Принципы работы холодильника и кондиционера

Особенности работы кондиционера в условиях низких температур, изучение тепловой формы движения газообразных сред, компрессионный цикл работы холодильной машины, эффективность цикла охлаждения холодильной машины, негативные стороны спиральных компрессоров.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 09.07.2012
Размер файла 85,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Корпус компрессора в свою очередь приливами опирается на пружины.

Электродвигатель однофазный, асинхронный, с пусковой обмоткой. Для пуска двигателя и защиты от перегрузок применяют пускозащитное реле, соединенное с двигателем при помощи колодки зажимов, закрепленной на проходных контактах пластинчатой скобой. Реле установлено на раме.

Ротор 2 электродвигателя помещен непосредственно на валу 21 компрессора. Статор 3 прикреплен к корпусу 6 компрессора четырьмя винтами 4.

Статор набран из штампованных листов электротехнической стали. Обмотка статора двухполюсная, четырехкатушечная. Корпус компрессора чугунный, одновременно служащий опорой вала. Цилиндр 16 отлит вместе с глушителями. Он устанавливается на корпусе мотор-компрессора но четырем штифтам 8 и крепится двумя винтами. Противовес отлит вместе с кривошипным валом. Для уменьшения инерционных масс поршень 18 изготовлен полым из листовой стали. Обойма 19 свернута из листовой стали. Поршень соединен с ней пайкой медистыми припоями. Ползун 20 кулисы чугунный. На торце цилиндра установлена прокладка 15 всасывающего клапана и сам клапан 14 по двум установочным цилиндрическим штифтам 8. Нагнетательный клапан 12 вместе с ограничителем крепится к седлу заклепками. Клапаны -- пружинные пластинки из стальной высокоуглеродистой, термически обработанной ленты -- установлены на штифты 8. На тех же штифтах установлены скобы, которые ограничивают подъем клапана. Высота подъема всасывающего клапана 0,5±0,08 мм, нагнетательного -- 1,18 мм. Диаметр всасывающего отверстия 5 мм, нагнетательного -- 3,4 мм.

Трущиеся части компрессора смазываются маслом под действием центробежной силы через косое отверстие в нижнем торце коренной шейки вала. При вращении вала 21 масло, попадая в наклонный канал, поднимается вверх и попадает к трущейся паре вал 21 -- корпус 6 компрессора. Дальше по винтовой канавке масло поступает к паре вал 21 --ползун 20. Пара поршень 18 -- цилиндр 16 смазывается разбрызгиванием.

Таблица 2. Классификация компрессоров в зависимости от описанного объема

Типоразмер

Описанный объем, не более

в см3*с-1*(м3*ч-1)

в м3/1 ход (см-1 ход)

при напряжении сети 220 В и частоте 50 Гц

при напряжении сети 115 В и частоте 60 Гц

при напряжении сети 220 В и частоте 50 Гц

5

250(0,9)

--

5*10-6 (5)

6

315(1,134)

378(1,36)

6,3*10-6 (6,3)

8

400(1,44)

--

8*10-6 (8)

Примечание: описанный объем -- объем, который вытесняется поршнем за единицу времени или за один ход при номинальном числе оборотов.

Пары хладона всасываются из кожуха в цилиндр 16 через глушитель всасывания и нагнетаются через глушитель нагнетания в трубку 22. Змеевик нагнетательной трубки 22 способствует гашению колебаний мотор-компрессора, корпус которого опирается на три пружины 23. Пружины предохраняет от выпадания шпилька 24.

Кожух 1 закрыт сверху крышкой 7, приваренной по фланцу и ограничивающей перемещение мотор-компрессора вверх.

Налажен выпуск хладоновых герметичных компрессоров с кривошипно-кулисным механизмом, вертикальной осью вращения (ХКВ) и описанным объемом (табл. 2) до 400 см3*с-1 (1,44 м3*ч-1), встроенным двухполюсным однофазным асинхронным электродвигателем и пускозащитным реле. Эти компрессоры предназначены для холодильных агрегатов с капиллярной трубкой и применяются в бытовых холодильниках и морозильниках, работающих на хладоне-12 и рассчитанных на температуру кипения в испарителе от минус 10 до минус 30 °С.

