Автоматизации технологических процессов и производств

Понятие температуры, его основные свойства и классификация приборов для измерения. Термоэлектрические термометры, их структура и предназначение. Порядок измерения давления и вакуума. Расчет концентрации растворов. Контроль состава и влажности газов.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 09.02.2013
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ультразвуковые преобразователи расхода

Еще одним типом преобразователем расхода для теплосчетчиков является преобразователь ультразвукового типа. Им оснащен, например, теплосчетчик UFM 001.

Принцип действия преобразователя поясняется на рисунке 10.19. Пьезоэлектрические преобразователи ПЭП1 и ПЭП2 работают попеременно в режиме приемник-излучатель.

Рис. 10.19 Принцип действия преобразователя расхода ультразвукового типа

Скорость распространения ультразвукового сигнала в воде, заполняющей трубопровод, представляет собой сумму скоростей ультразвука в неподвижной воде и скорости потока в проекции на рассматриваемое направление распространения ультразвука. Время распространения ультразвукового импульса от ПЭП1 к ПЭП2 и от ПЭП2 к ПЭП1 зависит от скорости движения воды в соответствии с формулами:

где t1, t2 - время распространения ультразвукового импульса по потоку и против потока;

Lа - длина активной части акустического канала;

Lд- расстояние между мембранами ПЭП;

Со- скорость ультразвука в неподвижной воде;

V- скорость движения воды в трубопроводе;

б - угол в соответствии с рис 10.19.

Расход жидкости, протекающей на месте установки ПЭП:

где Дt - разность времени распространения ультразвуковых импульсов по потоку и против потока;

Д- диаметр трубопровода на месте установки ПЭП;

К- программируемый коэффициент коррекции.

У этого типа преобразователей расхода соотношение максимального и минимального измеряемых расходов не превышает величину ~ 100:1.

Теплосчетчики с ультразвуковыми преобразователями расхода наиболее удобно применять в переносных приборах, служащих для экспресс - измерений, т.к. проведение измерения расхода ультразвуковым методом не требует нарушения целостности трубопровода.

Измерение частотных или временных характеристик ультразвукового сигнала менее чувствительно к возможным изменениям условий измерений. На эти характеристики могут влиять изменение амплитуды сигнала, вызванное появлением газовой фазы или твердых примесей, зафиксированное в виде «пропуска» сигнала, но данные изменения рассматриваются как нештатная ситуация, а не как изменение метрологических характеристикк. В том смысле, что прибор не выдает в качестве достоверной искаженную информацию: если показания есть, то они метрологически точны. Если происходит «зарастание» примесями датчика, то снижается амплитуда сигнала (вплоть до исчезновения), но это также не является изменением метрологических характеристик. Поэтому декларируемые преобразователями точность и динамический диапазон (1:100-1:200) сохраняютсяся в течении всего межповерочного периода измерений (МПИ).

Показания ультразвуковых расходомеров с времяимпульсным методом измерений могут не зависеть ни от температуры, ни от давления теплоносителя. В таких расходомерах скорость распространения ультразвуковых колебаний постоянно измеряется или рассчитывается при помощи аппроксимирующих полиномов.

Показания ультразвуковых расходомеров не подвержены манипуляциям с магнитом. Такие расходомеры могут применятся как в системах водоснабжения, так и в составе теплосчетчиков в отопительных системах на большинстве объектов, обеспечивая метрологически точные показания в широком диапазоне и в течение всего МПИ. Однако на передприятиях Архангельской области данные приборы пока не получили широкого применения. Одной из причин является высокие требования к измерительному участку и сложности при проведении поверочных работ.

4. Измерение уровня

Проверка уровня является одной из важных операций в системе контроля технологических процессов. Так, в химической и нефтехимической промышленности непрерывное измерение и сигнализация уровня составляют до 40% всех измерений.

При этом условия для выполнения таких измерений бывают самые разные -- от неагрессивных жидкостей в резервуарах высотой 15... 20 м и более, агрессивных жидкостей (растворы солей, щелочи, кислоты и др.) в емкостях объемом 10...20 тыс. м3 и, наконец, кипящих жидкостей (барабаны энергоблоков, выпарные установки и др.).

Наибольшее применение для измерения уровня жидкостей получили поплавковый и гидростатический методы измерения. Для первого используют поплавковые уровнемеры, действие которых основано на следящем положении поплавка, а у второго--на измерении гидростатического давления жидкости, зависящего от высоты ее уровня в резервуаре. Как правило, гидростатическое давление жидкости измеряют при помощи дифманометров, устанавливаемых ниже резервуара. Чтобы исключить влияние столба жидкости в импульсных линиях на результаты измерения, применяют уравнительные сосуды, в которых поддерживается постоянный уровень жидкости относительно измеряемого уровня жидкости в резервуаре.

