Повышение промышленной безопасности в цехе восстановления отработанных моторных масел

Очистка работающих и возобновление отработанных масел. Технические характеристики для регенерации масла: установка для обработки и очистки, масляные станции. Расчет по нормам количества отработанного масла и технологическая схема его переработки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 27.11.2012
Размер файла 4,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для механизма движения:

где Мдв. - норматив образования отработанного масла, кг;

V - вместимость маслосистемы, л; р - плотность применяемого масла, г/см3;

? - время работы компрессорной установки в году, ч;

Т - периодичность замены масла в механизме движения, ч, (см. таблицу 3.1.).

Для компрессорных установок, где в механизме движения и сжатия используется масло одной марки, норма образования отработанного масла определяется по формуле:

М = Мсж + Мдв.

где М - норма образования отработанного масла в компрессорной установке, кг;

Норма образования отработанного компрессорного масла может быть также рассчитана исходя из объема масла (V), заливаемого в картеры компрессоров (с учетом плотности масла (р)), и периодичности (п) его замены в году, М = V·p·n.

Таблица 3.1. Нормы часового расхода масла на ремонтно-эксплуатационные

Тип компрессора

Вместимость маслосистемы, V, л

Периодичность замены масла в механизме движения, Т, ч

Часовой расход масла для системы сжатия, Nсж, г

10 ЗВП-20/8

25

3000

54,4

202ВП-10/8

35

3000

37,2

ВП-2-10/9

35

3000

36,7

ВП-20/8

25

3000

86,0

ВП-20/ВМ

25

3000

86,0

ВП-3-20/9

25

3000

50,0

302ВП-10/8

35

3000

39,3

200В-10/8

22

6000

90,0

4ВУ1-5/9

15

1000

30,0

К-5М

15

1000

30,0

К-2-150

0,6

6

50,0

ВК-25

9

1000

50

АКР-2

15

500

30,0

6ВКМ-25/8

250

1000

330

ЦК-135/8

1000

2500

100

2Р-3/220

55

4000

200

ЦК-100/61

500

2000

100

2ВМ-10-50/8

100

2500

150

4ВМ-10-100/8

200

2500

300

ВУ-3/8

12

1000

30

ВУ-6/4

12

1000

70

АВШ-1,5/45

10

1000

75

2ВУ1-1,5/46

10

1250

40

ВШ-3/40М

14

1000

60

2ВУ1-2,5/13

10

500

400

202ВП-20/35

95

3000

85

205ВП-30/8

95

3000

80

ЗО5ВП-ЗО/8

136

3000

50

ЗО5ВП-60/2

136

3000

60

2ВМ-4-24/9

35

3000

60

402ВП-4/220

35

3000

58

302ВП-10/8

35

3000

28

4ВМ10-120/9

200

2500

360

ВШВ-2,3/230

22

500

90

НВ-10

100

1000

50,4

АВ-10/8

100

1000

50,4

4.3.3 Отработанное трансформаторное масло

Годовая норма образования отработанного трансформаторного масла слагается из расхода масла на промывку и восполнение потерь при его смене и регенерации. Принимается по данным табл. 3.21 [29] с учетом технических характеристик оборудования. Нормы годового расхода трансформаторного масла приведены в табл. 3.2.

Таблица 3.2. Нормы годового расхода трансформаторного масла

Масса масла в трансформаторе, Т

Среднегодовой расход масла, заливаемого в трансформатор, %

На промывку

На пополнение потерь при смене (регенерации)

0.4

1

3

0.8

0.6

3

1

0.6

3

2

0.4

3

3

0.4

3

5

0.3

3

7

0.3

3

10

0.3

3

25

0.3

3

30

0.3

3

40

0.3

3

50

0.3

3

60

0.3

3

70

0.3

3

80

0.3

3

90

0.3

3

100

0.3

3

110

0.3

3

4.3.4 Отработанное моторное масло

Расчет количества отработанного моторного масла (Мотх) выполнен с использованием формулы:

Мотх =Ni·Vi·k·р·L/LH·10-3 (т/год) [39],

где Ni - количество автомашин i-ой марки, шт.;

Vi - объем масла, заливаемого в машину i-ой марки при ТО, л;

L -средний годовой пробег машины i-ой марки, тыс. км/год;

LH - норма пробега машины i-ой марки до замены масла, тыс. км;

k - коэффициент полноты слива масла, k = 0.9 [39];

р - плотность отработанного масла, р = 0.9 кг/л.

Аналогично рассчитывается количество отработанных масел для тепловозов. Количество отработанных моторных масел принимается [1 - 3] также с учетом нормативной замены масла транспорта, количества транспорта, количества заливаемого масла и коэффициента полноты слива - 0.9. Средняя плотность моторного масла - 0.9тм-3 [43]. Количество отработанного масла может быть определено также по формуле [30]:

N = (Nb + Nd)·0.25,

где 0.25 - доля потерь масла от общего его количества;

Nd -нормативное количество израсходованного моторного масла при работе транспорта на дизельном топливе,

Nd = Yd·Hd·p

(здесь: Yd - расход дизельного топлива за год, м3, Hd -норма расхода масла, 0.032 л/л расхода топлива; р - плотность моторного масла, 0.930 т/м3);

Nb - нормативное количество израсходованного моторного масла при работе транспорта на бензине,

Nb = Yb·Hb·p

(здесь: Yb- расход бензина за год, м3; Нь - норма расхода масла, 0.024 л/л расхода топлива).

4.3.5 Отработанное трансмиссионное масло

Расчет количества отработанного трансмиссионного масла (Мотх,) выполнен с использованием формулы:

Мотх =?Ni·Vi·k·р·L/LH·10-3 (т/год) [39],

где Ni - количество автомашин i-ой марки, шт.;

Vi - объем масла, заливаемого в машину i-ой марки при ТО, л;

L -средний годовой пробег машины i-ой марки, тыс. км/год;

LH - норма пробега машины i-ой марки до замены масла, тыс. км;

k - коэффициент полноты слива масла, k = 0.9 [39];

р - плотность отработанного масла, р = 0.9 кг/л.

Нормативное количество отработанного масла (N, т/год) определяется также по формуле:

N = (Т6 + Тд)·0.30,

где

Т6 = Y6·H6·0.885,

Тд = Уд·Нд·0.885

(здесь: Н6 = 0.003 л/л расхода топлива, Нд = 0.004 л/л топлива, 0.885 - плотность трансмиссионного масла, т/м3).

4.3.6 Отработанное индустриальное масло

Количество отхода определяется, исходя из объема масла, залитого в картеры станков (V), плотности масла - 0.9 кг/л, коэффициента слива масла - 0.9, периодичности замены масла - п раз в год. Количество отхода - М= V·0.9·0.9·п, т/год.

4.4 Численный расчет фактического количества отработанного моторного и трансмиссионного масла и сопутствующих отходов

· Рассчитать фактическое количество отработанных отходов.

