Основы материаловедения

Кристаллическое строение вещества. Причины образования точечных, линейных, поверхностных и объемных дефектов в решетке. Сущность деформации, ее достоинства и недостатки. Технология получения белого и серого чугунов. Изучение специальных видов литья.

Рубрика Производство и технологии
Вид шпаргалка
Язык русский
Дата добавления 15.03.2012
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Точка S показывает минимальную температуру, равновесного существования аустенита при охлаждении. Критические температуры фазового превращения аустенита в перлит для сплавов различного состава (линия PSK) обозначают A1

13. Превращение при охлаждении (нагревании) доэвтектоидных сталей

Доэвтектоидные стали. Сплавы с содержанием углерода от 0,025 до 0,8 % называются доэвтектоидными сталями. Рассмотрим фазовые и структурные изменения доэвтектоидной стали на примере сплава Ш (рис. 18г). В интервале температур t8-727??C идет полиморфное превращение А? Ф. Состав аустенита меняется по линии GS, а феррита - по линии GP. При 727 ?С концентрация углерода в аустените равна 0,8 % (точка S) и в феррите - 0,025 % (точка Р).

Ниже этой температуры происходит эвтектоидное превращение. В равновесии находятся три фазы: феррит состава точки Р, аустенит состава точки S, цементит. Так как число степеней свободы равно нулю, т.е. имеется нонвариантное равновесие, то процесс протекает при постоянном составе фаз. На кривых охлаждения или нагрева наблюдается температурная остановка. Таким образом, структура доэвтектоидной стали характеризуется избыточными кристаллами феррита и эвтектоидной смесью феррита с цементитом, называемой перлитом. Количественные соотношения феррита и перлита зависят от состава сплава. Чем больше углерода в доэвтектоидной стали, тем больше в структуре ее перлита и, наоборот, чем меньше углерода, тем больше феррита и меньше перлита. При дальнейшем охлаждении в результате изменения растворимости углерода в феррите (соответственно линии РQ) выделяется третичный цементит. Однако в структуре обнаружить его при наличии перлита невозможно.

14. Превращение при охлаждении (нагревании) эвтектоидной стали

Особенности эвтектоидного превращения:

1) Превращение протекает в твердом состоянии;

2) в превращении участвуют три фазы - аустенит, феррит и цементит;

3) одновременно при охлаждении кристаллизуются две фазы - феррит и цементит;

4) температура превращения (7270С) и концентрация углерода в фазах, участвующих в реакции, всегда постоянны;

5) температура эвтектоидного превращения меньше температуры кристаллизации фаз, участвующих в реакции;

6) вторичная кристаллизация железоуглеродистого сплава любого состава при пересечении линии PSK завершается эвтектоидным превращением, т.е. оно протекает во всех углеродистых сталях и чугунах;

7) продукт превращения -эвтектоид - механическая смесь двух твердых фаз: феррита и цементита, содержащая 0,8%С - называют перлитом (П);

8) превращение протекает как при охлаждении, так и при нагреве, но в противоположном направлении, с превращением перлита в аустенит;

9) механизм превращения является диффузионным.

Перлит состоит из пластинок цементита в ферритной основе. На травленом шлифе зерно перлита состоит из параллельных пластинок цементита и феррита и имеет блеск перламутра, отсюда и название "перлит" (от франц. жемчуг).

В зависимости от содержания углерода в сплаве в соответствии с диаграммой состояния Fe - C углеродистые стали классифицируют по структуре в равновесном состоянии на:

доэвтектоидные с содержанием углерода более 0,02, но менее 0,8%, имеющие структуру феррита и перлита; Сплавы, содержащие углерода менее 0,02 % (левее т.Р), называют техническим железом.

15. Превращение при охлаждении (нагревании) заэвтектоидных сталей

Заэвтектоидные стали. Сплавы с содержанием углерода от 0,8 до 2,14 % называются заэвтектоидными. Процессы структурообразования рассмотрим на примере сплава V. До температуры t10 (линия ES) аустенит охлаждается без изменения состава. Несколько ниже этой температуры аустенит достигает предельного насыщения углеродом согласно линии растворимости углерода в аустените ЕS. В интервале температур t10 ? 727 °C из пересыщенного аустенита выделяется высокоуглеродистая фаза - цементит, который называется вторичным. Состав аустенита меняется по линии ЕS и при температуре 727 °С достигает точки S (0,8 %С). Максимальное количество вторичного цементита:

% Цвторичн.= (2,14 ? 0,8) 15@ 18 (24)

Ниже 727 ?С происходит эвтектоидное превращение: аустенит состава точки S (0,8 %С) распадается на смесь феррита состава точки Р (0,025 %С) и цементита. Таким образом, структура заэвтектоидной стали характеризуется зернами перлита и вторичного цементита.

В реальной стали с 1,2 %С (У12) количество вторичного цементита составляет всего около 6 %.

% Цвторичн. = (1,2 ? 0,8) 15 = 6 (25)

При медленном охлаждении цементит, как правило располагается в виде тонкой оболочки. В разрезе это выглядит как сетка цементита. Более благоприятной формой цементита является зернистая, она не приводит к значительному снижению пластических свойств стали.

