Процессы и аппараты нефтегазопереработки

Общие признаки и виды массообменных процессов, правило фаз Гиббса. Сущность процесса ректификации и энтальпийная диаграмма. Особенности перегонки с водяным паром. Сущность, конструкция и основные факторы, влияющие на процессы абсорбции и десорбции.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 13.01.2013
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Адсорбент представляет собой зерна неправильной формы размером 2-10 мм. Неподвижный режим адсорбента используют для предотвращения разрушения его.

Рис. VIII-5. Распределение концентраций в потоках, покидающих адсорбер по высоте стационарного слоя адсорбента

Адсорберы с псевдоожиженным слоем адсорбента позволяют также осуществлять непрерывный процесс адсорбции. В этом случае в качестве адсорбента используются мелкие гранулы (обычно не более 500 мкм). Адсорбер должен иметь несколько слоев для уменьшения возможности проскока газов через слой адсорбента. Газ движется противотоком вверх. Конструктивно адсорбер может иметь один или несколько кипящих слоев (рис. VIII-11), обеспечивающих контакт фаз в противотоке (ступенчато-противоточный адсорбер). В таком адсорбере на специальных контактных устройствах (тарелках) осуществляется взаимодействие между газом и порошкообразным адсорбентом, в результате чего адсорбент переводится в состояние псевдоожижения. Адсорбент, двигаясь сверху вниз через переточные устройства, передается с одной контактной ступени на другую. Газ движется в аппарате противотоком снизу вверх. Для отделения из газового потока частичек адсорбента перед выходом из адсорбера газ направляют в циклоны. В аппаратах с псевдоожиженным (кипящим) слоем адсорбента можно интенсифицировать процесс массопередачи при адсорбции за счет уменьшения размера гранул и более интенсивного обновления их контактной поверхности. В процессе адсорбции с псевдоожиженным слоем адсорбента наблюдается самый интенсивный тепло-массоперенос (а также химическая реакция в каталитических процессах), поэтому есть тенденция замены стационарных процессов (адсорбции, катализа) на процессы с псевдоожиженным слоем

Использование данной технологии сдерживается следующими недостатком: образование потерь адсорбента при недостаточном пылеулавливании и необходимости добавлять свежий адсорбент.

Рис. VIII-11. Схема адсорбера с псевдоожиженным слоем адсорбента:

1 -- корпус; 2 -- контактная тарелка; 3 -- переточное устройство; 4 -- циклон; 5 -- люк-лаз/ Потоки: / -- исходный газ; II -- регенерированный адсорбент; III -- отработанный газ; /V -- отработанный адсорбент

Адсорбер с движущимся слоем адсорбента обычно представляет собой аппарат, в верхней секции которого осуществляется стадия адсорбции, а в нижней части - стадия десорбции. Для циркуляции адсорбента в системе применяют пневмотранспорт. Адсорберы с движущимся слоем адсорбента применяются для извлечения этилена из его смеси с водородом и метаном, водорода из смеси газов и т.п. В этом случае процесс ведется непрерывно и каждая его стадия осуществляется в определенном аппарате или части аппарата, причем адсорбент последовательно перемещается между отдельными аппаратами по системе пневмотранспорта. В качестве адсорбента часто применяется гранулированный активированный уголь. Потерянный в результате сорбент компенсируется добавлением свежего . При этом размеры зерен в процессе с движущимся слоем адсорбента в 10-30 раз крупнее , чем в псевдоожиженном , это приводит к снижению интенсивности массопереноса, а значит и увеличению размеров аппарата при той же производительности.

В зарубежной литературе процессы адсорбции с движущимся слоем адсорбента называют гиперсорбцией.

Основы расчета адсорбера

При расчете адсорбера обычно пользуются экспериментальными данными по активности адсорбента для соответствующих компонентов смеси. Общее количество поглощенных компонентов в единицу времени:

( 99)

Если адсорбер имеет неподвижный слой, то при длительности процесса адсорбции будет поглощено следующее количество вещества:

( 100)

Средняя активность адсорбента:

( 101)

Необходимое для адсорбции количество адсорбента равно:

( 102)

Расчет числа теоретических тарелок может быть выполнен с использованием изотермы адсорбции и рабочей линии по аналогии с расчетом других массобменных процессов (рисунок 20.3). число теоретических тарелок определяется графическим построением ломаной линии между изотермой адсорбции и рабочей линией. на основе такого построения производится определение общего числа теоретических тарелок. необходимая высота адсорбера определяется по уравнению:

где hэ - высота слоя адсорбента, эквивалентная одной теоретической тарелке, определяется экспериментально.