Для измерения уровня жидкости широко используют также буйковые и реже пьезометрические уровнемеры. Акустический, индуктивный, высокочастотный и другие методы измерения уровня не получили распространения и в учебнике не рассматриваются.

5. Измерение концентрации растворов

Концентрацией раствора называют содержание вещества в единице объема воды, выраженное в процентах или в единицах массы (мг/л). В производственных условиях для непрерывного контроля концентрации растворов применяют специальные приборы, которые в зависимости от назначения и группы измеряемых веществ делятся на солемеры (определяют концентрацию растворов солей) и концентратомеры (определяют концентрацию растворов кислот и щелочей).

Солемеры применяют в паросиловых установках для непрерывного контроля за солесодержанием насыщенного пара. Насыщенный пар в пароперегревателе полностью испаряется, при этом соли, содержащиеся в котловой воде, осаждаются на трубках пароперегревателя и вызывают их перегорание. Некоторую часть солей пар уносит в паровую турбину, засоряя ими клапаны турбины и лопатки. Все это вызывает необходимость непрерывно контролировать солесодержание пара.

Принцип действия солемера (рис. 10.20) основан на изменении электропроводности конденсата в зависимости от концентрации соли.

Пар через пароотборное устройство 11 поступает в дегазационный холодильник 8. На входе в холодильник установлен патрубок 7 с большим числом мелких отверстий внутри (паровое сито), служащий, для очистки пара от случайных механических примесей и обеспечивающий равномерное распределение его по всему сечению холодильника. Контроль за состоянием парового сита осуществляют по манометру 10. Увеличение разности между давлением пара в котле и холодильнике сигнализирует о загрязнении сита.

Холодильник соединен с пароотборным устройством стальной трубкой 14 х 2 мм. Длина трубки при измерении солесодержания насыщенного пара 8... 10 м, перегретого пара 14... 16 м. Холодильник расположен ниже пароотборного устройства, а трубка, подводящая пар, соответственно наклонена, что обеспечивает скопление всего конденсата, образовавшегося в холодильнике, в нижней его части, откуда он через конденсаторное сито и дроссель 6с проходным отверстием диаметром 0,5 мм попадает в расширитель 2, сообщающийся с атмосферой. На крышке холодильника установлен дроссель 9 для удаления скопляющихся в холодильнике газов. Вместе с газом выходит небольшое количество пара, что предотвращает чрезмерное накопление газов в холодильнике и ограничивает их растворение в конденсате.

При выходе из холодильника в расширитель температура конденсата снижается до 100°С. Из расширителя конденсат поступает в преобразователь 3, а пар, образующийся в расширителе и попадающий в него из холодильника, выходит в атмосферу через отверстие в верхней части расширителя. Конденсат заполняет в преобразователе кольцевое пространство между двумя цилиндрическими электродами, пар отделяется сепаратором и через трубку выводится в атмосферу, а конденсат -- в сливной бачок 5, откуда удаляется через сливную линию. Бачок создает подпор, обеспечивающий заполнение междуэлектродного пространства конденсатом. Преобразователь снаружи закрыт теплоизолирующим экраном и включен проводами, присоединенными к зажимам 4, в одном из плеч вторичного прибора электронного уравновешенного моста 1.

Электрическое сопротивление преобразователя находится в определенной зависимости от концентрации солей в конденсате пара. При его изменении нарушается равновесие и появляется напряжение в диагонали моста, которое усиливается электронным усилителем до значения, достаточного для приведения в действие реверсивного электродвигателя.

Рис. 10.20 Солемер: 1 - уравновешенный мост; 2 - расширитель; 3 -преобразователь; 4 - зажимы; 5 - сливной бачок; 6, 9 - дроссели; 7 - патрубок; 8 - дегазационный холодильник; 10 - манометр; 11 - пароотборное устройство

Электродвигатель, вращаясь, перемещает движок реохорда до наступления нового равновесия, после чего электродвигатель останавливается. С движком реохорда связана печатающая каретка с указателем. Так как каждому сопротивлению преобразователя соответствует определенное положение движка реохорда, при котором мост уравновешен, то положение указателя покажет содержание соли.