16. Технология получения белого и серых чугунов

Белый и серый чугун. Серый и белый чугун ы резко различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатываются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ковкого чугуна.

Серые чугуны -- это литейный чугун. Серый чугун поступает в производство в виде отливок. Серый чугун является дешевым конструкционным материалом. Он обладает хорошими литейными свойствами, хорошо обрабатывается резанием, сопротивляется износу, обладает способностью рассеивать колебания при вибрационных и переменных нагрузках. Свойство гасить вибрации называется демпфирующей способностью. Демпфирующая способность чугуна в 2--4 раза выше, чем стали. Высокая демпфирующая способность и износостойкость обусловили применение чугуна для изготовления станин различного оборудования, коленчатых и распределительных валов тракторных и автомобильных двигателей и др. Выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ) :СЧ 10(143--229), СЧ 15 (163-229), СЧ 20 (170-241), СЧ 25 (180-250), СЧ 30(181-255), СЧ 35 (197-269), СЧ 40 (207-285), СЧ 45 (229-289).

Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введении в сплав кремния около 5% цементит серого чугуна практически полностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная структура с включениями графита. При дальнейшем уменьшении содержания кремния формируется структура серого чугуна на перлитной основе с включениями графита.

Механические свойства серых чугунов зависят от металлической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными --серые чугуны на ферритной основе. Поскольку графит имеет очень малую прочность и не имеет связи с металлической основой чугуна, полости, занятые графитом, можно рассматривать как пустоты, надрезы или трещины в металлической основе чугуна, которые значительно снижают его прочность и пластичность. Наибольшее снижение прочностных свойств вызывают включения графита в виде пластинок, наименьшее -- включения точечной или шарообразной формы.

По физико-механическим характеристикам серые чугуны условно можно разделить на четыре группы: малой прочности, повышенной прочности, высокой прочности и со специальными свойствами.

Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших количеств никеля и хрома, молибдена и иногда титана или меди.

Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Химический состав шихты для изготовления модифицированного чугуна подбирают таким, чтобы обычный модифицированный чугун затвердевал бы в отливке с отбелом (т.е. белым или половинчатым). Модификаторы -- ферросилиций, силикоалюминий, силикокальций и др. -- добавляют в количестве 0,1 --0,3% от массы чугуна непосредственно в ковш во время его заполнения. В структуре отливок из модифицированного серого чугуна не содержится ледебуритного цементита. Вследствие малого количества вводимого в чугун модификатора его химический состав практически остается неизменным. Жидкий модифицированный чугун необходимо немедленно разливать в литейные формы, так как эффект модифицирования исчезает через 10--15 мин.

17. Технология термической обработки стали: отжиг Й и ЙЙ типа

Термическая обработка имеет главное значение именно для стали. Это обусловлено, с одной стороны, необыкновенно широким распространением стали как конструкционного (и инструментального) материала, а с другой стороны, ни для одного сплава термическая обработка не дает такого эффекта по изменению свойств, как для стали.

"Стальной" участок диаграммы Fe - Fe3C.

В соответствии со сказанным выше и основываясь на приведенном на рис. стальном участке диаграммы Fe - С видами термической обработки стали будут отжиг I и II рода; закалка, отпуск.

Отжиг I рода - нагрев до различных температур с целью гомогенизации, снятия внутренних напряжений, рекристаллизации. Если в процессе нагрева и охлаждения в сплаве (стали) происходят полиморфные превращения, то они являются лишь явлениями, сопутствующими гомогенизации, так как нет необходимости в фазовой перекристаллизации.

Отжиг II рода (или фазовая перекристаллизация) - нагрев выше Ас3 (или /Ас1) с последующим медленным непрерывным или ступенчатым ( (изотермическим) охлаждением. Частный случай отжига II рода - нормализация (охлаждение на спокойном воздухе).

18. Технология термической обработки стали: закалка

Закалка с полиморфным превращением - нагрев выше Ас3 (или Ac1) с последующим быстрым охлаждением. Отпуск - нагрев закаленной стали до температуры не выше Ас,.

Закалка без полиморфных превращений (а, следовательно, и последующее старение) - сравнительно редкий случай при термической обработке сталей. Она характерна для аустенитных сталей, не имеющих полиморфных превращений, и используется для растворения карбидов или интерметаллидов.

19. Разновидности перлита

Перлит в металловедении, одна из структурных составляющих железоуглеродистых сплавов сталей и чугунов: представляет собой эвтектоидную (см. Эвтектоид) смесь двух фаз феррита и цементита (в легированных сталях карбидов). П. продукт эвтектоидного распада аустенита при сравнительно медленном охлаждении железоуглеродистых сплавов ниже 723 °С. При этом g-железо переходит в a-железо, растворимость углерода в котором составляет лишь около 0,02%; избыточный углерод выделяется в форме цементита или карбидов. В зависимости от формы различают П. пластинчатый (основной вид П.; обе фазы имеют форму пластинок) и зернистый (округлые зёрнышки, или глобули, цементита располагаются на фоне зёрен феррита). С увеличением переохлаждения растет число колоний П., то есть участков с однообразной ориентацией пластинок феррита и цементита (карбидов), а сами пластинки становятся более тонкими. Механические свойства П. зависят в первую очередь от межпластиночного расстояния (суммарная толщина пластинок обеих фаз): чем оно меньше, тем выше значение предела прочности и предела текучести и ниже критическая температура хладноломкости. При перлитной структуре облегчается механическая обработка стали. Дисперсные разновидности П. иногда называют сорбитом и трооститом.

