методология реорганизации систем технической подготовки производства на основе моделей инженерного консалтинга, обеспечивающая конкурентные преимущества предприятиям за счет эффективной организации производства машиностроительной продукции.
Теоретическими исследованиями установлено, что процесс реорганизации технической подготовки производства един и лишь организационно разделен на этапы. Важность обеспечения конкурентоспособности продукции делает процесс принятия организационно-технических решений на основе принципов «интеллектуального производства» одним из эффективных путей обеспечения конкурентных преимуществ предприятия. Решение указанной проблемы заключается в:
создании организационной модели инженерного консалтинга машиностроительного производства, отличающаяся наличием четырех уровней взаимодействия при выработке организационно-технических решений;
разработке концептуальной схемы реинжиниринга машиностроительного производства, включающей последовательное выполнение трех проектов: экспериментального, внедрения и индустриального;
развитии концепции «интеллектуального производства» как набора программно-технических и методических средств обеспечения процессов формирования и реализации организационно-технических решений по перевооружению промышленных предприятий;
разработке проблемно-ориентированной методики обучения и сертификации персонала правилам работы с информационными системами, обеспечивающими формирование организационных и конструкторско-технологических решений, на этапе внедрения производственных технологий.
При осуществлении реинжиниринга модель предприятия инженерного консалтинга машиностроительного производства должна состоять из четырех уровней, раскрывающих структуру взаимодействия при выработке решений как внутри инженерно-консалтинговой фирмы, так и между ИКФ и заказчиком.
В процессе реинжиниринга машиностроительного производства концептуальная схема, основанная на базисном положении о проведении системы мероприятий по изменению организационно-технологической структуры промышленного предприятия, включает последовательное выполнение трех проектов: экспериментального, внедрения и индустриального.
Главным исполнительным механизмом проектов определен механизм построения нормативной базы нового производственного процесса. Нормативная база представляет собой набор направляющих матриц, информационно поддерживающих производственные процессы для достижения запланированного бизнес-результата. Важнейшим инструментом достижения поставленной задачи в процессе реорганизации технической подготовки производства является разработанное методическое обеспечение для формирования нормативных баз предприятий, обучения и сертификации персонала правилам работы с информационными системами, обеспечивающими формирование организационных и конструкторско-технологических решений, на этапе внедрения производственных технологий.
В процессе практического проведения проектов требования к составу комплекса программно-технических средств сопровождения организационно-технических решений определяются на основе методологической проработки создания и модификации электронных моделей: определения технологий электронного описания изделия, объектов и методов; статуса электронной модели изделия; правил информационного сопровождения электронных моделей на ранних стадиях жизненного цикла изделия.
Информационная модель и механизмы построения системы технической подготовки производства, формируемые в процессе реализации проектов, должны строиться на основе эффективных методов управления производством и, в частности, на теории ограничений. Исследования концепций современного производственного менеджмента позволили определить ряд требований к моделям подобного рода, а также построению информационного и методического обеспечения системы инженерного консалтинга.
В процессе реинжиниринга производственной системы методология инженерного консалтинга реализуется на основе теоретико-множественной модели, которая поддерживает стратегию применения передовых конструкторско-технологических решений и перспективного оборудования. Эта модель обеспечивает подготовку допустимого спектра теоретически возможных технологических процессов и позволяет подготовить данные для осуществления целенаправленного выбора необходимых решений с применением стандартных процедур целочисленного программирования.
Основной задачей системы автоматизации управления жизненным циклом изделий является мониторинг выполнения потоков работ, уменьшение длительности подготовки производства путем снижения потерь времени при передаче заданий между исполнителями и сокращение затрат времени при передаче и поиске конструкторско-технологической информации о разрабатываемом изделии. Формальное представление задач позволило определить правила выбора и особенности построения указанной систем, а также рационально распределить поток работ в процессах технической подготовки производства.