· Рассчитать величину платы за размещение отходов в пределах лимитов, сверхлимитов и общую величину платы за отчетный год.

а) Исходные данные:

Место расположения автопарка

Марка автомобиля

Кол-во автомобилей

Топливо

Среднегодовой пробег одного а/м, тыс.км.

Дзержинск

ЗИЛ-130

ВАЗ-2108

Икарус-260

25

8

4

Бензин Бензин

Дизельное

47

28

54

б) Справочные данные:

Марка а/м

ЗИЛ-130

ВАЗ-2108

Икарус-260

Снаряженная масса,т

4,3

1,03

9,11

Средняя наработка до отказа систем и агрегатов, тыс.км

12

16

16

Линейная норма расхода топлива на 100 км, л/100км

31

8,5

40

Тип маслянного фильтра

И-406

И-401

И-407

Вес маслянного фильтра

0,354

0,170

0,318

Марка шины

260-508

165SR13

11,00-20

Количество шин, шт

6

4

6

Вес отработанной шины,кг

42,1

6,5

59,4

Норма пробега до замены шин, тыс.км

53

44

65

Марка аккумуляторной батареи

6СТ-90

6СТ-55

6Ст-190

Количество аккумуляторных батарей, шт

1

1

2

Масса свинцовых пластин в аккумуляторной батарей, кг

27,1

16,6

55,1

Масса пластмассы в аккумуляторе, кг

3,4

3,9

4,9

Количество электролита в аккумуляторе, л

7,0

5,8

12

Нормативный пробег до замены накладок тормозных колодок, тыс.км

12

16

16

Нормы расхода масла на 100л общего расхода топлива, л.

Марка а/м

Моторные масла

Трансмиссионные масла

Спец.масла

Пластичные смазки

ЗИЛ-130

2,2

0,3

0,1

0,2

ВАЗ-2108

0,6

0,1

0,03

0,1

Икарус-260

4,5

0,5

0,1

0,3

4.4.1 Отработанное моторное и трансмиссионное масло

Расчет количества отработанного моторного и трансмиссионного масла производиться по формуле:

[4]

где: Ni - количество автомашин i-ой марки,шт;

Qн - нормативный расход топлива на 100км пробега, л/100 км;

Li - средний годовой пробег автомобиля i-ой марки, тыс.км/год;

ni - норма расхода масла на 100 л топлива, л/100л;

Н - норма сбора отработанных нефтепродуктов(доли от единиц): для моторных масел -0.25, для трансмиссионных - 0.30;

? - плотность отработанного масла, ? = 0,9 кг/л;

Найдем общее количество отработанного моторного и трансмиссионного масла по формуле [4].

Моторное масло

M= ((25*31*47*2,2*0,25*0,9) + (8*8,5*28*0,6*0,25*0,9) + (4* 40* 54* 4,5* 0,25* 0,9))* *10-4 = 27035 * 10-4 т = 2,7035 (т)

Трансмиссионное масло

M=(25*31*47*0,3*0,3*0,9) + (8*8,5*28*0,1*0,3*0,9) + (4* 40* 54* 0,5* 0,3* 0,9)*10-4 = 4167 * 10 -4 т = 0,4167 (т)

4.4.2 Отработанные масляные фильтры

Расчет норматива образования отработанных фильтров или фильтрующих элементов, образующихся при эксплуатации автотранспорта, проводится по формуле:

Где: Ni- количество автомашин i - марки, шт.;

mi, - вес фильтра или фильтрующего элемента на автомобиле i - марки;

Li- средний годовой пробег автомобиля i - марки, тыс. км/год;

Lнi -норма пробега подвижного состава i-марки до замены фильтровальных элементов, тыс. км.

М=(250,35447/10000) + (8*0,170*28/10000) + (4*0,318*54/10000) = 0,0415 + 0,0038 + 0,0068 = 0,0521 (т)

Отработанное моторное масло

СTЛi =4*1*1,5=6

2,703

Плi = 6 * 4,5 *110,92= 2995

Отработанное трансмиссионное масло

СTЛi =4*1*1,5=6

0,416

Плi = 6 * 0,65 *110,92= 432,6

Отработанные масляные фильтры

СTЛi =2*1*1,5=3

0,052

Плi = 3 * 0,2 *110,92= 66,5

Таблица результатов расчета

Наименование отходов

Количество отходов, т/год

Ставка платы за размещение отходов, руб./т

Величина платы за размещение отходов, руб.

Общая величина платы, руб.

фактическое

Лимит

лимит

лимит

сверх лимита

Лом черных металлов

31,421

45

3

14974

-

32776,6

Отработанное моторное масло

2,703

4,5

6

2995

-

7050,1

Отработанное трансмиссионное масло

0,416

0,65

6

432,6

-

837,44

Отработанные масляные фильтры

0,052

0,2

3

66,5

-

66,5

4.4.3 Нефтешлам при зачистке резервуаров

Расчет нормы образования нефтешлама может быть выполнен в соответствии с [3]. Количество мазута (М), налипшего на стенках резервуара - М1 = K·S (S - поверхность налипания, м2; К - коэффициент налипания, кг/м2. К = 1.149 v0.233, где v -кинематическая вязкость, сСт). Для вертикальных цилиндрических резервуаров S= R·R·H (R - радиус резервуара, м; Н - высота смоченной поверхности стенки, м). Количество мазута на днище резервуара определяется по формуле:

М2 = R2·H·0.68 (H - высота слоя осадка, 0.68 - концентрация нефтепродуктов в слое шлама в долях).

М = М1 + М2

4.4.4 Осадки очистных сооружений

Количество НП и взвешенных веществ, перешедших в осадок, определяется как произведение экспериментально измеренных концентраций загрязняющих веществ (ЗВ) в осадке на объем осадка; содержание воды в осадке зависит от степени его уплотнения и свойств осадка.

Норма образования сухого осадка (Noc) может быть рассчитана по формуле:

Noc = Свзв·Q· m+ Снп·Qm, т/год,

где Свзв - концентрация взвешенных веществ в сточной воде, т/м3;

Снп - концентрация нефтепродуктов в сточной воде, т/м3;

Q - расход сточной воды, м3/год;

m-эффективность осаждения взвешенных веществ в долях.

Норма образования влажного осадка, Мос = Nос / (1 - W), где W - влажность в долях.

Примечание. При наличии в сточных водах фильтрующих материалов (образующихся при взрыхлении механических фильтров) количество взвешенных веществ в осадке повышается на величину Мф:

т/год,

где a--доля фильтрующего материала от объема (V, м3) его загрузки в фильтре, уносимого из фильтра с промывочной водой; для антрацита и угля a = 0.01, кварцевого песка а=0.005 [7];

h- эффективность улавливания частиц фильтрующего материала в долях;

ri - плотность фильтрующего материала - кварцевого песка - 1.6 т/м3; антрацита - 0.8 т/м3; угля ДАК - 0.22 т/м3.