20. Превращение аустенита в мартенсит

Быстрое охлаждение стали, нагретой до высоких температур предотвращает течение диффузионных процессов распада аустенита. Однако аустенит не переохлаждается до комнатной температуры --в процессе охлаждения он превращается в мартенсит. Твердый раствор углерода в у - железе превращается в пересыщенный твердый раствор углерода в а - железе, существующий только в метастабильном состоянии. Превращение заключается лишь в изменении упаковки атомов без изменения концентрации твердого раствора.

Мартенситное превращение обладает рядом особенностей; Превращение аустенита в мартенсит было первым в котором эти особенности были обнаружены. В дальнейшем оказалось, что превращения с такими характерными чертами имеют место во многих металлах и сплавах и являются одним из главных видов превращений в области температур, в которой процессы диффузии и самодиффузии протекают медленно. В настоящее время все превращения этого типа называют мартенситными.

Известен ряд особенностей мартенситного превращения. Однако основным его признаком, определяющим и все другие особенности, является своеобразный механизм образования кристаллов новой фазы, а именно кооперативное и закономерное перемещение атомов, протекающее так, что они смещаются один относительно другого на расстояния, не превышающие межатомные; в результате же перестройки атомов получается макроскопический сдвиг. Внешним признаком такого механизма является рельеф на полированной поверхности образующийся в результате превращения. Кооперативность, т. е. взаимосвязанность и упорядоченность атомных перемещений при перестройке, обусловливает возможность превращения при низких температурах, при которых диффузионные перемещения атомов весьма редки.

Большой интерес, который с давних пор проявляют металлурги к превращению аустенита в мартенсит, обусловливается, с одной стороны, необычным его характером, с другой стороны, тем, что с ним связана проблема закалки стали. Для понимания природы этого превращения необходимо установить, что именно является причиной и движущей силой превращения, каков его механизм, а также выяснить причины следующих главных особенностей кинетики превращения: а) большая скорость образования отдельных кристаллов мартенсита и отсутствие их последующего роста; б) быстрое затухание процесса возникновения новых кристаллов мартенсита при остановке охлаждения и распространение превращения на некоторую область температур.Кроме того, требуют объяснения и такие явления как аномальное влияние скорости охлаждения на протекание превращения аустенита в мартенсит; протекание превращения в процессе пластической деформации; стабилизация аустенита.

21. Основы резания металлов

Элементы и углы резца. Принцип работы любого режущего инструмента основан на действии клина. Наиболее наглядно можно рассмотреть элементы и геометрию режущего инструмента на примере токарного резца.

Основные элементы резца. Резец состоит из рабочей части -- головки (рис. 1), которая непосредственно принимает участие в отделении срезаемого слоя металла; нижней опорной поверхности подошвы, на которую опирается резец при установке на станке, и тела (стержня), с помощью которого резец закрепляется в резцедержателе.

Основными элементами резца являются: передняя поверхность 1, по которой сходит стружка; главная задняя поверхность 3, обращенная к поверхности резания; вспомогательная задняя поверхность 4, обращенная к обработанной поверхности; главная режущая кромка 2, являющаяся пересечением передней и главной задней поверхностей, вспомогательная режущая кромка 5, являющаяся пересечением передней и вспомогательной задней поверхностей, и вершины 6.

Основные элементы резца

Процесс резания при фрезеровании сложнее, чем при точении. При точении резец непрерывно находится в контакте с заготовкой и срезает стружку постоянного сечения. При всех видах фрезерования с заготовки срезается прерывистая стружка переменной толщины.

Кроме того, при фрезеровании каждый зуб фрезы входит в контакт с обрабатываемой заготовкой и выходит из контакта при каждом обороте фрезы. Вход зуба в контакт с обрабатываемой заготовкой сопровождается ударом.

Таким образом, условия работы фрезы значительно тяжелее условий работы резца при точении. Поэтому важно знать основные закономерности процессов фрезерования, чтобы в каждом конкретном случае производить обработку при наивыгоднейших условиях с наибольшей производительностью.

Явления, сопровождающие процесс резания

Как указывалось выше, процесс резания металлов при фрезеровании не имеет принципиальных отличий от процесса резания при точении. Остановимся на некоторых явлениях, сопровождающих процесс резания. Срезанный слой металла в виде стружки, как известно, может иметь различный вид в зависимости от условий обработки. По классификации проф. И. А. Тиме стружка может быть следующих типов: сливная, скалывания и надлома.

Нарост при резании металлов. При резании вязких металлов в некоторых случаях на передней поверхности инструмента образуется так называемый нарост. Это прикрепившийся (приварившийся) к передней поверхности резца сильно деформированный кусочек обрабатываемого материала в виде клина большой твердости (182). Этот кусочек металла непрерывно сходит со стружкой и снова образуется. Он по существу является режущей частью инструмента и предохраняет режущую кромку от износа. Однако если на передней поверхности инструмента образовался нарост, то ухудшается качество обработанной поверхности. Поэтому при чистовой обработке металлов, а также при нарезании резьбы нарост является вредным явлением. Для его ликвидации следует тщательно доводить переднюю поверхность инструмента или изменять скорость резания (чаще в сторону ее увеличения до 30 м/мин и выше), а также применять соответствующие условиям обработки смазывающе-охлаждаю-щие жидкости.