Компрессоры подразделяют на следующие исполнения.

В зависимости от номинального напряжения и частоты тока:

· 1 -- при напряжении сети 220 В и частоте 50 Гц;

· 2 -- при напряжении сети 115 В и частоте 60 Гц.

В зависимости от электродвигателя и пускозащитного реле:

· Д -- двухполюсный однофазный асинхронный электродвигатель холодильной машины (ДХМ), пускозащитное, токовое, комбинированное реле (РТК);

· Л -- двухполюсный однофазный асинхронный электродвигатель (ЭД) и двухполюсный однофазный асинхронный электродвигатель с повышенным пусковым моментом (ЭДП), пускозащитное комбинированное реле (Р).

В зависимости от наличия устройств охлаждения:

· Б -- без устройства для дополнительного охлаждения;

· М -- с устройством для дополнительного охлаждения.

В зависимости от условий эксплуатации:

· УХЛ -- для условий эксплуатации в районах с умеренным и холодным климатом;

· Т -- для условий эксплуатации в районах с тропическим климатом.

Пример условного обозначения компрессора типоразмера 5, для сети напряжением 220 В и частотой тока 50 Гц, с электродвигателем ЭД и пускозащитным реле типа Р, без дополнительного охлаждения, климатического исполнения УХЛ: ХКВ5 -- 1 ЛБ УХЛ (ГОСТ 17008).

Основные параметры компрессоров даны в табл. 3.

Таблица 3. Технические характеристики компрессоров ХКВ

Компрессор

Работа на хладоне-12

Работа на воздухе

Масса, кг, не более

Удельная масса, кг/(Вт*год), не более

Удельная энергоемкость, Вт/Вт, не более

Номинальная холодо- производи-тельность, Вт(ккал/ч), предельные отклонения ±7%

Потребляемая мощность, Вт, не более

Удельная холодо-производительность, Вт/Вт, но не менее

Объемная производи-тельность, не более

Потребляемая мощность, Вт, не более

до 01.01.90

с 01.01.90

ХКВ5-1ЛБ УХЛ

115(100)

140

0,83

0,85

12-10-5(7,3)

155

9,2

0,0053

1,2

ХКВ6-1ДБ УХЛ

145(125)

170

0,91

0,95

15,3-10-5(9,2)

175

9,7

0,0046

1,1

ХКВ6-1ЛБ УХЛ

145(125)

165

0,91

0,95

15,3-10-5(9,2)

175

9,7

0,0046

1,1

ХКВ6-1ДМ УХЛ

150(130)

170

0,93

0,97

15,3-10-5(9,2)

175

10,2

0,0046

1,08

ХКВ6-1ЛМ УХЛ

150(130)

170

0,93

0,97

15,3-10-5(9,2)

175

10,2

0,0046

1,08

ХКВ6-1ЛМ Т

125(108)

170

0,83

0,86

15,3-10-5(9,2)

175

10,2

0,0053

1,2

ХКВ6-2ДМ УХЛ

165(142)

190

0,86

0,9

18-10-5(11)

190

10,2

0,004

1,16

ХКВ6-2ДМ Т

145(125)

190

0,82

0,85

18-10-5(11)

190

10,2

0,0046

1,2

ХКВ8-1ЛМ УХЛ

185(160)

190

0,99

1,01

21-10-5(12,6)

190

10,2

0,004

1,01

ХКВ8-1ЛМ Т

160(138)

190

0,87

0,9

21-10-5(12,6)

190

10,2

0,0045

1,15

Электродвигатель

Холодильные агрегаты выпускаются на одно напряжение -- 127 или 220 В. Электродвигатель холодильника в нормальных условиях работает циклично, т.е. периодически включается и выключается через определенные промежутки времени. Отношение части цикла, в продолжение которой электродвигатель работает, к общей продолжительности цикла называют коэффициентом рабочего времени. Чем больше коэффициент рабочего времени (при постоянной температуре в помещении тем ниже температура в холодильной камере и тем больше среднечасовой расход электроэнергии.

