Получение чугунов повышенного качества

Полиморфное превращение кристаллов. Диаграмма состояния железо-карбид железа. Превращения, происходящие в твердом состоянии. Структура эвтектических чугунов. Холодная и горячая пластическая деформация. Обогащение железных руд и окусковывания концентратов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 09.05.2012
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сверление отверстий с отношением длины к диаметру больше пяти (для глубоких отверстий) связано с большими трудностями. При этом возникает значительное образование тепла, ухудшаются условия охлаждения режущей части сверла, затрудняется отвод стружки. При обработке глубоких отверстий спиральным сверлом происходит значительный увод сверла и искривление оси обработанного отверстия, поэтому сверление глубоких отверстий производят на специальных горизонтально-сверлильных станках сверлами специальной конструкции. Устройство станка облегчает установку и процесс обработки заготовок большой длины. Заготовку, как правило, в виде вала закрепляют в патроне станка и поддерживают люнетом. Сверло навинчивают на трубу, которую устанавливают на продольном суппорте. Смазочно-охлаждающая жидкость подается под большим давлением через специальный маслоприемник в зону резания, и она вымывает сружку через трубу. Главным движением является вращение заготовки, а движение подачи совершает инструмент.

В 1952 г. ЦНИИТМАШ была разработана технология дуговой сварки стали плавящимся электродом в защитной среде углекислого газа, что явилось крупным достижением советской сварочной техники, направленным на дальнейшее усовершенствование методов сварки. Дуга образуется между концом голой проволоки, являющейся плавящимся электродом, и свариваемым изделием; горение дуги происходит в атмосфере углекислого газа, который подается в зону сварки по наружному мундштуку и защищает расплавленный металл от кислорода и азота окружающего воздуха.

Преимущество сварки в среде углекислого газа перед сваркой под флюсом состоит в том, что сварщик может наблюдать за ходом сварки и горением дуги, так как она не закрыта флюсом; отсутствие флюса делает ненужными приспособления для его подачи и отсоса, усложняющие сварочное оборудование; отпадает необходимость в последующей очистке швов от шлака и остатков флюса, особенно при многослойной сварке.

Коэффициент наплавки при сварке в среде углекислого газа выше, чем при сварке под флюсом. При сварке током прямой полярности этот коэффициент в 1,5--1,8 раза выше, чем при сварке током обратной полярности. Процесс сварки отличается высокой производительностью, достигающей 18 кг/час наплавленного металла. Скорость сварки достигает 60 м/час. Производительность сварки в среде углекислого газа в 2,5--4 раза выше, чем производительность ручной сварки покрытыми электродами, и в 1,5 раза выше, чем при сварке под флюсом.

Стоимость наплавки 1 кг металла при сварке в среде углекислого газа в 2--2,5 раза меньше, чем при ручной сварке, и на 10--20% меньше, чем при автоматической сварке под флюсом.

Сварка в защитной среде углекислого газа сейчас широко при меняется в промышленности и во многих случаях успешно вытесняет не только ручную, но даже полуавтоматическую и автоматическую дуговую сварку под флюсом.

Наибольшее применение сварка в среде углекислого газа нашла в судостроении, машиностроении, при сварке трубопроводов, в том числе магистральных, при выполнении монтажных работ, изготовлении котлов и аппаратуры из теплоустойчивых и легированных сталей, заварке дефектов стального литья и прочих областях производства и строительства.

Главным достоинством процесса сварки в защитной среде углекислого газа являются:

1. Высокая степень использования тепла сварочной дуги, вследствие чего обеспечивается и высокая производительность сварку.

2. Высокое качество сварных швов.

3. Возможность сварки в различных пространственных положениях и на монтаже с применением аппаратуры для полуавтоматической и автоматической сварки.

4. Низкая стоимость защитного газа.

5. Возможность сварки металла малых толщин и сварки электрозаклепками.

6. Возможность сварки на весу без подкладок.

Металлургические процессы при сварке в среде углекислого газа имеют свои особенности, состоящие в следующем.

При высокой температуре дуги молекулы углекислого газа расщепляются (диссоциируют) на СО и О по уравнению СО гСО + +0. Образующаяся СО в свою очередь диссоциирует на С и О по уравнению СОС -)- О. Атомарный кислород О обладает высокой химической активностью и способен окислять все элементы, входящие в состав проволоки и основного металла.

Исследования показали, что температура капель жидкого металла в зоне дуги составляет 2150--2350е, а температура газа 2900°. Температуры же в сварочной ванне ниже и составляют: металла 1700° и газа 2300°. Как известно, чем выше температура, тем реакции окисления идут интенсивнее. Поэтому при сварке в среде углекислого газа в большей степени происходит выгорание (окисление) элементов, содержащихся в электродной проволоке и в меньшей степени -- элементов основного металла. При указанном распределении температур большая часть углекислого газа (60%) расщепляется на окись углерода и кислород в зоне дуги и меньшая (15%) -- в месте контакта с ванной.