Усадка стружки. При резании металлов стружка деформируется и оказывается короче того участка, с которого она срезана (183). Это явление укорочения стружки по длине называется продольной усадкой стружки.

Объем металла при деформировании практически не меняется. Следовательно, укорачивание стружки по длине должно сопровождаться увеличением площади поперечного сечения стружки. Увеличение площади поперечного сечения называется поперечной усадкой стружки.

Деформирование стружки приводит к ее завиванию. Канавки режущих инструментов (сверл, протяжек, фрез и др.) должны обеспечивать возможность свободного размещения завивающейся стружки.

Тепловые явления при резании металлов.В процессе резания металлов обрабатываемая деталь, режущий инструмент и стружка нагреваются. При увеличении скорости резания, особенно во время снятия тонких стружек, температура в зоне резания увеличивается до 60°. При дальнейшем повышении скорости резания в ряде случаев можно наблюдать сходящую стружку, нагретую до ярко-красного каления (900° С).

На обработанной поверхности стальной детали при этом могут быть заметны оттенки всех цветов побежалости, свидетельствующие о высокой температуре тончайшего поверхностного слоя детали в момент соприкосновения ее с задней поверхностью инструмента. Повышение температуры в зоне резания происходит в результате превращения затрачиваемой на процесс резания механической энергии в тепловую. Необходимо отметить, что как в стружке, так и в инструменте теплота распределяется неравномерно. В режущем инструменте при непрерывной его работе устанавливается постоянный тепловой режим за несколько минут работы. Практически выравнивание температуры в обрабатываемой детали заканчивается уже после ее обработки. Образующееся в зоне резания тепло оказывает большое влияние на весь процесс резания и связанные с ним явления (наростообразование, износ инструмента и др.). Поэтому в теории резания металлов тепловым явлениям при резании металлов уделяется большое внимание.

Шероховатость обработанной поверхности. Проблема улучшения качества выпускаемой продукции наряду с непрерывным повышением производительности труда является важнейшей в машиностроении.

При оценке качества готовой детали учитывают следующие основные показатели: точность размера, точность геометрической формы и шероховатость поверхности.

Шероховатость обработанной поверхности зависит от следующих факторов: правильного выбора геометрических параметров (углов заточки) инструмента и прежде всего переднего угла, углов в плане, правильного выбора подачи, скорости резания, а также применения соответствующих смазывающе-охлаждающих жидкостей. Для получения высокого класса шероховатости поверхности необходимо также, чтобы передняя и задние поверхности инструмента были тщательно доведены (обработка алмазными или абразивными мелкозернистыми кругами из зеленого карбида кремния). Вибрации при резании металлов. В процессе резания металлов при определенных условиях возникают вибрации (колебания). Появление вибраций во многих случаях является основной причиной, ограничивающей возможность повышения режимов резания и производительности труда. Вибрации при резании металлов вредно отражаются на стойкости инструмента. Даже слабые вибрации препятствуют достижению высокого класса шероховатости обработанных поверхностей. При прочих равных условиях возможность возникновения вибраций при обработке чугуна значительно меньше, чем при обработке стали. Вибрации можно устранить или уменьшить путем применения инструмента с малыми задними и большими передними углами, а также выбором соответствующих скоростей резания и условий охлаждения, при которых снижается интенсивность колебаний. Для устранения или уменьшения вибраций применяют специальные устройства -- виброгасители.

22. Сварка

Сварка -- процесс получения неразъёмного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого. Обычно применяется для соединения металлов, их сплавов или термопластов, а также в медицине.

Для производства сварки используются различные источники энергии: электрическая дуга, газовое пламя, лазерное излучение, электронный луч, трение, ультразвук. Развитие технологий позволяет в настоящее время осуществлять сварку не только на промышленных предприятиях, но и на открытом воздухе, под водой и даже в космосе. Производство сварочных работ сопряжено с опасностью возгораний, поражений электрическим током, отравлений вредными газами, облучением ультрафиолетовыми лучами и поражением глаз.

Контактная сварка При сварке происходят два последовательных процесса: нагрев свариваемых изделий до пластического состояния и их совместное пластическое деформирование. Основными разновидностями контактной сварки являются: точечная контактная сварка, стыковая сварка, рельефная сварка, шовная сварка.

Точечная сварка При точечной сварке детали зажимаются в электродах сварочной машины или специальных сварочных клещах. После этого между электродами начинает протекать большой ток, который разогревает металл деталей в месте их контакта до температур плавления. Затем ток отключается и осуществляется "проковка" за счёт увеличения силы сжатия электродов. Металл кристаллизуется при сжатых электродах и образуется сварное соединение.