Концентратомеры. Действие их основано на зависимости электрического сопротивления раствора от его концентрации. Рассмотрим схему установки для измерения концентрации серной кислоты (рис. 10.21). Из кислотопровода 7 серная кислота проходит по соединительной трубе 4 через вентиль 2 и фильтр 3 в преобразователь 5. Внутри чугунного корпуса преобразователя установлен открытый снизу стакан 6 с рядом отверстий. Вверху стакана находится перегородка, в ней закреплены два измерительных электрода 7 и сравнительный электрод 8У устраняющий влияние температуры раствора на показания прибора. Электрод 8 заполнен кислотой постоянной известной концентрации.

Измерительные и сравнительные электроды медными проводниками соединены с электрическими зажимами, расположенными на стакане. Для улучшения контакта измерительных электродов с медными проводниками контактные трубки этих электродов заливают ртутью.

Кислота из преобразователя сливается через воронку 12 в кислотосборник (на рисунке не показан). Преобразователь соединен тремя проводами с измерительным устройством 9. При изменении концентрации раствора меняется его электрическое сопротивление. Это приводит к увеличению или уменьшению разности потенциалов между измерительными электродами, вследствие чего на измерительное устройство поступает соответствующий сигнал, который затем передается на показывающий 10 и самопишущий 11 милливольтметры. Шкалы этих приборов пересчитаны в единицах концентрации раствора (мг/л).

Рис. 10.21 Схема установки для измерения концентрации серной кислоты: 1 - кислотопровод; 2 - вентиль; 3 - фильтр; 4 - соединительная труба; 5 - преобразователь; 6 - стакан; 7 - измерительные электроды; 8 - сравнительный электрод; 9 -измерительное устройство; 10. 11 - милливольтметры; 12 - воронка

Приборы для измерения концентрации водородных ионов в растворах (рН-метры). На предприятиях химической, нефтехимической, нефтеперерабатывающей, текстильной (при крашении тканей) и других отраслей промышленности кислотность или щелочность растворов в значительной степени влияет на ход технологического процесса и качество получаемой продукции. Кислотность и щелочность растворов определяются концентрацией в них водородных ионов. Для удобства измерения концентрацию водородных ионов характеризуют условным числом и обозначают символом рН. Значение рН чистой воды и нейтральных растворов равно 7. Раствор, рН которого более 7, является щелочным, менее 7--кислым. Приборы для измерения рН называют рН-метрами, в основу которых положен электрический способ измерения. При погружении в раствор электродов из определенных материалов на границе между электродом и раствором возникает электрический потенциал, зависящий от температуры и концентрации водородных ионов в растворе. Подобное же явление наблюдается на границе соприкосновения двух разнородных или однородных, но с разной концентрацией жидкостей, разделенных полупроницаемой перегородкой.

Число рН определяют путем измерения разности потенциалов между двумя электродами, из которых один (измерительный) погружен в исследуемый раствор, а другой (сравнительный) -- в раствор с известным числом рН.

В качестве измерительного применяют стеклянный электрод (рис. 10.22, а) --толстостенную стеклянную трубку 2 с тонкостенным стеклянным шариком 1 на конце.

Шарик заполнен раствором бромистоводородной кислоты. В трубку вставлен вспомогательный электрод (серебряная проволока, покрытая слоем бромистого серебра) для снятия потенциала с внутренней поверхности шарика.

В качестве сравнительного применяют насыщенный каломельный электрод (рис. 10.22, б), который состоит из двух стеклянных трубок, вставленных одна в другую. Во внутренней трубке помещена перегородка с проходящей через нее платиновой (или серебряной) проволочкой. Под перегородкой находится химически чистая ртуть 4 и слой 5пасты из каломели (хлористой ртути), которые удерживаются ватным тампоном 6. Нижняя часть внутренней трубки заполнена раствором определенной концентрации и закрыта пробкой 7. Внешняя трубка заполнена тем же раствором и в дно ее впаян асбестовый фитилек для контакта с исследуемым раствором.

Рис. 10.22 Электроды преобразователя pH-метра: а - измерительный электрод; б - сравнительный электрод; 1 - шарик; 2 - трубка; 3 - перегородка; 4 - ртуть; 5 - слой каломельной пасты; 6 - ватный тампон; 7 - пробка

При промышленном применении рН-метров два рассмотренных выше электрода помещают в специальный сосуд, через который непрерывно протекает испытываемый раствор. Такое устройство носит название преобразователя рН-метра.

Концентрацию водородных ионов раствора, протекающего в трубопроводе под давлением, определяют с помощью погружных преобразователей, имеющих оба электрода специальной конструкции, защищенные от механических повреждений и погружаемые непосредственно в трубопровод.