4.4.5 Шлам от очистки котлов на ТЭЦ (мазутная зола)

Шлам представляет смесь мазутной золы и продуктов химической обработки накипи.

Количество мазутной золы, отлагающейся на поверхностях нагрева котлов ТГМ при сжигании мазута, периодически вымываемой водой в бак-нейтрализатор, определяется по формуле [8, 9]:

М3 = 10-6·Gv2o5·В·?h3,

где: Gv2o5 - содержание пентаоксида ванадия в мазуте, 200 г/т;

h3 - коэффициент оседания пентаоксида ванадия на поверхностях нагрева, 0.05;

В - расход мазута, т/год.

Количество сажи, отлагающейся на поверхностях нагрева при сжигании мазута, определяется по формуле [8, 9]:

Мс = 0.01·В·q·0.02·QT / 32680,

где: q - потери с механическим недожогом, q = 0.02%;

QT - теплотворная способность мазута, QT = 40421 кДж·кг-1; 0.02 - коэффициент оседания сажи на поверхностях нагрева. Норма образования сухих золо-сажевых отложений составляет:

М (т/год) = М3+ Мс.

Норма образования влажного шлама (98.8%) - М/0.012.

4.4.6 Зола ТЭЦ от сжигания мазута

Представляет собой сухую смесь золо-сажевых отложений. Норма образования отхода,

М (т/год) = М3 + Мс.

4.4.7 Шлак каменноугольный

Норма образования шлака рассчитывается по формуле [10]:

Мотх = 0.01·В·Ар - N3, т/год,

где N3 = 0.01·В·(?a·Ар + q4·QT / 32680), здесь ? - доля уноса золы из топки, a = 0,25 [8],

Ар (зольность угля),

q4= потери тепла вследствие механической неполноты сгорания угля,

QT = теплота сгорания топлива в кДж/кг, 32680 кДж/кг - теплота сгорания условного топлива,

В - годовой расход угля, т/год.

4.4.8 Зола ТЭЦ каменноугольная

Зола, уносимая потоком газов, улавливается в электрофильтрах со средней эффективностью 95.29 % (эффективность - по данным проекта нормативов ПДВ). Следовательно, норма образования угольной золы, уловленной в электрофильтрах, составляет: Мотх = N3·0.9529 (т/год).

4.4.9 Отработанные растворители

Норма образования отработанных растворителей принимается, исходя из объема использованного вещества с учетом потерь на испарение (10 - 15% [45, 47]) и значений плотностей (для тетрахлорида углерода - 1.595 тм-3 , для бензола - 0.879 т-м-3, для н-гексана - 0.659 т-м-3 и т.д.).

4.4.10 Полиизобутилен (отходы при использовании герметика)

Норма образования отхода рассчитывается по формуле:

Nn = М·0.10·п , т/год,

где М - общее количество герметика в аккумуляторном баке, т; п - число зачищаемых баков в конкретном году; 0.10 - допустимая доля потерь герметика в виде отложений (на днище и стенках).

4.4.11 Отходы обмуровки

Количество отходов рассчитывается, исходя из размеров котла, поверхности и объема занимаемых обмуровкой, марки котла, типа обмуровки. Поверхность (F) котла определяется по формуле:

F = 2·Н·(b+I), м2,

где b, I - ширина и длина котлоагрегата, м;

Н - высота котлоагрегата, м.

Количество обмуровки на отдельномкотлоагрегате определяется по одной из приведенных ниже формул:

М = F·m·0.001, т,

где m - масса обмуровки 1 м2 котлоагрегата, кг/м2; либо по формуле:

М = F·h·?r, т,

где h - общая толщина обмуровки, м;

r - плотность обмуровки, т/м3;

r = ACI?RI,

q - содержание веществ (материалов) обмуровки в долях;

ri плотность составляющих обмуровку веществ (материалов).

Дополнительные данные для расчетов приведены в [11] и табл. 3.3, 3.4

Таблица 3.3 Характеристики обмуровок

Показатели

Тип обмуровки

тяжелая

облегченная

легкая

Толщина, мм

500-900

200-500

100-200

Масса 1 м2, кг

600-1500

200-600

100-200

Масса 1 м3, кг

1600-1800

1000-1200

700-1000

Таблица 3.4 Примеры выполнения обмуровок котла

Тип обмуровки

Общая толщина

Масса обмуровки

Марка котла

Тяжелая кирпичная

570

970

ГМ-50, ДКВР, БГМ-35

Облегченная кирпичная накаркасная

380

420

БКЗ-75-39

Монолитная

225

200-220

К-50-40, ГМ-50-1

Облегченная натрубная, накаркасная: кирпичная

140-160

125-135

ДКР

бетонная

140

110-120

ДЕ, КЕ

Легкая натрубная

112

100-110

КВГМ

Норма образования отходов обмуровки рассчитывается по формуле:

, т/год

где Мi, - масса обмуровки единичногокотлоагрегата, т;

п - число ремонтируемых котлоагрегатов; 0.05 - потери обмуровки при ремонте котла в долях от массы обмуровки[11];

h - коэффициент вторичного использования отходов обмуровки в долях от массы отходов [11].

4.4.12 Отходы теплоизоляции

Количество отхода после ремонта котлов, турбин и газоходов принимается по фактическим данным. Для расчетов могут быть использованы данные, приведенные в табл. 3.5.

Таблица 3.5 Процент (от общего объема смонтированной изоляции) заменяемой теплоизоляции за 12-летний ремонтный цикл

Изолируемыйобъект

Заменяемая тепловая изоляция по видам ремонта и годам ремонтного цикла

Всего,

%

1

2

3

4

5

6

7

8

9

10

11

12

Т

С

Т

К-1

Т

С

Т

К-П

Т

С

Т

К-Ш

Изоляция внешних поверхностей котла и котельно-вспомогательного оборудования

5.3

6.2

5.3

16.3

5.3

6.2

5.3

18.0

5.3

6.2

5.3

26.6

111.3

Изоляция оборудования и трубопроводов турбинного отделения и трубопроводов на эстакаде

5.4

6.3

5.4

16.7

5.4

6.3

5.4

18.4

5.4

6.3

5.4

19.2

105.6

Средняя плотность отхода - 0.2 т/м .