Стыковая сварка Заготовки сваривают по всей плоскости их касания. В зависимости от марки металла, площади сечения заготовок и требований к качеству соединения стыковую сварку можно выполнять одним из способов. Стыковая сварка сопротивлением

Заготовки, установленные и закреплённые в стыковой машине, прижимают одну к другой усилием определённой величины, после чего по ним пропускают электрический ток. При нагревании металла в зоне сварки до пластического состояния происходит осадка. Ток выключают до окончания осадки. Данный способ сварки требует механической обработки и тщательной зачистки поверхностей торцов заготовок.

Неравномерность нагрева и окисление металла на торцах заготовок понижают качество сварки сопротивлением, что ограничивает область её применения. С увеличением сечения заготовок качество сварки снижается особенно заметно, главным образом из-за образования окислов в стыке.

Контактная сварка непрерывным оплавлением трубы газопровода диаметром 1420 мм в Пскове на заводе ТЭСО. Состоит из двух стадий: оплавления и осадки. Заготовки устанавливают в зажимах машины, затем включают ток и медленно сближают их. При этом торцы заготовок касаются в одной или нескольких точках. В местах касания образуются перемычки, которые мгновенно испаряются и взрываются. Взрывы сопровождаются характерным выбросом из стыка мелких капель расплавленного металла. Образующиеся пары металла играют роль защитной атмосферы и уменьшают окисление расплавленного металла. При дальнейшем сближении заготовок образование и взрыв перемычек происходят на других участках торцов. В результате заготовки прогреваются в глубину, а на торцах возникает тонкий слой расплавленного металла, облегчающий удаление окислов из стыка. В процессе оплавления заготовки укорачиваются на заданный припуск. Оплавление должно быть устойчивым (непрерывное протекание тока при отсутствии короткого замыкания заготовок), особенно перед осадкой.

При осадке скорость сближения заготовок резко увеличивают, осуществляя при этом пластическую деформацию на заданный припуск. Переход от оплавления к осадке должен быть мгновенным, без малейшего перерыва. Осадку начинают при включённом токе и завершают при выключенном.

Стыковая сварка непрерывным оплавлением обеспечивает равномерный прогрев заготовок по сечению, торцы заготовок перед сваркой не требуют тщательной подготовки, можно сваривать заготовки с сечением сложной формы и большой площадью, а также разнородные металлы и позволяет получать стабильное качество стыков. Её существенным преимуществом является также возможность сравнительно легко автоматизировать процесс.

Стыковую сварку оплавлением применяют для соединения заготовок сечением до 0,1 м?. Типичными изделиями являются элементы трубчатых конструкций, колеса, кольца, рельсы, железобетонная арматура, листы, трубы.

Рельефная сварка На деталях для сварки предварительно создают рельефы -- локальные возвышения на поверхности размером несколько миллиметров в диаметре. При сварке контакт деталей происходит по рельефам, которые расплавляются, проходящим через них, сварочным током. При этом происходит пластическая деформация рельефов, выдавливаются оксиды и загрязнения. После прекращения протекания сварочного тока происходит кристаллизация расплавленного металла и образование соединения. Преимуществом данного вида сварки является возможность получения за один цикл нескольких сварных соединений высокого качества.

Диффузионная сварка

Сварка осуществляется за счёт диффузии -- взаимного проникновения атомов свариваемых изделий при повышенной температуре. Сварку проводят в вакуумной установке, нагревая места соединения до 800 °C. Вместо вакуума может быть использована среда защитных газов. Методом диффузной сварки можно пользоваться при создании соединений из разнородных металлов, отличающихся по своим физико-химическим свойствам, изготавливать изделия из многослойных композитных материалов.Способ был разработан в 1950-х годах Н. Ф. Казаковым.

Кузнечная сварка Первый в истории вид сварки. Соединение материалов осуществляется за счёт возникновения межатомных связей при пластическом деформировании инструментом (ковочным молотом). В настоящее время в промышленности практически не используется.

Сварка высокочастотными токами Источником теплоты служит высокочастотный ток, проходящий между свариваемыми изделиями. При последующем пластическом деформировании и остывании образуется сварное соединение.

Сварка трением Если жестко закрепить одну деталь, а другую, прижав к ней, вращать, то за счет механической работы сил трения детали в месте прикосновения сильно разогреются, оплавятся и сварятся. Способ достаточно экономичный. Автоматизированые установки для сварки трением потребляют электроэнергии в 10 раз меньше, чем установки для контактной сварки. Соединяются детали за считанные секунды, при этом практически нет газовых выделений.

Способ позволяет сваривать разнородные материалы: медь и алюминий, медь и сталь, алюминий и сталь и т. д.

23. Специальные виды литья

кристаллический дефект деформация литье

1.1 Сущность метода и область применения. Сущность состоит в том, что по неразъемной легкоплавкой модели изготавливают неразъемную разовую форму. Модели из этой формы выплавляют, а образовавшуюся полость заливают жидким металлом. При этом способе получаемые отливки настолько точны, что объем механической обработки, уменьшается на 80... 100% ив 1,5...2 раза сокращается расход жидкого металла. Высокая точность и чистота поверхности отливки обеспечиваются: применением неразъемных моделей (модели выплавляют, и не требуется их расталкивать); отсутствием формовочных уклонов; изготовлением стержней в процессе формовки, а не отдельно в стержневых разъемных ящиках; использованием маршалита (кварцевая мука) в качестве наполнителя в формовочной смеси, что обеспечивает получение гладкой поверхности отливки. Литье по выплавляемым моделям применяют при производстве отливок очень сложной конфигурации из любых литейных сплавов, в том числе из высоколегированных сталей, имеющих высокую температуру плавления и трудно поддающихся механической обработке и ковке. Этим способом можно получать отливки массой 0,02... 100 кг, с толщиной стенок до 0,5 мм и отверстиями диаметром до 2 мм.