Организационная модель инженерно-консалтинговой фирмы, для обеспечения бизнес-преобразований на предприятиях и поддержки баланса по уровням бизнеса, должна включать: технический центр, собственные производственные и технологические мощности, как полигон для натурной отработки параметров выполняемых проектов; проектный центр с передовым уровнем программных средств и новых технологий; подразделения, осуществляющие полноценный учет затрат и управление проектами, грамотный маркетинг.
Для повышения эффективности применения современного технологического оборудования может быть применена разработанная методика конструктивно-независимого проектирования технологии обработки (система “СПИД+”), а также решения по моделированию средств технологического оснащения производства.
Фактический период окупаемости инвестиций в техническое перевооружение (в среднем) больше расчетного значения (используемого в бизнес-планах) на величину половины периода переходного процесса. Снизить указанный период представляется возможным на основе разработанной методологии инженерного консалтинга, применение которой обеспечивает повышение эффективности вложенных инвестиций.
ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИССЕРТАЦИОННОЙ РАБОТЫ ОТРАЖЕНЫ В СЛЕДУЮЩИХ ПУБЛИКАЦИЯХ
1. Бирбраер Р.А. Создание эффективных машиностроительных производств. М.: Янус-К, 2005, 288 с.
2. Бирбраер Р.А., Альтшулер И.Г. Основы инженерного консалтинга. Технология, экономика, организация. -2-е изд.,перераб.,доп. М.:Дело, 2007, 232с.
3. Бирбраер Р.А. Методологические основы инженерного консалтинга машиностроительного производства. Информационные технологии в проектировании и производстве: Науч.-техн. журн./ФГУП “ВИМИ”, 2008, №4.
4. Бирбраер Р.А. Модель определения периода окупаемости инвестиций в техническое перевооружение предприятий. Информационные технологии в проектировании и производстве: Науч.-техн. журн./ФГУП “ВИМИ”, 2009, №2, с. -
5. Р.А. Бирбраер «Методология технического перевооружения машиностроительного производства» // КШП. ОМД. 2009. № 5.
6. Бирбраер Р.А., Радченко И.Г., Тараканов А.Б, Головин А.И. Оптимальное проектирование шиберных задвижек для трубопроводов большого диаметра с использованием возможностей программного комплекса Pro/Engineer на примере проекта внедрения, выполненного компанией «Солвер» для ОАО «ЭМК-Атоммаш» // САПР и графика. 2000. № 5.
7. Бирбраер Р.А. Методы управления производственными потоками в условиях ограничений на технологические ресурсы. Информационные технологии в проектировании и производстве: Науч.-техн. журн./ФГУП “ВИМИ”, 2009, №1.
8. Бирбраер Р.А., Колмаков А.Е., Клегг Ю.Д., Фомин К.А. Обеспечение конкурентных преимуществ продукции за счет использования прогрессивных технологий подготовки производства и современного оборудования и инструмента. Проектирование и изготовление оснастки для производства эксклюзивных стеклянных бутылок на заводе «Красное Эхо» // САПР и графика. 2001. №2.
9. Бирбраер Р.А., Щепин С.М., Столповский В.В. Как оценить возможные преимущества и риски до внедрения ERP-системы. Методика экспериментальных проектов фирмы «Солвер» и ее применение на примере ОАО «ЭМК-ЗМК» // САПР и графика. 2002. № 8.
10. Бирбраер Р., Окатьев В., Громовой С., Красноперов К., Столповский В. Создание прототипа автоматизированной системы подготовки производства на этапах дизайна, конструкторского и технологического проектирования кузовных деталей автомобиля ИЖ-2126 // САПР и графика. 2003. № 1.
11. Валюхов С., Эктов И., Бирбраер Р., Колмаков А. Практическое применение комплекса САПР Pro/Engineer в автоматизированном проектировании центробежных насосов (на примере НПК “Турбонасос”) // САПР и графика. 1998. №3.
12. Бирбраер Р., Багиров Ф., Мамонтов И., Колмаков А., Столповский В. Больше не мечтайте о быстром прототипировании! // САПР и графика. 2003. № 2.