Определенную цикличность в работе холодильника (коэффициент рабочего времени) обеспечивает датчик-реле температуры -- прибор, регулирующий температуру в шкафу холодильника.

Для привода герметичных компрессоров и работы в среде хладона и рефрижераторного масла предназначаются однофазные короткозамкнутые асинхронные электродвигатели. Они выпускаются на номинальное напряжение 127 или 220 В с номинальной мощностью 60, 90, 120 Вт. Частота вращения 1500 и 3000 об/мин.

Электродвигатели работают при отклонениях напряжений от номинального значения в пределах-15...+10%.

На статоре двигателя расположены две обмотки -- рабочая и пусковая. Переменный ток, проходя по рабочей обмотке, создает переменное магнитное поле, наводящее токи в короткозамкнутом роторе двигателя. Электромагнитная сила, возникающая в результате взаимодействия магнитного поля с токами ротора, взаимно уравновешивается, благодаря чему ротор стоит на месте относительно магнитного поля статора.

Для образования вращающегося магнитного поля и сдвига ротора с места применяют дополнительную пусковую обмотку. При включении обеих обмоток образуется вращающееся магнитное поле, которое увлекает за собой ротор. Когда частота вращения ротора достигает 75-80% частоты вращающегося магнитного поля в рабочей обмотке, пусковая обмотка отключается пусковым реле.

В холодильных агрегатах применяются электродвигатели типа ДХМ, ЭД, ЭДП и др.

Конденсатор

Конденсатор холодильного агрегата является теплообменным аппаратом, в котором хладагент отдает тепло окружающей его среде.

Пары хладагента, охлаждаясь до температуры конденсации, переходят в жидкое состояние. Конденсатор представляет собой трубопровод, изогнутый в виде змеевика, внутрь которого поступают пары хладона.

Змеевик охлаждается снаружи окружающим воздухом. Наружная поверхность змеевика обычно недостаточна для отвода тепла воздухом, поэтому поверхность змеевика увеличивают за счет большого количества ребер, креплением змеевика к металлическому листу и другими способами.

Широкое распространение получили конденсаторы конвективного охлаждения с проволочным оребрением.

Конденсатор представляет собой змеевик из медной трубки с приваренными к ней с обеих сторон (друг против друга) ребрами из стальной проволоки диаметром 1,2-2 мм. Ребра из проволоки приваривают к трубке точечной электросваркой или припаивают медью. Применяются также конденсаторы щитовые сзавальцованной трубкой (холодильники ЗИЛ-63, ЗИЛ-64).

В холодильниках старых моделей применялись листотрубчатые конденсаторы. Листотрубчатый щитовой конденсатор (рис. 4, б) состоит из змеевика, который приварен, припаян или плотно прижат к металлическому листу, выполняющему роль сплошного ребра. В листе иногда делают прорези с отбортовкой по типу жалюзи. Это увеличивает теплопередающие поверхности за счет торцов отогнутых металлических язычков и циркуляции воздуха. Диаметр труб 4,75-8 мм, шаг 35-60 мм, толщина листа 0,5-1 мм.

Трубы змеевика на листе обычно располагают горизонтально. В некоторых листотрубчатых конденсаторах их располагают вертикально, чтобы последние витки трубопровода не нагревались от кожуха компрессора. Длина трубопровода конденсатора составляет 6500-14000 мм.

Листотрубчатый прокатно-сварной конденсатор (рис. 4, б, в) изготовлен из алюминиевого листа толщиной 1,5 мм с раздутыми в нем каналами змеевика. Конденсатор имеет форму сплюснутой трубы и закреплен на задней стенке шкафа холодильника. При сравнительно небольших размерах конденсатор работает эффективно благодаря высокой теплопроводности алюминия и теплопередачи через однородную среду. Для более эффективной циркуляции воздуха в щите сделаны сквозные просечки. Конденсатор с одной стороны соединен трубопроводами с нагнетательной линией компрессора, а с другой через фильтр и капиллярную трубку -- с испарителем.

Для защиты от коррозии конденсатор окрашивают черной эмалью.

Существенным недостатком конденсатора этого типа является его выход из строя при засорении капиллярной трубки. Происходит вздутие листа алюминия и его разрыв.

