Проектирование подстанции

Ознакомление со схемой электрических соединений подстанции. Определение мощности трансформаторов собственных нужд с учётом коэффициента загрузки и одновременности. Расчет токов короткого замыкания. Проверка трансформатора на систематическую перегрузку.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 14.06.2016
Размер файла 242,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Особенности конструкции

Вторичные обмотки трансформатора тока (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации.

Незначительное отклонение сопротивления вторичной цепи от номинала (указанного на табличке) по модулю полного Z или cos?ц (обычно cos?ц = 0,8 индукт.) приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создаёт угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода, трансформатор начинает перегреваться, что также может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создаёт компенсирующего магнитного потока в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой имеет очень высокое значение и потери в магнитопроводе сильно нагревают его. В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатанной кремнистой трансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток. Первичная обмотка также может быть выполнена в виде катушки, намотанной на сердечник, либо в виде шины. В некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем путём пропускания провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях трансформаторов тока сердечник выполняется из нанокристаллических (аморфных) сплавов, для расширения диапазона, в котором трансформатор работает в классе точности.

Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих -- синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (то есть погрешность отрицательная) у всех трансформаторов тока. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток. Это связано с отсутствием нулевого провода в сетях 6?--35 кВ и информация о токе в фазе с отсутствующим трансформатором тока может быть легко получена измерением тока в двух фазах. В сетях с глухозаземлённой нейтралью (сети до 1000В) или эффективно заземлённой нейтралью (сети напряжением 110 кВ и выше) трансформаторы тока в обязательном порядке устанавливаются во всех трёх фазах.

В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются по схеме «Звезда», в случае двух фаз -- «Неполная звезда». Для дифференциальных защит силовых трансформаторов с электромеханическими реле трансформаторы подключают по схеме «Треугольник» (для защиты обмотки трансформатора, соединённой в звезду при соединении защищаемого трансформатора «треугольник -- звезда», что необходимо для компенсации сдвига фаз вторичных токов с целью уменьшения тока небаланса). Для экономии измерительных органов в цепях защиты иногда применяется схема «На разность фаз токов» (не должна применяться для защиты от коротких замыканий за силовыми трансформаторами с соединением треугольник -- звезда).

Трансформатор напряжения

Трансформатор напряжения -- один из разновидностей трансформатора, предназначенный не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач, генераторов в удобное для измерения низковольтное напряжение.

Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.

Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения -- режим холостого хода.

Принцип действия

Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.

Виды трансформаторов напряжения

*Заземляемый трансформатор напряжения -- однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов -- однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).

*Незаземляемый трансформатор напряжения -- трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.

*Каскадный трансформатор напряжения -- трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.

*Ёмкостный трансформатор напряжения -- трансформатор напряжения, содержащий ёмкостный делитель.

*Двухобмоточный трансформатор -- трансформатор напряжения, имеющий одну вторичную обмотку напряжения.

*Трёхобмоточный трансформатор напряжения -- трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

Применение

При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1 -- 3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью -- обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).

Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.

Особенности работы ТН в сетях с изолированной и заземлённой нейтралями

В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются, при этом вектора этих напряжений расположены друг относительно друга на 60°, то , где , -- напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до , то , то есть возрастает до утроенного значения фазного напряжения относительно нуля.

Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняются на 100 В, а для сетей с изолированной нейтралью 100/3 В. Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.

Параметры трансформатора напряжения

На шильдике трансформатора напряжения указываются следующие параметры:

*Напряжение первичной обмотки

*Напряжение основной вторичной обмотки, для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки В

*Напряжение дополнительной вторичной обмотки, для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В

*Номинальная мощность трансформатора, в ВА, в соответствии с классом точности

*Максимальная мощность трансформатора, в ВА

*Напряжение короткого замыкания, в процентах

Обозначения ТН

Отечественные трансформаторы имеют следующее буквенные обозначения:

*Н -- трансформатор напряжения

*Т -- трёхфазный

*О -- однофазный

*С -- сухой

*М -- масляной

*К -- каскадный либо с коррекцией

*А -- антирезонансный

*Ф -- в фарфоровой покрышке

*И -- измерительный

*Л -- в литом корпусе из эпоксида

*ДЕ -- с ёмкостным делителем напряжения

*З -- с заземляемой первичной обмоткой

Заключение

В результате работы спроектирована понизительная подстанция для электроснабжения.

В ходе проекта был произведён выбор силовых трансформаторов, технико-экономический расчет по выбору мощности силовых трансформаторов, высоковольтных аппаратов, токоведущих частей и другого оборудования подстанции.