13. Бирбраер Р., Гаршин О., Радченко Г., Окатьев В., Столповский В. Обеспечение всех процессов сквозного параллельного проектирования средствами Pro/Engineer на примере совместного проекта компании «Солвер» и ФГУП «Ижевский механический завод» // САПР и графика. 2003. № 3.
14. Бирбраер Р.А., Еремин В.В., Столповский В. Как сохранить дорогостоящее оборудование и инструмент от поломки и сократить время подготовки нового изделия к производству? Программный комплекс Vericut для проверки и оптимизации управляющих программ для станков ЧПУ // САПР и графика. 2003. № 4.
15. Бирбраер Р., Морозов А., Колмаков А., Столповский В. Обеспечение процессов сквозного параллельного проектирования и подготовки производства средствами Pro/ENGINEER на примере совместного проекта компании «Солвер» и ГУП «Конструкторское бюро приборостроения» // САПР и графика» 2003. №5.
16. Бирбраер Р., Гаршин О., Юдин И., Черепанов А., Соловьев С., Радченко И., Столповский В. Комплексные подходы для решения задач подготовки производства газоперекачивающих агрегатов на примере совместного экспериментального проекта компании «Солвер» и НПО «Сатурн» // САПР и графика. 2003. № 8.
17. Бирбраер Р., Колмаков А., Отцов А., Реймов К., Горячев А. Современные средства проектирования и подготовки производства конкурентоспособной продукции на примере проекта внедрения, выполненного компанией «Солвер» для ОАО «Завод Автоприбор» // САПР и графика. 2003. № 10.
18. Бирбраер Р., Отцов А., Колмаков А., Муртазин Д. Передовой опыт использования быстрого прототипирования в приборостроении. Как применение RP-технологий помогает владимирскому заводу «Автоприбор» эффективно работать с заказчиком // САПР и графика. 2003. № 11.
19. Бирбраер Р., Липсман Д., Рева В., Ефимов С. Эффективное управление подготовкой производства - актуальная задача для современного предприятия (на примере экспериментального проекта, выполненного компанией «Солвер» для ОАО «Завод им. В.А. Дегтярева») // САПР и графика. 2004. № 1.
20. Бирбраер Р., Гаршин О., Кочергина Л., Бараш С. Комплексные подходы к решению задач конструкторско-технологической подготовки машиностроительных предприятий. // САПР и графика. 2004. № 5.
21. Бирбраер Р., Горбунов В., Абросимов Д. Комплексные подходы в организации эффективной подготовки производства изделий (на примере совместного проекта компании «Солвер» и ФГУП ЭЗАН) // САПР и графика. 2005. № 3.
22. Бирбраер Р.А., Самойлов В.И., Лыков В.И., Родионов С.К., Столповский В.В. Строим умное производство вместе. Совместные проекты компании «Солвер» и ОАО «Калугатрансмаш» повысили конкурентоспособность завода // САПР и графика. 2005. № 12.
23. Бирбраер Р., Ефимов С., Столповский В. Как быстро вернуть инвестиции в информационные технологии и заставить их работать // САПР и графика. 2006. № 9.
24. Р.А. Бирбраер, Ф.М. Багиров, И.Ф. Брыкин, «Современное оборудование с ЧПУ для раскроя и обработки листовых материалов». // КШП. ОМД. 2003. №12.
25. Р.А. Бирбраер, В.В. Окатьев, М.А. Яхнис, А.В. Савельев, В.В. Столповский «Сокращение сроков подготовки производства изделий в 4 раза - это реально». // КШП. ОМД. 2004. №2.
26. Р.А. Бирбраер, Ф.М. Багиров, И.Ф. Брыкин, «Прецизионные гидравлические прессы фирмы «Yeh Chiun»». // КШП. ОМД. 2004. № 3.
27. Р.А. Бирбраер, И.Ф. Брыкин, Е.Ю. Горбунов «Повышение эффективности производства на примере изготовления заготовок корпусов автомобильных свечей». // КШП. ОМД. 2005. № 6.
28. Бирбраер Р., Брыкин И., Белоконев Н., Замятин И. «Прогрессивные технологии для умного производства. Детали сложной конфигурации, полученные методом гидроформовки, находят всё большее применение в современных конструкциях». // КШП. ОМД. 2008. № 7.