1.2 Технология получения отливок литьем по выплавляемым моделям включает следующие этапы: а) изготовление разъемных пресс-форм; б) получение неразъемных легкоплавких моделей в пресс-формах; в) изготовление неразъемной разовой формы по легкоплавким моделям; г) выплавление моделей из формы; д) обжиг формы; е) заливка формы металлом и выбивка готовых отливок.

Разъемные пресс-формы изготовляют из стали или алюминиевых сплавов. Полость пресс-формы точно повторяет конфигурацию и размеры будущей детали с учетом усадки модельного состава.

Неразъемные легкоплавкие модели получают запрессовкой в пресс-форму модельного состава, нагретого до тестообразного состояния. Для его изготовления широко используют легкоплавкие материалы: парафин, стеарин, воск, церезин, канифоль и др. Легкоплавкая модель в отличие от обычной является точной копией изготовляемой детали: она неразъемна, имеет все внутренние полости, отверстия, резьбу и не имеет стержневых знаков.На рис. 1 приведен чертеж отливаемой детали 1 и неразъемной модели, отличающейся от нее наличием питателя 2. Модели питателями "припаивают" к общему легкоплавкому стояку 3, и в результате получают блок моделей. Чтобы изготовить литейную форму, готовый блок моделей окунают в огнеупорную смесь, представляющую собой суспензию маршалита (60...70 %) в гидролизованном этилсиликате (30...40 %). После окунания на моделях, питателях и стояке остается тонкая огнеупорная пленка смеси 4. Эта же смесь заполняет все полости и отверстия в моделях, образуя стержни. Для упрочнения огнеупорной пленки блок моделей посыпают мелким сухим кварцевым песком 5. Прилипая к сырой пленке, песок образует огнеупорный слой, который сушат либо на воздухе, либо помещая блок моделей в аммиачную камеру для ускоренной химической сушки. Когда слой высыхает, операции окунания, посыпания песком и сушки повторяют от 3 до 5 раз. Послесушки последнего огнеупорного слоя получают форму в виде многослойной оболочки с заформованными легкоплавкими моделями. Форму помещают в сушильный шкаф и выдерживают при температуре более 100 °С или погружают в горячую воду. Модели и элементы литниковой системы (стояк и питатели) плавятся и вытекают из формы. Для выжигания остатков модельного состава из полости, а также для упрочнения оболочки полученную литейную форму в металлическом ящике 6 засыпают металлической дробью и помещают в термическую печь, где обжигают при температуре 800... 900 °С. Заливку металла производят в горячую форму, что дает возможность получать тонкостенные сложной конфигурации отливки. Выбивку отливок и отделение литников осуществляют на виброустановках. Кроме выплавляемых моделей в литейном производстве используют выжигаемые модели при изготовлении ответственных отливок массой до 3,5т из чугуна, стали и цветных сплавов в единичном производстве. Для изготовления выжигаемых моделей используют пенополистирол, который в 50... 100 раз легче древесины, легко режется горячей проволокой и легко склеивается. рис.2 литье по выжигаемой моделям

Склеиванием можно получить полистироловые выжигаемые модели самой сложной конфигурации. Этот метод отличается большой точностью и экономией металла из-за отсутствия формовочных уклонов.

Модель с литниковой системой заформовывают песчано-глинистой смесью 4 в металлическом ящике 6. Во время заливки модель с литниковой системой остается в форме и жидкий металл 5 выжигает их и одновременно заполняет полость формы.

2. Изготовление отливок литьем в оболочковые формы Сущность заключается в том, что разовую литейную форму изготовляют в виде оболочки, используя для формовочной смеси в качестве связующего материала фенольные термореактивные смолы, прочно цементирующие мелкий кварцевый песок, являющийся наполнителем. Изготовление оболочковой формы исключает потребность в опоках, резко снижает расход формовочной смеси, легко механизируется и автоматизируется. Использование формовочной смеси, состоящей из 92...95 % мелкого кварцевого, магнезитового или циркониевого песка и 4...6 % термореактивной фенолформальдегидной смолы, обеспечивает малую шероховатость поверхности и более высокую точность отливок (5...8 класса), чем изготовленных в песчаноглинистых формах, так как оболочка твердеет на модели и сохраняет ее размеры. Литье в оболочковые формы применяют в крупносерийном и массовом производствах при получении ответственных фасонных мелких и средних отливок из различных сплавов.

2.2 Технология изготовления оболочковой формы начинается с нанесения пульверизатором на металлическую модельную плиту разделительного состава, облегчающего снятие оболочки. Затем модельную плиту нагревают в электрической печи до температуры 200...220 °С , устанавливают над бункером и закрепляют моделью вниз . Бункер переворачивают на 180°, и формовочная смесь падает на нагретую модельную. Модельная плита с оболочковой полуформой и собранная форма.