Испаритель

В испарителе происходит передача тепла от охлаждаемого объекта к испаряющемуся (кипящему) вследствие этого холодильному агенту.

По принципу действия испарители аналогичны конденсаторам, но отличаются тем, что в конденсаторе холодильный агент отдает тепло окружающей среде, а в испарителях поглощает его из охлаждаемой среды.

В однокамерных холодильниках испаритель предназначен для хранения замороженных продуктов, поэтому его делают в виде полки. Для поддержания низкой температуры испаритель закрывают спереди дверцей, а сзади стенкой. Такой испаритель является низкотемпературным (морозильным) отделением.

В настоящее время применяются алюминиевые испарители, изготовленные прокатно-сварным методом. Исходным материалом для их изготовления служат листы алюминия марки АД, АД-1. Алюминиевые испарители менее долговечны, чем стальные, они рассчитаны на срок службы 6-8 лет.

Испарители имеют каналы различной конфигурации и отличаются способом крепления в холодильной камере. В некоторых холодильных агрегатах испарители отличаются тем, что система каналов у них имеет вместо двух выходных отверстий для присоединения капиллярной и всасывающей трубки лишь одно. У таких агрегатов капиллярная трубка проходит внутри всасывающей. Конец всасывающей трубки приваривают в торце выходного канала испарителя, а капиллярная трубка проходит через выходной канал во входной, где ее обжимают, чтобы не было перетекания хладона из входного канала в выходной.

Для защиты алюминиевых испарителей от коррозии их анодируют в сернокислых или хромокислых ваннах, получая защитную пленку толщиной 10-12 мкм. Для сохранения анодной пленки испаритель дополнительно покрывают лаком УВЛ-3 или эпоксидной смолой. Особое внимание уделяют внутрикоррозийной защите стыков медно-алюминиевых трубок, соединяющих алюминиевый испаритель с медными трубопроводами.

Испарители выпускают различных конструкций. Широкое распространение в холодильниках ранних выпусков имели испарители, изготовленные в виде перевернутой буквы П (рис. 5, а), часто вытянутой во всю ширину камеры, с полкой для продуктов.

В современных холодильниках с морозильными отделениями во всю ширину камеры испарители делают в виде вытянутой буквы О (рис. 5, б) или повернутой вверх буквы С. Испаритель крепят к потолку или боковым стенкам камеры.

В настоящее время в некоторых моделях двухкамерных холодильников применяют листотрубчатые (рис. 5, в) секционные испарители, плоские, расположенные на задней стенке камеры холодильника или устанавливаемые горизонтально (в этом случае испаритель одновременно является полкой). Трубопровод испарителя диаметром 8 мм прикреплен к металлическому листу с внутренней стороны. Для крепления трубопровода и циркуляции воздуха на листе сделаны просечки.

В холодильниках ранних выпусков («ЗИП-Москва», «Саратов-2» и др.) применялись стальные испарители из двух сваренных листов нержавеющей стали. Стальные испарители отличаются относительно небольшими размерами и большой прочностью.

Капиллярная трубка

Капиллярная трубка в сборе с отсасывающей служит регулирующим устройством для подачи жидкого хладагента в испаритель. Она представляет собой трубопровод из меди марки ДКРХТ с внутренним диаметром 0,5-0,8 и длиной 2800-6000 мм

(в зависимости от модели холодильника), соединяющий стороны высокого и низкого давления в системе холодильного агрегата. Имея небольшую проходимость (5,6-8,5 л/мин), капиллярная трубка является дросселем и создает перепад давления между конденсатором и испарителем и подает в испаритель определенное количество жидкого хладона.

К преимуществам капиллярных трубок по сравнению с другими дросселирующими устройствами (например, с терморегулирующими вентилями) следует отнести простоту конструкции, отсутствие движущихся частей и надежность в работе. Кроме того, капиллярная трубка, соединяя между собой стороны нагнетания и всасывания, уравнивает давление в системе агрегата при его остановах (рис. 6). Это снижает противодавление на поршень компрессора в момент запуска и позволяет применять электродвигатель компрессора с относительно небольшим пусковым моментом.