4.4.13 Шлам нейтрализации

нормы образования (N) составляющих шлама можно рассчитать по формулам:

норма образования сульфата кальция

N1 = Cso4 ·V·?h·1.4·10-6;

норма образования гидрооксидов железа (в ед. Fe(OH)3)

N2 = CFe·V·1.9-10-6;

норма образования гидрооксидов кальция

N3 = Сса(он)2·V·?h·10-6;

норма образования гидрооксида меди

N4 = CCu·V·?h·1.5·10-6;

норма образования гидрооксида цинка

N5 = CZn·V·?h·1.5·10-6;

норма образования фторида кальция

N6 = CF·V·?h·1.47·10-6;

где Cso4 , CFe, CCu , CZn, CF - концентрация примесей в стоках химических промывок, сбрасываемых в бассейны-отстойники, г/м3 (принимается по данным табл. 3.6); Сса(он)2 = Сщ·74/?mi; (Сщ - количество щелочного реагента - NaOH,NH4OH - в г/м3 объема промываемого контура; принимается по данным табл. 3.7; mi - молекулярная масса щелочного реагента); h- эффективность осаждения в долях; 1.4, 1.5, 1.9, 1.47 - коэффициенты пересчета; V - объем промывных стоков, м3/год.

При расчете следует учесть содержание воды в шламе, которое зависит от состава и конструкции отстойника (94 - 99 %), т.е.:

N= е Ni/[1 - (0.99, 0.94)].

Таблица 3.6 Примерный состав примесей в сточных водах химических промывок [12], г/м3

Вещество

Метод промывки

Соляно-кислотный

Адипиново-кислотный

Гидразино-кислотный

Композиционный

Хлориды (Сl)

2000

-

-

-

Сульфаты (SO24)

-

300

800

300

Железо (Fe2++ Fe3+)

300

230

300

250

Медь

50

-

-

50

Цинк

50

-

-

30

Фтор

250

-

-

200

ОП - 7, ОП - 10

40

40

40

40

Каптакс

-

5

-

5

Формальдегид

200

-

-

-

+4 + NO2

570

-

-

570

Гидразин

-

25

25

-

Таблица 3.7 Состав и удельные количества сбрасываемых веществ при различных методах химических промывок [12]

Наименование операций при химической промывке

Метод промывки. Сбрасываемое вещество, удельное количество, в г/м3 объема химических промывок [12]

Соляно-кислотный

Гидразино-аммиачный

Аммоний-цитратный

Адипиново-кислотный

Фталево-кислотный

Композиционный

Предварительное щелочение

NaOH

10

-

NaOH

10

NaOH

10

-

Кислотная промывка

HCl

40-50

H2SO4

20

Лимонная к-та

30

Адипиновая к-та

30

Фтaлевая к-та

30

Трилон Б

0.01

Кислотная промывка

ОП-7

1.0

ОП-7

1.0

ОП-7

1.0

Лимонная к-та 0.01

Уротропин

5

-

0.1

Каптакс

0.1

Каптакс

0.1

ОП-7

1.0

-

ОП-7

1.0

Вторичное щелочение

Пассивация

4.4.14 Шлам от зачистки оборудования

Количество отхода (М) рассчитывается, исходя из количества зачищаемого оборудования и емкостей (N), периодичности зачистки каждой единицы оборудования или емкости (п), объема собираемого отхода (V) и его плотности (р) [5]:

М= N·V·n·?r?0.001, т/год.

Отходы катионитовой смолы

Норма образования отхода (N) рассчитывается по формуле:

N = V·?r·n/?t, т/год,

где V - объем загрузки ионитового фильтра, м3;

r - плотность ионита в рабочем (выгруженном) состоянии, т/м3;

п - число ионитовых фильтров, в которых полностью сменяется загрузка в конкретном году (периодичность полной смены ионообменого материала для сильноосновных анионитов АВ-17-8 и АВ-29 с учетом последующего использования в качестве слабоосновного анионита t= 5.5 года, для анионита АВ-17-8 в ФСД конденсатоочисток t = 3.5 года, для слабоосновных анионитов типа АН-31Г, АН-22-4 т = 5 лет [23, 25]).

Норма образования смолы при эксплуатации ионообменных фильтров (табл. 3.8-3.9) принимается с учетом объема загрузки фильтров, плотности в набухшем состоянии и коэффициента досыпки, принимаемого по [23].

Таблица 3.8 Нормы расхода ионитов при эксплуатации водоподготовительных установок и конденсатоочисток

Тип загрузки

Усредненный годовой расход материала, в % от количества, находящегося в эксплуатации

вследствие истирания

вследствие потери обменной емкости

общий ежегодный расход

Сульфоуголь в установках:

водоподготовки

конденсатоочистки

20

100

-

-

20

100

Катионит типа КУ-2-8 и его импортные аналоги в установках:

водоподготовки

очистки горячего конденсата;

конденсатоочистки

10

15

20-15

-

-

-

10

15

20-15

Анионит типа АВ-17-В и его импортные аналоги в установках:

водоподготовки

конденсатоочистки

5

10-5

15

15

20

25-20

Антрацит в установках водоподготовки

10

-

10

Сополимер в установках БОУ

15

-

15

Таблица 3.9 Нормы расхода анионитов, загружаемых в фильтры первой ступени

Причина досыпки и замены

Усредненный годовой расход ионита на досыпку и замену, % от количества, находящегося в эксплуатации

АН-31

АН-31Г

АН-511 и аналоги

Сильноосновные аниониты

Истирание и осмотический износ, обусловленные частотой регенерации:

До 50

5

50-100

10

100-125

15

5

5

5

125-150

25

более 150

30

Снижение обменной емкости, в зависимости от перманганатнойокисляемости воды:

До 3.3 мг О2

20

20

10

10

3.0-5.0 мг О2

30

30

15

15

5.0-10.0 мг О2

40

40

20

20

4.4.15 Грунт, содержащий нефтепродукты

Норма образования отхода принимается по факту. Ориентировочно может быть рассчитана исходя из опытных данных, согласно которым удельное количество замазученного грунта составляет (0.7 - 1.0)·10-4 т/т мазута; при этом норма образования отхода (N) составляет:

N = (0.7 -1.0)·10-4·G , т/год,

где G - годовой расход мазута, т/год.

4.4.16 Лом черных металлов

Норма образования лома от ремонта основного и вспомогательного оборудования принимается по факту сдачи или рассчитывается по данным, приведенным в [31].

Норма образования лома при ремонте автотранспорта рассчитывается по формуле:

N = п·?a·М [13, 15], т/год,

где п - число единиц конкретного вида транспорта, использованного в течении года;

a - нормативный коэффициент образования лома (для легкового транспорта a = 0.016, для грузового транспорта а = 0.016, для строительного транспорта a = 0.0174);

М - масса металла (т) на единицу автотранспорта (для легкового транспорта М = 1.33, для грузового транспорта М = 4.74, для строительного транспорта М = 11.6).

Норма образования отходов приборов определяется с учетом даты ввода прибора в эксплуатацию и допустимого срока его работы (определяется по паспорту прибора).

4.4.17 Стружка черных металлов

Норма образования стружки составляет:

N = М·?a, т/год

где М - расход черного металла при металлообработке, т/год; a - коэффициент образования стружки при металлообработке,--a--= 0.04 [16].