При выдержке в течение 20...30 с смола плавится и, обволакивая тонкой пленкой мелкие зерна песка, образует оболочку толщиной б...8 мм. Бункер возвращают в исходное положение, и непрореагировавшая формовочная смесь падает на его дно. Снятую с бункера модельную плиту с непрочной оболочкой отправляют в электрическую печь с температурой около 350 °С. Здесь смола в течение 90...180 с полимеризуется и необратимо твердеет, образуя прочную оболочковую полуформу. По такой же технологии изготавливают другую полуформу. Для снятия готовой оболочковой полуформы модельная плита 1 с закрепленной полумоделью 3 снабжена толкателями 4, находящимися на уровне плиты, и толкателями 2, которые выступают из нее и образуют в полуформе углубления. На другой модельной плите (здесь не показано) толкатели расположены на несколько миллиметров ниже плоскости разъема, чтобы образовать выступы на второй полуформе против углублений на первой. С помощью этих выступов и углублений фиксируют положение полуформ при сборке оболочковой формы. При нажатии на плиту 6 толкатели снимают полуформу 5 с модельной плиты. В одной из полуформ на стержневые знаки устанавливают стержень, закрывают другой полуформой, скрепляют их скобами, струбцинами или склеивают по плоскости разъема. Собранную оболочковую форму 7 помещают в. металлический ящик 8, засыпают крупным песком или чугунной дробью 9 и заливают металлом. К моменту полной кристаллизации металла отливки смола из смеси выгорает, форма и стержни разупрочняются и легко разрушаются, освобождая отливку при выбивке.

3. Изготовление отливок в металлических формах Сущность заключается в том, что вместо разовой песчано-глинистой используют металлическую форму, называемую кокилем. Обладая по сравнению с песчано-глинистыми формами приблизительно в 60 раз более высокой теплопроводностью, кокили обеспечивают мелкозернистую структуру отливок, что повышает их прочность. При кокильном литье отпадает необходимость в модельно-опочной оснастке, в формовочных и стержневых смесях, что не только дает большую экономию, но и снижает количество пыли и улучшает санитарные условия труда; повышается точность и чистота поверхности отливки; обслуживание кокилей не требует рабочих высокой квалификации; значительно повышается производительность и уменьшаются необходимые производственные площади. Технологический процесс кокильного литья можно легко механизировать. Механизированные кокили имеют устройство, позволяющее закрывать и раскрывать их от пневматического или гидравлического привода. При массовом производстве несколько кокильных машин устанавливают на вращающиеся карусели, поворачивающиеся на необходимый угол через определенное время, за которое производится заливка кокиля.

Наряду с преимуществами у кокильного литья есть и недостатки: высокая стоимость кокилей позволяет использовать их только в серийном и массовом производствах; опасность образования трещин в отливках из-за неподатливости металлического кокиля; чугунные отливки в кокиле получают отбеленными и требуют длительного отжига, что удорожает их производство.

Кокильное литье применяют в условиях крупносерийного и массового производства при изготовлении несложных по конфигурации отливок с толщиной стенок 3...100 мм из чугуна, стали и цветных металлов.

3.2 Конструкция кокиля. По конструкции различают кокили неразъемные вытряхные и разъемные с горизонтальным и вертикальным разъемами. Разъемные кокили состоят из двух половин 6, центрирующихся направляющими штырями 10. Чтобы избежать коробления, кокиль снабжают ребрами жесткости 5 либо делают коробчатой формы. На наружной стенке кокиля для его ускоренного охлаждения иногда отливают пальцы 8. Отверстие или внутреннюю полость в отливке образует песчаный стержень 1 либо металлический 9. Металл заливают в литниковую чашу 3, и по стояку 4 и питателям 7 он заполняет полость формы 2. Поскольку металлические стержни неподатливы, то во избежание образования в отливке трещин их удаляют из формы до начала усадки металла. Если внутренняя конфигурация отливки очень сложна, то металлические стержни делают из нескольких^ частей или заменяют песчаными. Литчиковая система размещается в плоскости разъема кокиля. Для выхода воздуха из формы во время ее заливки кроме выпоров 11 в плоскости разъема по всей высоте кокиля прорезают щели глубиной 0,3... 0,5 мм (на рисунке не показаны).

Изготавливают кокили из серого чугуна, стали, а также из цветных сплавов литьем с последующей механической обработкой.

3.3 Особенности технологии изготовления отливок в кокилях. Изготовление отливок в кокиле состоит из таких операций: очистка кокиля от старой облицовки; нанесение огнеупорного защитного покрытия или покраска рабочей поверхности кокиля; сборка формы с установкой стержней; заливка кокиля; выдержка отливки в форме; раскрытие кокиля и удаление из него отливки.

Во избежание отбеливания чугунных отливок подбирают химический состав чугуна, обеспечивающий графитизацию в условиях повышенной скорости охлаждения. С этой же целью перед заливкой чугуна кокиль нагревают до 250...300 °С и время выдержки отливок в кокиле сокращают до минимума.

Если в кокиле получают отливки из силумина (сплав алюминия с кремнием), то отпадает необходимость вводить натрий в сплав перед заливкой формы для измельчения структуры, так как быстрое охлаждение измельчает кремний в образующейся эвтектике.