Недостатком капиллярной трубки является невозможность необходимого регулирования подачи хладона в испаритель при разных температурных условиях эксплуатации холодильника. Учитывая это, проходимость капиллярной трубки устанавливают исходя из нормальных эксплуатационных условий холодильника.

Для улучшения теплообмена между отсасывающими холодными парами и теплым жидким хладагентом, которые движутся противотоком, капиллярную и отсасывающую трубки спаивают между собой на большом участке. В некоторых холодильных агрегатах капиллярную трубку наматывают на отсасывающую или помещают внутри нее.

Фильтр устанавливают у входа в капиллярную трубку для предохранения ее от засорения твердыми частицами.

Фильтры изготавливают из мелких латунных сеток или металлокерамики. Металлокерамический фильтр состоит из бронзовых шариков диаметром 0,3 мм, сплавленных в столбик конусообразной формы, заключенный в металлический корпус. Капиллярную трубку припаивают к металлокерамическому фильтру под углом 30°. В большинстве холодильников фильтр смонтирован в одном корпусе с осушительным патроном. По краям корпуса расположены сетки, а между сетками -- адсорбент. Попадание влаги в систему, заполненную хладоном и смазочным маслом, при воздействии высоких температур в компрессоре приводит к образованию минеральных и органических кислот. Эти кислоты разрушающе действуют на детали компрессора, в первую очередь на электрическую изоляцию встроенного электродвигателя. Капли свободной влаги замерзают в капиллярной трубке и нарушают работу агрегата. Поэтому при изготовлении, монтаже и ремонте холодильные агрегаты (или отдельно узлы) тщательно очищают и осушают.

Для очистки рабочей среды хладоновых холодильных машин от влаги и кислот применяют адсорбенты различных марок. Ими заполняют фильтры-осушители.

Эффективными поглотителями влаги являются синтетические цеолиты МаА-2МШ и NаА-2КТ. Их выпускают в виде таблеток или шариков размером 1,5-3,5 мм. По сравнению с минеральными адсорбентами (силикагелем, алюмогелем и др.) цеолиты хорошо поглощают воду из холодильного агента.

Преимущества цеолита по сравнению с силикагелем становятся еще значительнее при наличии масла в холодильном агенте.

Синтетический цеолит МаА-2МШ предназначен для заполнения осушительных патронов бытовых холодильников, работающих на хладоне-12. Он активно адсорбирует следы воды и почти поглощает холодильные агенты и смазочные масла.

Служит для поглощения влаги из хладагента и предохранения регулирующего устройства (капиллярной трубки) от замерзания в нем воды. Корпус 2 (рис. 7, а) осушительного патрона состоит из металлической трубки длиной 105-135 мм и диаметром 12-18 мм с вытянутыми концами, в отверстия которых впаивают соответствующие трубопроводы холодильного агрегата.

Внутри корпуса патрона помещают 10-18 г адсорбента 3 (синтетического цеолита). Адсорбенты имеют простую кристаллическую структуру. Мельчайшие поры соединены узкими каналами. Благодаря такой структуре возникает избирательная адсорбция, т.е. свойство молекулярного сита, когда в полости пор проникают лишь те молекулы, размер которых меньше диаметра каналов. Поэтому вся активная поверхность и объем пор используются для удержания молекул воды и не засоряются прочими веществами с более крупными молекулами (в частности, хладоном и маслом).

Корпус осушительного патрона в зависимости от места установок его в агрегате изготавливают из стальных, медных или алюминиевых трубок. Адсорбент 3 помещают в корпус патрона между сетками 4 с обоймами 1, которые установлены на входе и выходе патрона. Если осушительный патрон помещен в штампованном испарителе, корпусом осушителя служит коллектор испарителя, куда кладут адсорбент в сетчатом чехле. Осушительные патроны с силикагелем обычно ставят в холодильной зоне агрегата -- испарителе. Осушительные патроны с цеолитом устанавливают на стороне нагнетания перед входом в капиллярную трубку, т.е. там же, где находится фильтр. В этом случае осушительный патрон совмещают с фильтром (фильтр-осушитель).