6. Контроль состава и влажности газов

Для правильного проведения различных технологических процессов необходимо определять содержание в газовой смеси углекислого газа, оксида углерода, водорода, кислорода, сероводорода, метана, хлора и других компонентов. Кроме того, воздух производственных помещений контролируют на содержание ядовитых и взрывоопасных примесей.

Состав газа выражают в процентах от общего объема газовой смеси. Приборы для контроля состава газовой смеси подразделяют на переносные неавтоматические газоанализаторы, используемые в лабораторной практике, а также для контрольных измерений и проверки стационарных автоматических газоанализаторов (в данном учебнике не рассматриваются), и стационарные автоматические, применяемые в промышленных условиях. По принципу действия стационарные газоанализаторы подразделяют на химические, электрические, магнитные и оптико-акустические. Последние применяют редко, поэтому они в учебнике не рассматриваются.

Химические газоанализаторы для определения процентного содержания отдельных компонентов в анализируемой газовой смеси основаны на поглощении компонентов газовой смеси соответствующими химическими реактивами. По сокращению объема смеси определяют процентное содержание в ней компонента. Горючие газы (например, сернистые) выделяют из смеси методом дожигания с последующим поглощением продуктов их сгорания реактивами.

Автоматический химический газоанализатор (рис. 10.23) предназначен для определения содержания углекислого газа СО2 в газовой смеси.

Рис. 10.23 Автоматический химический газоанализатор: 1 - электрический привод; 2 - редуктор; 3 - плунжер; 4 - цилиндр; 5 - волюметр; 6, 16, 17 - клапаны; 7- увлажнитель; 8 - фильтр; 9, 14 - колокола; 10 - диаграммная лента; 11 - перо; 12 - винт; 13 - воронка; 15 - поглощающий сосуд

Электрический привод 1 через редуктор 2 периодически перемещает вверх и вниз плунжер 3 в цилиндре 4. Перемещаясь вниз, плунжер вытесняет ртуть в сообщающийся с ним сосуд -- волюметр 5 (сосуд для первичного отмеривания анализируемого газа) -- и в выхлопной клапан 17. При повышении уровня ртути газ из волюметра вытесняется и через клапан 16 поступает в сосуд 15 с раствором щелочи, которая поглощает из него весь диоксид углерода, остальной газ удаляется в атмосферу через клапан 17.

Когда ртуть в волюметре 5 поднимется до суженной части и перекроет клапан 17, анализируемый газ из верхней части, имеющей определенный объем, пропускается через сосуд 15 и поступает под колокола 9 и 14 измерительной части прибора, находящиеся в жидкости. Первым поднимается колокол 14, наполняемый постоянным объемом газа. Остаток газа поступает под колокол 9, уровень поднятия которого зависит от объема газа, оставшегося непоглощенным. Количество этого остатка характеризуется прямой линией на диаграммной ленте 10, которая перемещается часовым механизмом. Высота отрезка прямой линии, записанной пером 11 на диаграммной ленте от нулевой линии, указывает концентрацию диоксида углерода CО2 в анализируемой газовой смеси.

При ходе плунжера 3 вверх ртуть в клапане 17 и волюметре 5 опускается и засасывается новая порция газовой смеси, которая последовательно пропускается через фильтр 8, увлажнитель 7 и клапан 6. Одновременно открывается клапан 17, через который газ из-под колоколов 9 и 14 удаляется в атмосферу. Плунжер 3, достигнув верхнего положения, направляется вниз, и цикл измерения повторяется. Высоту подъема колокола 14 регулируют винтом 12. Жидкость в камеры колоколов 14 и 9 и волюметр 5 заливают через воронки 13.

Автоматические химические газоанализаторы имеют ряд недостатков, основными из которых являются периодичность действия и значительный расход реактивов, теряющих после нескольких анализов свою поглотительную способность, вследствие чего их приходится заменять новыми.

Электрические газоанализаторы на диоксид углерода. Действие газоанализаторов на диоксид углерода основано на сравнении теплопроводности газовой смеси и воздуха при одинаковой температуре. Теплопроводность газовой среды зависит от содержания в ней СО2, которое определяют измерением сопротивления нагретых проводников, помещенных в воздушную и газовую среды.

Определение содержания в газах суммы оксида углерода и водорода основано на измерении сопротивления электрического проводника, изменяющегося вследствие его нагревания при сгорании этих газов. Эти газоанализаторы применяют редко, поэтому в данном учебнике их не рассматривают.

При наличии в дымовых газах водорода и диоксида серы электрические газоанализаторы дают значительную погрешность. Поэтому в некоторых приборах этого типа предусматривается дополнительная электропечь для дожигания несгоревшего водорода, а диоксид серы из анализируемой смеси удаляют с помощью сернистого фильтра.