4.4.18 Лом цветных металлов

Норма образования лома при ремонте автотранспорта рассчитывается аналогично нормам образования лома черных металлов. При этом для легкового и грузового транспорта a = 0.0002, для строительного транспорта a = 0.00065.

Норма образования стружки цветных металлов определяется по фактическому расходу металла на обработку (М, т/год) и нормативному коэффициенту образования стружки a = 0.015 от массы металла [16]:

N = М·?a, т/год.

Масса цветного металла в кабеле может быть определена с учетом марки кабеля, его химического состава и рассчитана исходя из массы 1 км кабеля (Мi) [17]:

М = е Mi·10-3·li, т/год,

где l - длина кабеля данной марки, накопленного в течение года, км/год.

4.4.19 Огарки сварочных электродов

Норма образования отхода составляет:

N = Мост·?a, т/год,

где Мост - фактический расход электродов, т/год; а - остаток электрода, a = 0,015 от массы электрода [18].

4.4.20 Шлам гидроксидов цветных металлов

Количество составляющих шлам веществ, т/год:

гидроксида алюминия,

MAl = 10-6·С1·Q?--h1·0.228;

полиакриламида,

MПAA = 10-6·С2·Q·?h2,

взвешенных,

Мвзв = 10-6·С3·Q·?h3·10-6·С4·Q·?h4;

Здесь: С1, С2 - расход, соответственно, сульфата алюминия, ПАА в г/м3;

С3 - концентрация взвешенных веществ, г/м3;

С4 - концентрация ионов кальция и магния, г/м3;

Q - расход воды, м3/год;

h1,--h2,--h3,--h4 - эффективность осаждения веществ в долях;

0.228 - коэффициент пересчета сульфата алюминия в гидроксид алюминия. Норма образования сухого шлама:

N=?е M = (MAl + MПAA + Мвзв + Мводы), т/год,

При расчете нормы образования влажного шлама следует учесть его влажность (94-99 %): N=1 М/[1 - (0,99?0,94)].

4.4.21 Отработанные аккумуляторы

Норма образования отхода рассчитывается исходя из числа аккумуляторов (п) для группы (i) автотранспорта, срока (?) фактической эксплуатации (2 года для автотранспорта, 3 года для тепловозов, 15 лет для аккумуляторов подстанций), средней массы (тi) аккумулятора и норматива зачета (a) при сдаче (80-100 %) [13-15, 40]:

N =е?пi,·mi·?a·10-3 /?t , т/год.

4.4.22 Отработанные электролиты аккумуляторныхбататей

Норма образования определяется по формуле:

N = 10-3·Э·п/? , м3 / год,

где Э - количество электролита в аккумуляторе, л; п - число аккумуляторов; ? - средний срок службы аккумулятора, год.

Плотность раствора электролита (водный раствор серной кислоты в соотношении 3:1) - 1.26 т/м3 [19]. Следовательно, норма образования отхода по массе составляет:

N = 1.26·10-3·Э·п/?, т/год.

4.4.23 Шины с тканевый кордом

Расчет норм образования ведется по видам автотранспорта (i). Результаты расчета суммируются.

Норма образования отработанных шин определяется по формуле:

Мотх = 0,001·Пср·K·k·М / Н , т/год ,

где k - количество шин;

М - масса шины (принимается в зависимости от марки шины по [32,34,41]),

K - количество машин,

Пср- среднегодовой пробег машины (тыс. км),

Н - нормативный пробег машины (тыс. км).

Шины с металлическим кордом

Расчет норм образования ведется аналогично предыдущему.

Окалина

Норма образования окалины, снимаемой с фильтров очистки природного газа, составляет 0.00002 кг/т природного газа. Норма образования окалины при чистке проточной части турбин - 0.86·10-5 кг/т усл. топлива.

Пыль абразивно-металлическая

Количество (М) образующейся абразивной пыли определяется по формуле:

М= (Мо - Мост.)·0.35 кг/год.

Здесь: Мо - масса абразивного круга, кг;

Мост - остаточная масса круга (33 % от массы круга [16]), кг;

0.35 - среднее содержание металлической пыли в отходе в долях [46].

Лом абразивных изделий

Норма образования отхода определяется по формуле:

N = п·т, т/год,

где п - количество использованных кругов в год;

m - масса остатка одного круга, принимается 33 % от массы круга [16].

Нефтеотходы с органическими растворителями

Норма образования отхода определяется по формуле

Мотх=0,001·(V·r·n +е Vi·ri·п), т/год

где V- объем масла на один анализ, л;

r - плотность масла, кг/л;

п- число анализов в году;

Vi - объем i-ro растворителя на один анализ, л;

ri - плотность i-ro растворителя, кг/л

Промасленная ветошь

Нормативное количество отхода определяется исходя из поступающего количества ветоши (Мо, т/год), норматива содержания в ветоши масел (М) и влаги (W):

N = Мо + М + W , т/год,

где М = 0.12·Мо, W = 0.15·Мо.

Примечание. Количество свежей и промасленной ветоши может быть рассчитано также в соответствии с методикой [32, 39].

Шлам регенерации масла

Норма образования сухого шлама (N) принимается, исходя из нормы для приема нефтепродуктов на регенерацию (No= 2 % массн.) [5] и эффективности выделения механических примесей при регенерации (h):

N = 0.02·Q·(1 - h,), т/год,

где Q - масса регенерируемого масла, т/год;

h - в долях, принимается по паспортным данным регенерационной установки или по экспериментальным данным (прямым замерам).

Отработанные щелочные растворы

Норма образования отхода (N) определяется по формуле:

N = Y·?r----·п, т/год,

где Y - объем щелочного электролита, м3;

r - плотность отработанного электролита, т/м3 (r =1.15 - 1.25);

п - периодичность слива электролита, раз/год.

Жестяные банки из-под краски

Норма образования отхода определяется по формуле:

N = е--Mi·n + е--MKi·?ai т/год

где Mi - масса i - го вида тары, т/год;

п - число видов тары;

MKj - масса краски в i -ой таре, т/год;

ai - содержание остатков краски в i-той таре в долях от MKi (0.01 -0.05).

Паронит

Норма образования отхода определяется с учетом потерь паронита при изготовлении (вырезке) прокладок (принимается в количестве 10% от массы поступившего паронита) и количества старых (заменяемых) прокладок (принимается по факту или в соответствии с нормами расхода материалов [31]).

Прочие строительные отходы

Количество строительных отходов принимается по факту образования.

Бой стекла

Норма образования отхода (М) определяется по формуле:

М = Мо·d?r·0.12, т/год

(здесь Мо - количество поступающего стекла в м2,

d - толщина стекла в м,

r -плотность стекла (2.5 т/м3),

0.12 - удельный норматив образования боя стекла [32].