Наряду с медной сеткой используют металлокерамику. Фильтр 7 (рис. 7, б) состоит из большого количества бронзовых шариков диаметром 0,25 мм, которые в результате спекания образуют столбик конической формы. Между прилегающими друг к другу поверхностями шариков имеются мельчайшие зазоры, образующие многочисленные лабиринты, которые, однако, не препятствуют проходу жидкого хладагента. Для увеличения поверхности фильтра в торце большого основания конуса имеется глухое отверстие.

В холодильных агрегатах со стальным испарителем и конденсатором из медной трубки для предотвращения или устранения замерзания влаги в капиллярной трубке вместо осушительного патрона применяют метиловый спирт. В этом случае вода не устраняется от системы агрегата, понижается лишь температура ее замерзания. Обычно в систему агрегата вводят 1-2% (количества хладона) химически чистого метилового спирта. Его использование в агрегатах с алюминиевым испарителем или конденсатором недопустимо, так как взаимодействие спирта с алюминием приводит к разрушению и выходу хладона из системы агрегата.

Все имеющиеся в холодильном агрегате соединения выполнены сваркой и пайкой твердыми припоями. Алюминиевые части соединяют аргонодуговой сваркой, медные -- пайкой. Соединения алюминиевых частей с медными трубопроводами осуществляют через переходные медно-алюминиевые трубки, предварительно сваренные встык на специальной электросварочной машине.

Перед тем как в холодильный агрегат залить хладон, проверяют его влажность. Для этого служит индикатор влажности, установленный на трубопроводе, подающем хладон к агрегату. Индикатор влажности ИВ-7 состоит из латунного корпуса 1 со смотровым стеклом 3, накидной гайкой 4 и чувствительного элемента 2 на капроновом стержне 5.

Чувствительным элементом служит фильтровальная бумага, пропитанная 4%-ным раствором бромистого кобальта. Цвет бумаги зависит от содержания воды в хладоне и от температуры, с повышением которой растворимость воды в хладоне увеличивается (табл. 4).

Таблица 4. Определение влажности хладона, мг/кг

Температура, "С

Цвет бумаги

Зеленый

Синий

Голубой

Розовый

Хладон-12

-20

<5

5-15

-

>15

-40

<10

15-30

-

>30

-55

20

30-50

-

>50

Хладон-22

-20

-

<15

15-60

>60

-40

-

<30

30-200

>200

Растворимость воды в хладоне-22 значительно выше, чем в хладоне-12, поэтому в хладоне-22 допускается более высокое ее содержание.

В холодильный агрегат вводится предварительно осушенное масло. Для осушки масла имеются различные установки.

Принцип их работы следующий. Из бака 1 (рис. 9) масло шестеренчатым насосом 6 подается в нагреватель 2, где его температура повышается до 60 "С и соответственно снижается вязкость. После этого насос 6 перекачивает масло через адсорберы 3, заполненные цеолитом, в бак 4, до тех пор, пока не будет достигнута необходимая сухость. После этого масло подается в бак 5. Производительность установки 60 кг/ч. Масса цеолита в одной адсорбционной колонке 5 кг, габаритные размеры установки 850х560х1050 мм.

Холодильная камера бытового холодильника охлаждается вследствие изменения агрегатного состояния хладагента в системе герметичного холодильного агрегата, принцип действия которого заключается в следующем. Пары хладона-12 отсасываются из испарителя 5 (рис. 10) компрессором 1 и проходят внутри кожуха, охлаждая обмотку электродвигателя. Сжатые в компрессоре пары хладагента по нагнетательной трубке 2 поступают в охлаждаемый окружающим воздухом конденсатор 4. Давление паров хладона в конденсаторе равно 600-1050 кПа. В конденсаторе пары хладона переходят в жидкое состояние, отдавая тепло окружающей среде. Жидкий хладон из конденсатора поступает через фильтр 3 в капиллярную трубку (где происходит его дросселирование) и затем в испаритель. Капиллярная трубка 7 создает необходимый для работы перепад давления между конденсатором и испарителем. Давление хладагента в испарителе понижается до 98 кПа. Жидкий хладон при низком давлении кипит, отнимая тепло от стенок испарителя и воздуха холодильной камеры.