Выводы, сделанные при разработке темы для углубленной разработки, могут быть использованы в проектной и эксплуатационной практике.

Список использованных источников

1. Шеховцов, В.П. Расчет и проектирование схем электроснабжения. Методическое пособие для курсового проектирования.-М.:Форум,2005.-214с.

2. Федоров, А. А. Каменева В. В. Основы электроснабжения промышленных предприятий. - Москва: Энергоатомиздат, 1985

3. Липкин, Б.Ю. Электроснабжение промышленных предприятий и установок. - М.: Высшая школа, 1990. - 366 с.

4. Неклепаев, Б.Н. Крючков И.П., Электрическая часть электростанций к подстанции. Справочные материалы для курсового и дипломного проектирования. - Москва: Энергоатомиздат, 1989. - 608 с.

5. Конюхова, Е.А. Электроснабжение объектов. - М.: Издательство «Ма-стерство», 2001.-320 с.

6. Федоров, А.А. Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. - М.:Энергоатомиздат, 1987. - 368 с.

7. Алиев, И.И Кабельные изделия. - Москва: Высшая школа, 2004. - 230 с.

8. Красников, В.И. Методическое пособие к курсовому проекту по дисциплине «Электрические станции и подстанции». - Астана, 2006.-86 с.

Размещено на Allbest.ru


Подобные документы

  • Выбор трансформаторов, выключателей, разъединителей, короткозамыкателей, коммутационных аппаратов и их проверка на систематическую перегрузку, расчет токов короткого замыкания и теплового импульса с целью проектирование трансформаторной подстанции.

    курсовая работа [182,0 K], добавлен 26.04.2010

  • Однолинейная схема главных электрических соединений подстанции. Расчет токов нормального режима и короткого замыкания. Выбор и проверка токоведущих частей и изоляторов, электрических аппаратов, контрольно-измерительной аппаратуры, трансформаторов.

    курсовая работа [1,4 M], добавлен 08.09.2015

  • Расчет максимальных режимов присоединений и токов короткого замыкания на подстанции. Анализ выбора силового электрооборудования: высоковольтных выключателей, трансформаторов тока и напряжения, силовых трансформаторов, трансформаторов собственных нужд.

    курсовая работа [1,6 M], добавлен 16.09.2017

  • Изучение схемы электроснабжения подстанции, расчет электрических нагрузок. Выбор числа и мощности трансформаторов. Составление схемы РУ высокого и низкого напряжений подстанции. Расчёт токов короткого замыкания. Подбор выключателей, кабелей и их проверка.

    курсовая работа [571,1 K], добавлен 17.02.2013

  • Анализ и расчет электрических нагрузок. Компенсация реактивной мощности. Выбор типа и числа подстанций. Расчет и питающих и распределительных сетей до 1000В, свыше 1000В. Расчет токов короткого замыкания. Расчет заземляющего устройства. Вопрос ТБ.

    курсовая работа [100,4 K], добавлен 01.12.2007

  • Характеристика компрессорного цеха, классификация его помещений. Расчёт электрических нагрузок, компенсирующих устройств, выбор трансформаторов. Определение токов короткого замыкания. Расчет автоматического выключателя. Проектирование систем молниезащиты.

    курсовая работа [615,4 K], добавлен 05.11.2014

  • Устройство силовых трансформаторов. Расчет исходных данных, коэффициентов и основных размеров. Расчёт обмоток, параметров короткого замыкания, магнитной системы трансформатора, потерь и тока холостого хода. Общее описание конструкции трансформатора.

    курсовая работа [156,5 K], добавлен 13.06.2010

  • Проектирование электроснабжения цехов цементного завода. Расчет электрических нагрузок: цехов по установленной мощности и коэффициенту спроса, завода в целом, мощности трансформаторов. Определение центра нагрузок и расположения питающей подстанции.

    курсовая работа [142,1 K], добавлен 01.02.2008

  • Расчет основных электрических величин и размеров трансформатора. Определение параметров короткого замыкания и магнитной системы исследуемого устройства. Тепловой расчет трансформатора: обмоток, бака, а также превышений температуры обмоток и масла.

    курсовая работа [228,8 K], добавлен 21.10.2013

  • Проектирование внутрицеховых электрических сетей завода ОАО "Тагат" имени С.И. Лившица. Определение силовой и осветительной нагрузок; выбор числа и мощности трансформаторов цеховой подстанции. Расчет релейной защиты и автоматики; меры электробезопасности.

    дипломная работа [2,5 M], добавлен 18.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.