В зоне сварки при указанных условиях протекают следующие реакции окисления элементов и восстановления их из окислов:

Выделение газообразной окиси углерода (СО) из жидкого металла вызывает «кипение» сварочной ванны и приводит к образованию пор. При сварке в среде углекислого газа пористость шва может возникнуть в результате: 1) недостаточного содержания элементов -- раскислителей (кремния, марганца и др.) в проволоке; 2) присутствия ржавчины и окалины, попадающих с кромок металла и с проволоки в ванну; 3) повышенного содержания влаги в углекислом газе; 4) попадания в зону сварки азота из воздуха при недостаточной защите дуги углекислым газом.

С целью восполнения марганца и кремния в металле шва, уменьшающихся в результате удара, и для подавления реакции окисления углерода при сварке в среде углекислого газа применяют электродную проволоку с повышенным содержанием марганца и кремния. При сварке мало- и среднеуглеродистых сталей присутствие в металле шва кремния более 0,2% и марганца более 0,4% предупреждает образование пор.

На степень окисления углерода, кремния и марганца при сварке в среде углекислого газа сильно влияют напряжение и величина сварочного тока, а также диаметр электродной проволоки. С повышением напряжения окисление увеличивается, а при возрастании сварочного тока и уменьшении диаметра проволоки (повышении плотности тока) -- уменьшается. Сварка на постоянном токе обратной полярности дает меньшее окисление, чем на токе прямой полярности. При сварке проволокой диаметром 0,5--1,2 мм происходит значительно меньшее окисление элементов, чем при сварке проволокой диаметром 1,6--2 мм. Поэтому более тонкая проволока, имеющая низкое содержание кремния и марганца, обеспечивает получение плотных беспористых швов. Плотность тока при сварке в среде углекислого газа должна быть не ниже 80 а/мм2. При этом потери металла на разбрызгивание не превышают 10--15%.

В качестве электрода применяется проволока различных марок по ГОСТ 2246--60 в соответствии с маркой основного металла. Диаметр проволоки может колебаться в пределах 0,5--2,5 мм в зависимости от толщины свариваемого металла и типа сварочного полуавтомата. Поверхность проволоки должна быть чистой, не загрязненной смазкой, органическими антикоррозийными веществами, ржавчиной, окалиной и пр., повышающими разбрызгивание и пористость швов. Иногда проволоку подвергают травлению в 20%-ном растворе серной кислоты с последующей прокалкой в печи при 250--280° в течение 2--2,5 час. Это обеспечивает получение плотного наплавленного металла с минимальным содержанием водорода. Хорошие результаты дает сварка омедненной (покрытой слоем меди) проволокой.

Размещено на Allbest.ru


Подобные документы

  • Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.

    презентация [7,7 M], добавлен 14.10.2013

  • Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.

    презентация [1,5 M], добавлен 21.12.2010

  • Диаграмма стабильного равновесия железо–углерод и процесс образования в чугуне графита – графитизация. Связь структуры чугуна с его механическими свойствами. Особенности маркировки серого чугуна, его основные разновидности и область применения.

    контрольная работа [847,3 K], добавлен 17.08.2009

  • Виды твёрдых растворов. Методы измерения твердости металлов. Диаграмма состояния железо-карбид железа. Диаграмма изотермического превращения аустенита для стали У8, кривая режима изотермической обработки, обеспечивающей получение твердости 150 НВ.

    контрольная работа [38,5 K], добавлен 28.08.2011

  • Маркировка, химический состав и механические свойства хромистых чугунов. Основные легирующие элементы, стойкость чугунов в коррозии. Литая структура чугунов с карбидами. Строение евтектик белых износостойких чугунов, области применения деталей из них.

    курсовая работа [435,0 K], добавлен 30.01.2014

  • Определение эксплуатационных свойств белых чугунов количеством, размерами, морфологией и микротвердостью карбидов. Влияние температуры отжига на механические свойства промышленного чугуна. Технологические схемы изготовления изделий повышенной стойкости.

    доклад [50,8 K], добавлен 30.09.2011

  • Роль в процессе кристаллизации, которую играет число центров и скорость роста кристаллов. Изменение свободной энергии в зависимости от температуры. Классификация чугунов по строению металлической основы. Основные применения цветных металлов и их сплавов.

    контрольная работа [878,0 K], добавлен 06.03.2013

  • Понятие и виды ликвации; причины возникновения и способы устранения. Методика измерения ударной вязкости. Составление диаграммы состояния железо-карбид железа. Механизм бейнитного превращения. Влияние температуры на изменение структуры и свойств стали.

    контрольная работа [434,2 K], добавлен 03.09.2014

  • Механические свойства железа. Аллотропия как важное свойство железа. Диаграмма состояния железа. Схема изменений свободных энергий кристаллических модификаций железа. Термический метод анализа. Кривая охлаждения железа. Критические точки чистого железа.

    реферат [386,3 K], добавлен 30.03.2011

  • Кристаллизация и твердофазные превращения в белых чугунах, их характеристика, структура и свойства, эвтектические превращения, содержание цементита. Виды диаграмм состояния железо-углеродистых сплавов. Понятия чистое техническое железо, сталь и чугун.

    контрольная работа [1,2 M], добавлен 17.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.