Из испарителя пары хладагента по всасывающей трубке 8 поступают в кожух компрессора и цикл повторяется. Холодные пары хладагента, проходя из испарителя в компрессор по всасывающей трубке, охлаждают жидкий хладон, который поступает по капиллярной трубке из конденсатора в испаритель.

Теплообменником 6 служит участок всасывающей и капиллярных трубок, спаянных между собой. В ряде холодильников капиллярная трубка пропущена внутри всасывающей.

Компрессор приводится в движение встроенным однофазным электродвигателем переменного тока, имеющим рабочую и пусковую обмотки.

Для запуска электродвигателя и защиты его от токовых перегрузок применяется пускозащитное реле. Заданная температура в холодильной камере поддерживается автоматически датчиком-реле температуры. Электрическая лампа накаливания для освещения камеры шкафа включена в сеть параллельно цепи двигателя и последовательно с дверным выключателем. При открывании двери холодильника контакты выключателя замыкаются, включая лампу независимо от электродвигателя.

Размещено на Allbest.ru


Подобные документы

  • Принципы работы холодильной машины. Схема компрессионного цикла охлаждения, оценка его эффективности. Сжатие пара в компрессоре. Паровая компрессорная установка. Электрическая схема холодильника. Процесс конденсации паров жидкости на примере фреона R-22.

    реферат [265,5 K], добавлен 26.01.2015

  • Использование в холодильной технике летучих жидкостей. Наиболее употребительные хладагенты. Простой паровой цикл механической холодильной машины. Единицы измерения холода. Термоэлектрическое охлаждение. Схема компрессионной холодильной установки.

    реферат [705,8 K], добавлен 01.02.2012

  • Расчет теплопритоков в охлаждаемое помещение и необходимой производительности судовой холодильной установки. Построение рабочего цикла холодильной машины, ее тепловой расчет и подбор компрессора. Последовательность настройки приборов автоматики.

    курсовая работа [1,4 M], добавлен 25.12.2014

  • Элементы и принципы работы парокомпрессионной холодильной машины, их достоинства и недостатки. Отличия теоретического цикла паровой компрессионной холодильной машины от цикла Карно. Отделение жидкого холодильного агента от пара в отделителе жидкости.

    реферат [8,4 M], добавлен 21.11.2010

  • Описание конструкции двухкамерного компрессионного холодильника. Теплопритоки в шкаф холодильника. Тепловой расчет холодильной машины. Обоснование выбора основных материалов. Расчет поршневого компрессора, теплообменных аппаратов, капиллярной трубки.

    курсовая работа [1,1 M], добавлен 07.08.2013

  • Особенности работы и внутреннее устройство, принцип действия компрессионной холодильной машины, обзор основных ее достоинств и недостатков. Практическая сборка и разборка холодильника, последовательность и некоторые нюансы демонтажа узлов и деталей.

    контрольная работа [118,0 K], добавлен 26.04.2013

  • Холодильная машина и комплекс составляющих ее технических элементов. Перенос тепла к источнику, температура которого значительно выше окружающей среды, при помощи холодильной машины. Классификация холодильных машин по виду затрачиваемой энергии.

    реферат [130,8 K], добавлен 01.04.2011

  • Расчет значений основных параметров состояния в характерных точках цикла с учетом возможных потерь. Технические показатели холодильной машины. Метод коэффициентов полезного действия для обратного цикла. Эксергетический метод для обратного цикла.

    курсовая работа [85,1 K], добавлен 10.01.2012

  • Общая характеристика и принцип работы холодильной установки молочного завода, ее технико-экономическое обоснование. Методика расчета строительной площади холодильника. Тепловой расчет принятого холодильника. Расчет и подбор камерного оборудования.

    курсовая работа [94,0 K], добавлен 03.06.2010

  • Проектирование холодильной машины для фреона R12 и R134a. Проведение расчета испарителя и конденсатора. Построение цикла для R134a и вычисления в программах для эксплуатационных режимов R12 и R134a. Сравнительная характеристика фреонов R12 и R134a.

    курсовая работа [1,1 M], добавлен 30.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.