Рис. 20.3. Графическое определение числа теоретических ступеней изменения концентраций для адсорбера: ОС -- изотерма адсорбции; АВ -- рабочая линия

31. Закономерности процесса адсорбции

На основании вышеизложенного можно сформулировать следующие закономерности процесса адсорбции.

Адсорбируемость веществ зависит от природы, строения молекул и молекулярного веса исходных веществ и структуры адсорбента

Структура адсорбента зависит от величины удельной поверхности, размеров пор и химического состава адсорбента.

Чем меньше температура и больше давление в адсорбере, тем больше доля извлечения ключевых компонентов.

Адсорбция наиболее эффективна при малых концентрациях извлекаемых веществ

При исчерпании адсорбционной способности возникает проскок адсорбата, необходима регенерация адсорбента

Активность адсорбента от числа регенераций постепенно снижается

Наибольшее падение активности обычно наблюдается после первой регенерации

Рекомендуемая литература

Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: 1973, 754 с.

Скобло А.И., Трегубова И.А., Молоканов Ю.К. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности. - М.: Химия, 1982, 584 с.

Молоканов Ю.К. Процессы и аппараты нефтегазопереработки. - М., Химия, 1980, 408 с.

Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов. - Л.: Химия, 1987, 576с

Размещено на Allbest.ru


Подобные документы

  • Химико-технологические процессы, в которых основную роль играет перенос вещества из одной фазы в другую (массообменные). Разность химических потенциалов как движущая сила массообменных процессов. Использование массообменных процессов в промышленности.

    презентация [241,5 K], добавлен 10.08.2013

  • Физико-химические основы абсорбции. Аппараты, в которых проводят процессы абсорбции, их классификация. Расход поглотителя, температура процесса и количество отводимой теплоты. Скорость подачи газа и поглотителя, подбор типа тарелок, размеров аппарата.

    курсовая работа [186,8 K], добавлен 18.12.2009

  • Общая характеристика и классификация массообменных процессов, их использование в промышленности. Схема абсорбции с рециркуляцией жидкости и газа. Зависимость растворимости некоторых газов в жидкостях. Тепловой эффект растворения газа, его измерение.

    контрольная работа [1,8 M], добавлен 22.05.2012

  • Сущность ректификации как диффузионного процесса разделения жидких смесей. Построение зависимости давления насыщенных паров от температуры, энтальпийная диаграмма. Расчет материального и теплового баланса колонны, профиля концентраций и нагрузок.

    курсовая работа [1,9 M], добавлен 21.06.2010

  • Сущность процесса ректификации с диффузионным процессом разделения жидких и газовых смесей. Расчет ректификационной установки, особенности процесса абсорбции. Подбор насоса и штуцеров для ввода сырья в колонну. Расчет материального баланса абсорбера.

    курсовая работа [358,9 K], добавлен 17.11.2013

  • Разделение жидких неоднородных смесей на чистые компоненты или фракции в процессе ректификации. Конструкция ректификационной колонны для вторичной перегонки бензина. Выбор и обоснование технологической схемы процесса и режима производства бензина.

    дипломная работа [1,5 M], добавлен 01.11.2013

  • Процессы ректификации нефти и продуктов ее переработки. Основные области промышленного применения ректификации. Равновесие между парами и жидкостями. Классификация оборудования для ректификации. Основные фракции нефти. Схема колпачковой тарелки.

    курсовая работа [333,3 K], добавлен 21.09.2015

  • История, состав, сырье и продукция завода. Промышленные процессы гидрооблагораживания дистиллятных фракций. Процессы гидрокрекинга нефтяного сырья. Гидроочистка дизельных топлив. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6.

    отчет по практике [8,1 M], добавлен 07.09.2014

  • Автоматизация процессов тепловой обработки. Схемы автоматизации трубчатых печей. Схема стабилизации технологических величин выпарной установки. Тепловой баланс процесса выпаривания. Автоматизация массообменных процессов. Управление процессом абсорбции.

    реферат [80,8 K], добавлен 26.01.2009

  • Современные процессы переработки нефти. Выбор и обоснование метода производства; технологическая схема, режим атмосферной перегонки двукратного испарения: физико-химические основы, характеристика сырья. Расчёт колонны вторичной перегонки бензина К-5.

    курсовая работа [893,5 K], добавлен 13.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.