Для правильной работы газоанализатора температура анализируемой смеси должна быть близка к температуре помещения, в котором установлен преобразователь прибора. Перед поступлением в преобразователь газовая смесь охлаждается в холодильнике, а образующийся при этом конденсат удаляется в конденсационный сосуд.

Комплект типовой установки электрического газоанализатора на диоксид углерода показан на рис. 10.24.

Рис. 10.24 Типовая установка электрического газоанализатора на диоксид углерода: 1 - керамический фильтр; 2 - газозаборная трубка; 3 - газовый кран: 4, 5 - водяной и ватный фильтры; 6 - печь для дожигания водорода; 7 - холодильник; 8 - преобразователь для анализа газа на содержание СО2; 9 - показывающий прибор; 10 -источник питания; 11 - миллиамперметр; 12 - водяной предохранитель; 13 - водоструйный насос-эжектор; 14 - U-образный манометр; 15 - отвод для заливки воды; 16 - дренажный сосуд

Электрохимические газоанализаторы на кислород. Действие их основано на электрохимической реакции, вызывающей образование тока в электролите при взаимодействии кислорода газовой смеси с электродом. Ток, протекающий по внешней цепи электролита, пропорционален концентрации кислорода в газовой смеси. В составе газовой смеси не должно быть электрохимически активных газов (хлора, оксидов азота, сероводорода).

Электрохимический газоанализатор ГЛ-5108 (рис. 10.25) состоит из преобразователя, увлажнителя с гидрозатвором, реакционной камеры теплообменника со сборником конденсата, электролизера, электроблока и вторичного прибора.

Рис. 10.25 Электрохимический газоанализатор на кислород типа 171-5108: 1 - баллон с водородом; 2 - ареометр; 3 - кран-переключатель; 4 - реактор; 5 -теплообменник со сборником конденсата; 6 - контрольный электролизер; 7 - преобразователь; 8 - увлажнитель; 9 - электролизер; 10 - реакционная камера с измерительным патроном и анодом; 11 - гидрозатвор; 12 - бак с дистиллированной водой

В преобразователе анализируемая или контрольная газовая смесь проходит через гальваническую камеру, состоящую из увлажнителя 8, предназначенного для сокращения концентрации электролита в реакционной камере, и реакционной камеры, заполненной электролитом. В камере находится измерительный патрон с серебряным катодом и свинцовым анодом, с которыми взаимодействует кислород газовой смеси.

После преобразователя 7 газ проходит через гидрозатвор 11, сообщающийся с баком 12 дистиллированной воды, и через кран-переключатель 3 возвращается в технологическую газовую линию. Гидрозатвор защищает реакционную камеру 10 от попадания в нее атмосферного кислорода.

В корпусе размещены поддон для слива электролита из преобразователя гальванической камеры и нагреватель. В состав электроблока входят стабилизатор напряжения, усилитель или компенсационный мост.

Магнитные газоанализаторы на кислород применяют для непрерывного определения процентного содержания кислорода в продуктах горения промышленных печей и топок, в системах воздушно-кислородного дутья мартеновских и других печей, а также в газовой смеси на кислородных станциях. Работа этих приборов основана на так называемом парамагнитном свойстве кислорода втягиваться в магнитное поле в отличие от других газов (диамагнитных), обладающих значительно меньшей магнитной восприимчивостью. Магнитные газоанализаторы измеряют не саму магнитную восприимчивость, а ее изменение при повышении температуры.

В основе преобразователя (рис. 10.26) газоанализатора -- схема моста с двумя платиновыми резисторами: активным 1 и сравнительным 2. Два других плеча образуются из двух секций обмотки трансформатора, питающего схему. Резисторы помещены в камеры постоянного магнита NS, установленного таким образом, что в магнитном поле находится только активный резистор, а сравнительный находится вне его.

Анализируемая газовая смесь проходит через камеру с постоянной скоростью. Вследствие этого платиновые проволоки в двух плечах моста нагреваются электрическим током до определенной одинаковой температуры. Часть потока газовой смеси, содержащей кислород, притягивается магнитным полем к нагретому активному резистору. Кислород, нагреваясь, теряет свои магнитные свойства и выходит из камеры с общим потоком газа. Камера непрерывно пополняется новыми порциями анализируемой смеси.