Обрезки линолеума

Расходуется в год 320 м2 линолеума толщиной 0.003 м. Плотность линолеума - 0.6 т/м3 [45].

Норма образования отхода определяется с использованием формулы для расчета боя стекла (плотность линолеума - 0.6 т/м3 [45]).

Рубероид

Норма образования отхода принимается по фактическому состоянию.

Осадок с песколовок

Объем сточных вод, поступающих в песколовку - V, м3/год. Удельный норматив образования влажного осадка (песок + взвесь) - 0.15 кг/м3 [28, 44]. Норма образования отхода

М = V·0.15·0.001, т/год.

Герметики

Число аккумуляторных баков - 3 шт. Залито в каждый бак - 10т герметика. Периодичность замены герметика в баке - 1 раз в 3 года.

Норма образования отхода определяется, исходя из периодичности замены герметика (1 раз в 3 года) и числа аккумуляторных баков, в которых заменяется герметик.

Отработанные люминесцентные лампы

Норма образования отработанных ламп (N) рассчитывается по формуле:

N = п·Т/ Тр шт. /год,

где п - количество работающих ламп данного типа;

Тр - ресурс времени работы ламп, ч (для ламп типа ЛБ Тр = 4800 - 15000 ч, для ламп типа ДРЛ Тр = 6000 - 15000 ч [35]);

Т - время работы ламп данного типа ламп в году, ч

Бытовые отходы

Норма образования бытовых отходов (m1, т/год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях -0.3 м3/год на человека, списочной численности работающих на ТЭЦ и средней плотности отходов, которая составляет 0.25 т/м3.

Удельная норма образования бытовых отходов столовой - 0.0001 м3/блюдо [48]. Плотность отходов - 0.3 т/м3. Удельная норма образования бытовых отходов в складских помещениях на 1 м2 складских помещений - 0.0019 м32. Плотность отходов - 0.5 т/м3 [48].

Смет с территории

Площадь убираемых территорий - S м2. Нормативное количество смета - 0.005 т/м2 год [39]. Количество отхода - М =S·0.005, т/год.

Мешкотара джутовая

Количество джутовых мешков - N, шт/год, масса мешка - т, т. Количество использованных мешков зависит от расхода сырья. Норма образования отхода, Мотх = N·т, т/год.

Бумажные мешки

Количество мешков - N, шт/год, масса мешка - т, т. Количество использованных мешков зависит от расхода сырья. Норма образования отхода, Мотх = N·т, т/год.

Тара полиэтиленовая

Количество полиэтиленовых мешков - N, шт/год, масса мешка - т, т. Количество использованных мешков зависит от расхода сырья. Норма образования отхода, Мотх = N·т, т/год.

Тара из под химреактивов

Количество стеклянной тары данного объема - N шт/год, средняя масса единичной тары - т, т. Количество использованной тары зависит от расхода сырья. Норма образования отхода, Мотх = N·т, т/год.

Пищевые отходы

Норма образования отходов (N) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - 0.0001 м3, числа рабочих дней в году (п), числа блюд на одного человека (т) и числа работающих (z):

N = 0.0001·п·m·z, м3/год,

При наличии в составе ТЭЦ общежития величина N увеличивается на величину:

? = z0·0.004·365, м3/год,

где z0 - число работников, проживающих в общежитии; 0.004 - среднесуточная норма накопления отходов (м3) на одно рабочее место.

Отходы медпункта

Норма образования отходов определяется из расчета 0.0001 т на человека [32, 33].

5 Предлагаемая технологическая схема переработки отработанного масла

масло регенерация установка отработанный

Отработанные моторные и индустриальные масла проходят последовательно несколько этапов очистки:

- Первый этап - очистка от механических загрязнений;

- Второй этап - температурное разрушение водных эмульсий и удаление молекулярной воды;

- Третий этап - химическая обработка загрязненного масла коагуляторами и удаление отстоя;

- Четвертый этап - удаление бензиновых фракций.

- Пятый этап - вакуумная фракционная перегонка масляного сырья.

Перегонка масла проходит под вакуумом при высоких температурах, что позволяет разрушить активные части присадок находящиеся в отработанных маслах. В остаток от перегонки попадают все загрязнения масла не удаленные химической очисткой. Предлагаемый комплекс работает на электрических нагревателях и состоит из самостоятельных блоков:

Блок первый - насос приема отработанных масел, фильтр механической очистки и водоотстойник удаления молекулярной воды.

Блок второй - химическая очистка отработанных масел от содержащихся в них смол, нагара, асфальтенов, карбонов и карбоидов, бензиновых фракций.

Блок третий - вакуумная фракционная разгонка на следующие фракции:

Газойль (дизельный дистиллят) плотность при 20С не более 810-840 кг/м3; Маловязкий масляный дистиллят (трансформаторный дистиллят) плотность при 20С не более 870-880 кг/м3; Средневязкий масляный дистиллят (моторный дистиллят) плотность при 20С не более 880-890 кг/м3; Масляный дистиллят (цилиндровый дистиллят) плотность при 20С не более 890-910 кг/м3; Гудрон плотность при 20С не более 900-950 кг/м3

Блок четвертый - охлаждение масляных дистиллятов.

Блок пятый - вакуумный насос и емкости приема масляных дистиллятов.

Схема технологического процесса по переработке отработанных масел представлена на рис. 5.1

1. Насос нагнетательный

2. Фильтр механической очистки

3. Водоотделитель

4. Смеситель реагентов с мешалкой

5. Химотделитель

6. Вакуумная ректификационная колонна

7. Охладитель газойля

8. Охладитель маловязкого масляного дистиллята

9. Охладитель средневязкого масляного дистиллята

10. Охладитель масляного дистиллята

11. Ёмкость приема легкойнафты

12. Шлюз-ёмкость приема газойля

13. Шлюз-ёмкость приема маловязкого дистиллята

14. Шлюз-ёмкость приёма средневязкого дистиллята

15. Шлюз-ёмкость приема масляного дистиллята

16. Шлюз-ёмкость приема гудрона

17. Вакуумный насос

Жидкостные потоки

А. Смесь отработанных масел

Б. Химреагенты

В. Молекулярная вода

Г. Химпримеси

Д. Легкая нафта

Е. Газойль

Ж. Маловязкий масляный дистиллят

З. Средневязкий масляный дистиллят

И. Масляный дистиллят

К. Гудрон (неиспарившийся остаток)

Л. Попутный газ (водород-метан-пропан-бутановая смесь - сжигается в факеле)

5.1 Технологическая структура установки по получению базового масла из отработанных моторных и индустриальных масел

5.2 Технологическая структура получения товарных нефтепродуктов из пиролизной жидкости и загрязненного дизельного топлива

Получаемая продукция

Производство переработки отработанного масла

-- filedunder: Масло отработанное, Производство

Технология организации производства по переработке отработанного масла.