29. Р.А. Бирбраер, «К определению периодов достижения конкурентных преимуществ на основе новых производственных технологий в проектах технического перевооружения предприятий». // КШП. ОМД. 2009. № 5.
30. Р. Бирбраер, Н. Амид «Проекты с невероятной скоростью». КШП. ОМД. 2009. № 5.
31. Бондарь А., Гриценко В., Ролин В., Бирбраер Р. Автоматизация проектирования - эффективный путь создания нового конкурентно-способного нефтегазового оборудования (на примере Воронежского механического завода) // САПР и графика. 1998. № 9.
32. Бирбраер Р., Колмаков А., Столповский В. Технология быстрого прототипирования из ABS в современном литейном производстве точных изделий. // Литейное производство. 2004. №4.
33. Бирбраер Р.А., Гаршин О., Зеленко В., Васин М. Анализ и оптимизация размерных цепей при комплексном автоматизированном проектировании в Pro/ENGINEER. // «САПР и графика». 1999. №4.
34. Бирбраер Р.А., Галахов А.Д., Тынянов В.Н. О проектировании столов механических прессов с минимальной массой // Кузнечно-штамповочное производство. 1980. № 12. - С.21-23.
Размещено на Allbest.ru
Подобные документы
Исследование технической подготовки производства как комплекса взаимосвязанных работ и мероприятий по конструированию, совершенствованию и выпуску изделий. Определение целей, задач и характеристика подсистем технологической подготовки производства обуви.
реферат [250,0 K], добавлен 28.03.2011Организация научно-технической подготовки производства к выпуску новой продукции. Описание научно-технических исследований и конструкторской подготовки на предприятии. Оранизационно-технологическая и проектно-конструкторская подготовка.
курсовая работа [53,5 K], добавлен 13.01.2009Анализ технического состояния отделочного производства. Пути технического перевооружения отделочного производства и технические характеристики оборудования после перевооружения. Основы технологических процессов обработки ткани. Средства автоматизации.
дипломная работа [748,7 K], добавлен 15.06.2010Основные определения процесса проектирования, его системы, стадии и этапы. Системы автоматизации подготовки производства, управления производством, технической подготовки производства, оценка их практической эффективности. Структура и разновидности САПР.
курсовая работа [109,4 K], добавлен 21.12.2010Принципиальная схема подготовки производства начального этапа строительства заказа. Разработка и реализация общего плана по подготовке производства. Реконструкция и техническое перевооружение производства, подготовка к постройке корабля нового проекта.
контрольная работа [13,8 K], добавлен 18.11.2009Анализ механизма смены увеличения визира оптического устройства, методов и систем автоматизированной конструкторской подготовки производства. Основные требования, предъявляемые к данным системам. Способы создания графических изображений, моделей деталей.
дипломная работа [2,0 M], добавлен 09.11.2016Технологическая подготовка производства в машиностроении. Промышленные изделия машиностроения и этапы их создания. Функции и проблемы технологической подготовки производства. Принципы построения АСТПП. Базовые системы автоматизации проектирования ТПП.
дипломная работа [1,9 M], добавлен 10.01.2009Экономическое значение фактора времени в подготовке и освоении производства новых изделий. Эффективность ускорения подготовки и освоения производства. Основные задачи организации и планирования процессов СОНТ с целью сокращения длительности цикла.
реферат [295,9 K], добавлен 27.11.2008Основные особенности технического перевооружения производства вакуумной коммутационной и распределительной аппаратуры. Увеличение номенклатуры выпускаемых изделий и объёмы производства. Расчёты окупаемости и эффективности инвестиционного проекта.
практическая работа [53,9 K], добавлен 19.06.2012Методика расчетов, связанных с планированием конструкторской подготовки производства. Расчет трудоемкости работ. Определение продолжительности ее основных стадий. Построение календарного графика и расчет затрат на конструкторскую подготовку производства.
лабораторная работа [293,5 K], добавлен 22.09.2013