Рис. 10.26 Электрическая схема (а) и общий вид (б) преобразователя магнитного газоанализатора на кислород: 1 - активный платиновый резистор; 2 -сравнительный платиновый резистор; NS- постоянный магнит; ИП - измерительный прибор

В результате температура активного резистора понижается. Степень его охлаждения будет тем больше, чем выше процентное содержание кислорода в анализируемой смеси. С понижением температуры понижается и его электрическое сопротивление, вследствие чего нарушается равновесие измерительного моста: в диагонали его появляется напряжение разбаланса, соответствующее процентному содержанию кислорода в газовой смеси. Разбаланс измеряется автоматическим электронным потенциометром ИП, отградуированным в процентах содержания кислорода.

Кроме преобразователя и автоматического потенциометра в комплект газоанализатора входят стабилизатор напряжения, холодильник, конденсационный сосуд, керамический и контрольный фильтры, гидрокомпрессор (только для приборов со шкалой 0... 10% кислорода), а также шланги, трубы и арматура.

Хроматографы. Хроматографией называют разделение газовой смеси на отдельные компоненты при ее движении через слой поглотителя (сорбента).

Определенное количество контролируемой газовой смеси вместе с газом-носителем пропускают через поглотитель, находящийся в разделительной колонке. Так как адсорбционные свойства компонентов газовой смеси различные, то и скорости их прохождения через разделительную колонку разные. Это приводит к разделению анализируемой газовой смеси на отдельные компоненты, которые и выходят из колонки в виде так называемой бинарной смеси с газоносителем.

Из колонки бинарная смесь попадает в измерительную ячейку (камеру) детектора, через другую его ячейку -- сравнительную -- непрерывно проходит чистый газ-носитель. Принцип действия детектора основан на разной теплопроводности анализируемой газовой смеси и чистого газа-носителя.

В качестве чувствительных элементов детектора используют терморезисторы, размещенные в каждой из двух ячеек детектора (измерительной и сравнительной). При пропускании через обе ячейки газа одного и того же состава температура нагрева обоих терморезисторов будет одинаковой; при пропускании через ячейки газов разного состава температура нагрева терморезисторов, а следовательно, и их электрическое сопротивление будут разными. Если терморезисторы включить в схему электрического уравновешенного моста постоянного тока, то при пропускании газов разного состава равновесие моста нарушится. Разбаланс моста пропорционален концентрации отдельных компонентов в смеси пробы газа, что фиксируется на картограмме регистрирующего прибора.

Автоматический хроматограф (рис. 10.27) -- прибор для периодических анализов газовых смесей на технологических установках. Контролируемый газ из пробоотборной линии 1 проходит через редукторы 2 и 3 низкого давления, в которых его давление понижается до 0,12... 0,15 МПа.

Рис. 10.27 Схема автоматического хроматографа (а) и общий вид преобразователя хроматографа, конструктивно объединенного с блоком подготовки газов (б): 1 - пробоотборная линия; 2, 3, 19 - редукторы; 4, 18 -ротаметры; 5, 6 - фильтры; 7, 17, 20 - дроссели; 8 -трехходовой кран; 9 - пробоотборный кран; 10 - разделительная колонка; 11 -детектор; 12, 14- термопреобразователи сопротивления; 13 - автоматический электронный потенциометр; 15 - электронный усилитель; 16 - электронагреватель; 21 - баллон с азотом

Между редукторами расположен регулируемый дроссель 20, позволяющий сбрасывать газ в атмосферу, если это необходимо для поддержания постоянного давления на входе в редуктор 3 низкого давления. Газ, выходящий из редуктора J, поступает в один из двух фильтров 5 или 6 с поглотителем для удаления влаги и сернистых соединений. Фильтры работают поочередно.

Из фильтров газ через дроссель 7 тонкой регулировки расхода и трехходовой кран 8 попадает в пробоотборный кран 9, пропускающий газ в преобразователь (на схеме не показан). Кран 9 устроен таким образом, что скорость протекания газа соответствует допустимому расходу, который в хроматографе должен составлять 2... 5 л/ч. Расход газа контролируется ротаметром 4.

Отмеренную пробу контролируемого газа вносит в разделительную колонку 10 поток газа-носителя (азота), находящегося в баллоне 21 в сжатом виде. Азот проходит через редуктор 19 и дроссель 17, откуда поступает в сравнительную ячейку (камеру) детектора 11, а из нее в пробоотборный кран 9, откуда через ротаметр 18 сбрасывается в атмосферу.

Пробоотборный кран 9 перестанавливается электродвигателем в два положения. В первом положении газ-носитель, пройдя через кран, вытесняет пробу контролируемого газа, находящуюся в дозировочной трубке (на рисунке не показана), и подает ее в колонку для анализа. Во втором положении газ-носитель проходит через измерительную ячейку детектора, разделительную колонку, кран 8 и выходит через ротаметр 18 в атмосферу.