Собранное отработанное масло закачивается в емкость сбора отработанного масла №1 насосом №10, далее отработанное масло из емкости №1 поступает в маслонагреватель №6, в котором оно нагревается до температуры 500С. Предлагаемый нами маслонагреватель - агрегат, в котором на общей раме увязаны сепаратор, электроподогреватель с вакуум-баком; вакуум-насос, шестеренчатый маслонасос и шкаф управления. Поэтому на данном этапе отработанное масло, имеющее вязкость не более 70 кв. мм/ с (сСт), не только нагревается, но и проходит процесс отделения от механических примесей, от воды.

Из маслонагревателя №6 масло поступает на установку смешивания компонентов (УСК) №7, которая включает в себя насос высокого давления и смесительное устройство с расширительным бачком.

Отличительной особенностью установки смешивания компонентов является , является то, что она может использоваться для смешивания и растворения жидкостей в потоке с высокой точностью дозирования (0,05 мг на литр). Именно эти преимущества позволяют использовать данное оборудование как в процессе осветления, очистки отработанного масла от шламовых включений, так и в процессе изготовления моторных топлив путем введения в осветленное, очищенное масло различных присадок.

В процессе осветления, очистки отработанного масла от шламовых включений, в установке смешения, реагент, поступающий из емкости №9, перемешивается и вступает в реакцию еще на стадии поступления в коническую емкость №3 .В этой конической емкости происходит осаждение шламовых примесей в ее основание. Процесс осаждения занимает от 60 минут до 90 минут. По прошествии данного времени осуществляется открытие спускного вентиля и весь шламовый осадок (5% - 7% от объема масла) сливается в емкость №5 для сбора шламовых остатков. Через смотровое стекло № 16 во время процесса слива осуществляется визуальный контроль над уровнем шламовых примесей осажденных в нижней части емкости №3. При появлении в смотровом стекле светлого масла кран сброса в емкость для шламовых остатков №5 закрывается.

Для нейтрализации реагента из емкости №2 подается нейтрализатор, который подбирается в зависимости от выбранного реагента. Оптимальный реагент подбирается на основе анализов отработанного масла.

Нейтрализатор из емкости №2 с помощью насоса №13 поступает на распылитель №15 , который смонтирован внутри емкости. Из распылителя мелкие капли нейтрализатора поступают на поверхность масла очищенного от основной массы шламовых включений, но содержащего реагент. Мелкие капли нейтрализатора вступают в реакцию с реагентом и оседают на дно емкости №3 . После непродолжительного времени открывается вентиль подачи масла на центрифугу №10. Проходя через центрифугу масло, отделяется от остатков воды и нейтрализации, поступает в емкость №4 для готовой продукции. На этом заканчивается этап осветления масла или этап получения основы масла.

Учитывая то, что УСК (на схеме № 7) позволяет не только производить процесс очистки масла, но и вводить в масло с высокой точностью (0,05 мг/л) различные присадки, владелец данного производственного комплекса может осуществлять производство различных моторных масел. Необходимые присадки должны находиться в емкости №8, откуда поступают на УСК.

5.3 Предлагаемая схема производства переработки масла

6 Классификация отходов ТЭЦ

Класс опасности рассчитывается в соответствии с «Критериями отнесения опасных отходов к классу опасности для окружающей природной среды», утвержденные приказом МПР России от 15 июня 2001 г. № 511.

Для ТЭЦ характерны следующие отходы:

- производства - отработанные масла, зола каменноугольная ТЭЦ, шлам от очистки котлов на ТЭЦ, шлак каменноугольный, нефтешлам при зачистке резервуаров, осадки очистных сооружений, отходы катионитовой смолы, шлам нейтрализации, шлам гидроксидов цветных металлов, полиизобутилен (отходы при использовании герметиков), окалина, фильтры, загрязненные нефтепродуктами, шлам регенерации масла, отходы обмуровки, грунт (песок), содержащий нефтепродукты, лом и стружка черных и цветных металлов, лом абразивных изделий, огарки сварочныхэлектродов, отработанные аккумуляторы, отработанные электролиты аккумуляторных батарей, шины с тканевым и металлическим кордом, пыль абразивно-металлическая, древесные стружки и опилки, кусковые отходы древесины, ветошь промасленная, макулатура, бой стекла, паронит, отходы теплоизоляции, отработанные растворители, шлам от зачистки оборудования, жестяные банки из-под краски, отработанные растворители, отработанные щелочные растворы, отработанные масляные фильтры, конденсат, содержащий нефтепродукты, отходы огнеупоров, промышленный мусор;

- потребления - отработанные люминесцентные лампы, бытовые отходы, пищевые отходы, медицинские отходы.

Отходы основного производства: отработанные масла, зола каменноугольная ТЭЦ, шлак каменноугольный, нефтешлам при зачистке резервуаров, осадки очистных сооружений, отходы катионитовой смолы, шлам нейтрализации, шлам от очистки котлов, шлам гидроксидов цветных металлов, полиизобутилен, окалина, фильтры, загрязненные нефтепродуктами, шлам регенерации масла, отработанные щелочные растворы, отходы обмуровки, отработанные аккумуляторы и электролиты (на подстанциях).

Отходы вспомогательного производства: отходы обмуровки, грунт, содержащий нефтепродукты, лом и стружка черных и цветных металлов, лом абразивных изделий, огарки сварочных электродов, отработанные аккумуляторы (транспортные), отработанные электролиты аккумуляторных батарей (транспортные), шины с тканевым и металлическим кордом, пыль абразивно-металлическая, древесные отходы, ветошь промасленная, макулатура, отработанные масляные фильтры, бой стекла, жестяные банки из-под краски, отработанные растворители, шлам от зачистки оборудования, конденсат, содержащий нефтепродукты, паронит, промышленный мусор.

В табл. 4.1 приведена классификация отходов ТЭЦ по классам опасности в соответствии с согласованном в Санкт-Петербургском ГСЭН и Леноблсанэпиднадзоре "Временном региональном кодификаторе отходов для Санкт-Петербурга и Ленинградской области", 1998 г.

Таблица 4.1 Классификация отходов ТЭЦ

Наименование отхода

Код

Класс опасности

1.