Когда через ячейки проходит газ одного состава, температура обоих терморезисторов детектора одинакова. Мост в этом случае находится в равновесии. Если через измерительную ячейку проходит газ-носитель, содержащий какой-либо компонент контролируемого газа, то температура в ней повышается, так как теплопроводность чистого азота выше теплопроводности газовой смеси. Поэтому отдача теплоты терморезистором понижается, а температура его и электрическое сопротивление увеличивается. Мост выходит из равновесия, что фиксируется в виде пики на картограмме регистрирующего прибора--автоматического электронного потенциометра 13. Площадь пики характеризует количество компонента в анализируемой смеси.

Температура в преобразователе поддерживается регулятором, включающим и выключающим электронагреватель 16. Измеряют температуру термопреобразователи сопротивления 12 и 14.

Преимущество хроматографов перед другими видами газоанализаторов в том, что они позволяют определять процентный состав многих компонентов пробы газовой смеси.

Психрометры. Действие таких приборов основано на психрометрическом эффекте, который заключается в том, что при испарении воды с увлажненной поверхности тела последнее охлаждается.

Простейший психрометр состоит из двух термометров: сухого и влажного. Измерение относительной влажности сводится к определению разности температур сухого и влажного термометров, а эта разность зависит от относительной влажности, барометрического давления, температуры окружающей среды и скорости обтекания ею влажного термометра.

Психрометры дают возможность производить как местное, так и дистанционное измерение относительной влажности. В промышленности для измерения относительной влажности воздуха и газов применяют автоматические психрометрические влагомеры.

Автоматический психрометрический влагомер состоит из первичного прибора (преобразователя) и вторичного (электронного автоматического моста переменного тока).

Корпус первичного прибора -- цилиндрической формы, в передней его части предусмотрен фланец для крепления вторичного прибора. Сухой и влажный термопреобразователи сопротивления установлены в двух каналах теплоизоляционной втулки, запрессованной в металлический цилиндр, находящийся в корпусе первичного прибора. Внутри корпуса находится резервуар с водой для смачивания хлопчатобумажного чехла, надетого на влажный термопреобразователь. Контролируемый воздух или газ проходит в первичный прибор через отверстия в задней части корпуса. Скорость потока воздуха или газа регулируют, меняя число отверстий, для чего часть отверстий закрывают с помощью рукоятки. Для устранения механических примесей в контролируемом газе служат фильтры, которые представляют собой обоймы, заполненные коксом. Фильтры помещены в гнезде теплоизоляционной втулки.

Для измерения влажности воздуха применяют вытяжное устройство, состоящее из крыльчатки и электродвигателя переменного тока напряжением 200 В. Воздух просасывается через каналы вытяжного устройства, в которых установлены термопреобразователи, и выходит из отверстий в задней стенке корпуса первичного прибора.

Первичный прибор психрометра устанавливают горизонтально по уровню. Бачок с дистиллированной водой с примесью сулемы располагают на высоте 250... 500 мм над резервуаром преобразователя. Бачок герметически закрыт крышкой и имеет два ниппеля для соединения соответственно с нижним и верхним ниппелями резервуара первичного прибора. При уменьшении уровня воды в резервуаре (за счет ее испарения с поверхности влажного термопреобразователя) обнажается нижний конец трубки, опущенной в резервуар первичного прибора, и в верхнюю полость бака проникает воздух.

Это приводит к увеличению давления в бачке с водой и к повышению уровня воды в резервуаре.

Первичный прибор соединяют с вытяжным устройством резиновой трубкой, проложенной горизонтально. Вытяжное устройство устанавливают на расстоянии 100... 150 мм от преобразователя и на одном уровне с ним.

Измерительное устройство (рис. 10.28) вторичного прибора состоит из двух мостов: I и II. В одно из плеч моста I включен сухой термопреобразователь сопротивления Rтс, а в одно из плеч моста II -- влажный термопреобразователь сопротивления RTM.

Рис. 10.28 Принципиальная схема измерительного устройства вторичного прибора психрометра: Rтс - сухой термопреобразователь сопротивления; Rтм - влажный термопреобразователь сопротивления; Rp - реохорд; Rт - подгоночный резистор; Rл - уравнительный резистор; RH- резистор, определяющий начало шкалы; Rn - резистор, определяющий конец шкалы; гн, гп, г2, г4 - подгоночные резисторы; R1-R4 - постоянные резисторы плеч моста; Rd - добавочный резистор; Rb, Rb1 - балластные резисторы; Rщ - шунтовый резистор; В - однополюсный выключатель; П - предохранитель; У -электронный усилитель; РД - реверсивный двигатель; СД - синхронный двигатель; Ср.Д и Сiр.Д - емкости в цепи реверсивного двигателя

На вершинах а и b диагонали моста I возникает разность потенциалов, пропорциональная температуре сухого термопреобразователя сопротивления. Разность потенциалов, возникающая на вершинах а и с диагонали моста II, пропорциональная температуре влажного термопреобразователя сопротивления. Следовательно, падение напряжения между вершинами b и с двойного моста пропорционально разности температур сухого и влажного термопреобразователей сопротивления, т. е. психрометрической разности температур.

Посредством движка реохорда Rp, перемешаемого реверсивным электродвигателем РД, автоматически устанавливается равновесие измерительной схемы. Таким образом, положение движка реохорда служит мерой психрометрической разности температур, характеризующей относительную влажность измеряемой среды.

При измерении относительной влажности на вершинах b и с двойного моста появляется напряжение разбаланса, которое усиливается электронным усилителем У до значения, необходимого для работы реверсивного электродвигателя. Вал электродвигателя, вращаясь, приводит в движение через зубчатую передачу рычаг, перемещающий движок по реохорду. Движение рычага передается через механическую передачу перу прибора и стрелке, которая перемещается по шкале. При наступлении равновесия вращение реверсивного электродвигателя прекращается.

Вопросы по теме

1. Назовите принципы измерения температуры.

2. Какие из них применятся для автоматизации процесса измерения?

3. Назовите принципы измерения давления, перепада и вакуума.

4. Как измеряют расход и количество?

5. Назовите принципы измерения уровня.

6. Назовите принципы измерения концентрации растворов.

7. Что такое рН - метр?

8. Назовите принципы измерения состава и влажности газа.

9. Чем измеряют содержание диоксида углерода?

10. Чем измеряют содержание кислорода?

11. Что измеряет хроматограф?

12. Что измеряет психрометр?

Размещено на Allbest.ru


Подобные документы

  • Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.

    курсовая работа [93,1 K], добавлен 14.01.2015

  • Преобразователи температуры с унифицированным выходным сигналом. Устройство приборов для измерения расхода по перепаду давления в сужающем устройстве. Государственные промышленные приборы и средств автоматизации. Механизм действия специальных приборов.

    курсовая работа [1,5 M], добавлен 07.02.2015

  • Общие сведения о измерениях и контроле. Физические основы измерения давления. Классификация приборов измерения и контроля давления. Характеристика поплавковых, гидростатических, пьезометрических, радиоизотопных, электрических, ультразвуковых уровнемеров.

    контрольная работа [32,0 K], добавлен 19.11.2010

  • Создание системы автоматического регулирования технологических процессов. Регулирование температуры при обработке железобетонных изделий. Схема контроля температуры в камере ямного типа. Аппаратура для измерения давлений. Расчет шнекового смесителя.

    курсовая работа [554,1 K], добавлен 07.02.2016

  • Исследование методических печей с подвижными балками. Классификация средств измерения температуры контактным методом. Электрические контактные термометры. Выбор термоэлектрических термометров. Контроль температуры рабочего пространства методической печи.

    курсовая работа [1,3 M], добавлен 22.01.2015

  • Температура и температурные шкалы. Технические термометры электроконтактные. Структурные схемы стабилизированных источников электропитания. Разработка и описание работы измерительного канала микропроцессорной системы измерения и контроля температуры.

    дипломная работа [3,4 M], добавлен 30.06.2012

  • Погрешность измерения температуры перегретого пара термоэлектрическим термометром. Расчет методической погрешности изменения температуры нагретой поверхности изделия. Определение погрешности прямого измерения давления среды деформационным манометром.

    курсовая работа [203,9 K], добавлен 01.10.2012

  • Классификация ДСП (Дуговых сталеплавильных печей). Основные технические и эксплуатационные характеристики ДСП. Технологический процесс электродуговой плавки в печи. Методы измерения температуры. Принцип измерения температуры шомпольным термозондом.

    курсовая работа [4,2 M], добавлен 13.11.2009

  • Назначение нефтеперекачивающей станции. Система механического регулирования давления. Функциональная схема автоматизации процесса перекачки нефти. Современное состояние проблемы измерения давления. Подключение по электрической принципиальной схеме.

    курсовая работа [2,8 M], добавлен 15.06.2014

  • Технология производства тепловой энергии в котельных. Выбор методов и средств измерения технологических параметров и их сравнительная характеристика. Физико-химические свойства природных газов. Схема автоматического контроля технологических параметров.

    курсовая работа [43,7 K], добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.