Отработанные масла, подлежащие регенерации

12.01

3

2

Отработанное турбинное масло

12.14

3

3

Отработанное компрессорное масло

12.08

3

4

Отработанное электротехническое масло, трансформаторное

12.10

3

5

Отработанное моторное масло

12.12

3

б

Отработанное индустриальное масло

12.13

3

7

Нефтешлам при зачистке резервуаров

13.10

2

8

Осадки очистных сооружений

13.02

4

9

Осадки ОС мойки автотранспорта

13.01

4

10

Зола каменноугольная ТЭЦ

62.14

4

11

Шлак каменноугольный

62.04

4

12

Шлам от очистки котлов на ТЭЦ

62.01

4

13

Полиизобутилен

58.04

4

14

Отходы обмуровки

62.10

4

15

Отходы огнеупоров

54.11

4

16

Шлам нейтрализации

54.02

4

17

Отходы катионитовой смолы

62.11

4

18

Шлам, содержащий гидроксид алюминия

56.51

4

19

Шлам регенерации масла

12.24

3

20

Фильтры, загрязненные нефтепродуктами

13.13

3-4

21

Цеолит после адсорбции воды из масел

219.02

3

22

Сульфоуголь

219.01

4

23

Грунт, содержащий нефтепродукты

13.09

4

24

Лом черных металлов

150.01

4

25

Стружки черных металлов

150.09

4

26

Лом цветных металлов

150.02

4

27

Огарки сварочных электродов

150.07

4

28

Отходы огнеупоров

54.11

4

29

Отходы теплоизоляции

62.09

4

30

Зола сланцевая после гидрозолоудаления

62.02

3-4

31

Зола сланцевая сухая

62.03

3-4

32

Зола древесная

62.05

4

33

Зола торфяная

6206

4

34

Шлам от зачистки баков раствора глинозема

62.12

4

35

Мусор промышленный

59.01

4

36

Шлам от зачистки оборудования

57.22

4

37

Конденсат, содержащий нефтепродукты

13.08

3

38

Отработанные аккумуляторы

215.01

4

39

Отработанные электролиты аккумуляторных батарей

43.01

2

40

Шины с тканевым кордом

200.03

4

41

Шины с металлическим кордом

200.02

4

42

Окалина

150.11

4

43

Пыль абразивно-металлическая

65.02

4

44

Лом абразивных изделий

65.03

4

45

Древесные стружки, опилки

160.01

4

46

Кусковые отходы древесины

160.03

4

47

Ветошь промасленная

13.07

4

48

Отработанные люминесцентные лампы, трубчатые

19.05

1

49

Отработанные ртутные лампы для наружн. освещения

19.06

1

50

Паронит

58.49

4

51

Бой стекла

162.01

4

52

Отходы фанеры

63.04

4

53

Отходы ДСП

63.01

4

54

Обрезки линолеума

161.08

4

55

Жестяные банки из под краски

202.02

4

56

Отработанная резина не армированная

200.04

4

57

Отработанные растворители

14.05

3

58

Отработанная щелочь

57.28

2

59

Макулатура

151.01

4

60

Бытовые отходы

153.01

4

61

Пищевые отходы столовой

152.08

4

62

Отработанный перевязочный материал

49.01

4

63

Шприцы одноразовые после дезинфекции

49.02

4

Кроме отходов, образующихся на ТЭЦ, в табл. 4.1 приведены отходы, которые могут быть получены при их разделении. Например, отходы обмуровки могут быть разделены на отходы огнеупоров и отходы теплоизоляции; на некоторых ТЭЦ эти отходы могут состоять из промышленного мусора и отходов теплоизоляции. Фильтры, загрязненные нефтепродуктами, могут представлять собой силикагели, цеолиты, или, например, поливинилбутираль.

6.1 Определение предельного количества отходов, размещаемых на территории ТЭЦ

Расчет предельного количества отходов на территории ТЭЦ выполняется в соответствии с нормативным документом "Предельное количество накопления токсичных промышленных отходов на территории организаций" (Минздрав СССР, Министерство мелиорации и водного хозяйства СССР, Министерство геологии СССР, М.: 1985) и с учетом технологических условий образования отходов, наличия свободных специально подготовленных мест (для размещения отходов), их площади (объема), токсикологической совместимости размещения отходов.

При определении предельного количества отходов целесообразно учитывать то, что по условиям образования отходы разделяются на две группы: отходы, образующиеся непосредственно при проведении конкретного производственного процесса, и отходы, образующиеся периодически (накапливаются во время проведения процесса в технологическом оборудовании до допустимых технологическим регламентом или проектом количеств).


Подобные документы

  • Последовательность технологических процессов, применяемых для очистки и восстановления отработанных масел. Технология и установка восстановления свойств отработанных нефтяных масел. Сущность способов регенерации (очистки) отработанных моторных масел.

    реферат [28,2 K], добавлен 13.12.2009

  • Сущность коагуляции, адсорбции и селективного растворения как физико-химических методов очистки и регенерации отработанных масел. Опыт применения технологии холодной регенерации дорожных покрытий в США. Вяжущие и технологии для холодного ресайклинга.

    реферат [30,1 K], добавлен 14.10.2009

  • Теоретические основы процесса и методы очистки масла. Особенности проектирования и расчета параметров установки непрерывной адсорбционной очистки масел месторождения Алибекмола производительностью 500 000 тонн в год. Оценка ее экономической эффективности.

    дипломная работа [108,0 K], добавлен 06.06.2012

  • Решение инженерных задач по совершенствованию отдельных методов регенерации моторных масел. Регламент, матрица патентно-информационных исследований. Анализ выбранных аналогов, обоснование прототипа. Функционально-физическая схема технического предложения.

    курсовая работа [1,4 M], добавлен 21.04.2013

  • Процесс селективной очистки масел. Назначение, сырье и целевые продукты. Аппаратурное оформление блока регенерации экстрактного раствора и осушки растворителя. Регенерация растворителя из экстрактного раствора. Монтаж технологических трубопроводов.

    отчет по практике [1,6 M], добавлен 22.10.2014

  • Групповой состав и физико-химические свойства масляных погонов, деасфальтизата и базовых масел на их основе. Материальный баланс установки селективной очистки, технологическая схема установки. Расчет системы регенерации растворителя, отпарной колонны.

    курсовая работа [236,6 K], добавлен 06.11.2013

  • Технологічна схема й параметри установки мікрофільтрації масла. Методика дослідження процесу мікрофільтрації масла. Режими робочого процесу мікрофільтрації відпрацьованих шторних масел. Дослідження стабільності технологічного процесу та його результати.

    реферат [15,7 M], добавлен 19.03.2010

  • Обоснование выбора нефти для производства базовых масел. Групповой состав и физико-химические свойства масляных погонов. Выбор и обоснование поточной схемы маслоблока. Расчет колонн регенерации растворителя из раствора депарафинированного масла.

    курсовая работа [187,2 K], добавлен 07.11.2013

  • Область применения трансмиссионных масел, их классификация и маркировка, характеристика и виды присадок. Основные и вспомогательные показатели качества масел, критерии их выбора. Анализ достоинств и недостатков методики подбора трансмиссионных масел.

    реферат [251,3 K], добавлен 15.10.2012

  • Требования к физико-химическим и эксплуатационным свойствам смазочных материалов в классификациях и спецификациях. Смазочно-охлаждающие жидкости и нефтяные масла. Классификация нефтяных масел и область их применения. Стандарты рансформаторных масел.

    контрольная работа [26,3 K], добавлен 14.05.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.