При получении в кокиле отливок из сплавов на медной основе полость формы покрывают жирными красками. Между расплавом и кокилем образуется газовая прослойка, которая устраняет образование пригара на поверхности отливки.

4. Изготовление отливок литьем под давлением Сущность состоит в том, что жидким металлом принудительно заполняют металлическую пресс-форму под давлением, которое поддерживают до полной кристаллизации отливки. Давление обеспечивает быстрое и хорошее заполнение формы, высокую точность и малую шероховатость поверхности отливки. Принудительное питание отливки жидким металлов исключает возможность образования усадочных раковин, пористости и не требует установки прибылей. Ускоренная кристаллизация металла в металлической пресс-форме под давлением обусловливает образование мелкозернистой структуры. Благодаря внешнему давлению растворенные в металле газы остаются в твердом растворе, что снижает газовую пористость металла. Отливки, полученные этим методом, как правило, не имеют припусков на механическую обработку и после удаления из формы являются готовыми деталями. Литьем под давлением можно получать отливки с толщиной стенки до 0,5 мм, сложной конфигурации и с отверстиями диаметром до 1 мм. Высокая стоимость пресс-форм, имеющих сложную конфигурацию и требующих высокой точности изготовления, обусловливает целесообразность применения литья под давлением только в крупносерийном и массовом производствах тонкостенных отливок достаточно сложной конфигурации из сплавов цветных металлов массой до 50 кг.

4.2 Оборудование и технология литья под давлением. Литье под давлением осуществляют на компрессорных и поршневых машинах высокой производительности, дающих 200...400 отливок в час. Поршневые машины выпускают с горячей или холодной камерой сжатия, расположенной горизонтально или вертикально. Машины с горячей камерой сжатия, в которых камера находится непосредственно в расплаве, применяют для получения отливок из сплавов с низкой температурой плавления на основе цинка, олова и свинца. Машины с холодной камерой сжатия, в которых камера вынесена за пределы расплава, используют для получения отливок из более тугоплавких цветных сплавов на основе меди, алюминия и магния. На машинах с вертикальной холодной камерой сжатия расплав 4 заливают в камеру сжатия 5 (положение 1). Верхний поршень 1, опускаясь, давит на расплав и на нижний поршень 10, который при движении вниз открывает литниковый канал 3. Металл заполняет полость 2 пресс-формы, состоящей из двух половин 6 и 7 (положение 11). Объем жидкого металла должен быть больше объема полости формы, чтобы между верхним и нижним поршнем оставался избыток металла. Давление верхнего поршня поддерживают до полной кристаллизации отливки, после чего пресс-форму раскрывают и отливку 9 вместе с литником 12 выталкивают из формы толкателями 8. Нижний поршень выталкивает наружу избыток металла 11 (положение 111), и его отправляют в переплав.

Cхема работы поршневой машины с горячей камерой сжатия. Чугунный тигель 13 с жидким металлом все время подогревают снизу газом через форсунку 21. Перед заливкой пресс-форму 19 закрывают и мундштук 18 соединяется с каналом 17. При верхнем положении поршня 16 через отверстие 14 сплав заполняет камеру сжатия 15 и канал. При движении вниз поршень впрессовывает жидкий металл в полость формы. После затвердевания металла давление снимают, поршень движется вверх, форму раскрывают и отливку выталкивают толкателями 20. Машины с горячей камерой сжатия более производительны и расходуют меньше жидкого металла, однако их нельзя применять для литья сплавов с температурой плавления более 500 °С из-за быстрого изнашивания поршня.

В машинах с холодной камерой сжатия поршень контактирует с расплавом в течение короткого промежутка времени и поэтому мало изнашивается. Здесь можно значительно повысить давление, что гарантирует высокую плотность и прочность отливок. Если в машинах с горячей камерой сжатия давление достигает 20 МПа, то в машинах с холодной камерой сжатия при литье алюминиевых и медных сплавов давление может достигать 100... 300 МПа.

Компрессорные машины, работающие на сжатом воздухе, применяются редко и поэтому здесь не рассматриваются.

5. Изготовление отливок центробежным литьем Сущность состоит в том, что жидкий металл заливают во вращающуюся с определенной скоростью литейную форму. Она вращается в течение всего времени кристаллизации металла отливки. При этом металл центробежной силой прижимается к стенкам формы, что обеспечивает получение плотных, с повышенной прочностью отливок, так как газы и шлак, обладающие меньшей плотностью в результате сепарации, вытесняются во внутренние полости отливки и затем их удаляют механической обработкой.

Ось вращения формы может быть горизонтальной, вертикальной и наклонной. Если диаметр отливки значительно меньше ее длины (трубы, гильзы, втулки), то ось вращения формы размещают горизонтально. Если же диаметр отливки больше, чем ее высота (колеса, шкивы, шестерни), то ось вращения располагают вертикально . В обоих случаях ось отливки совпадает с осью вращения формы и внутренняя полость получается без стержней, а толщина стенки отливки определяется количеством заливаемого металла. Этот способ используют при изготовлении отливок, имеющих форму тела вращения. При изготовлении мелких фасонных отливок ось вращения формы может не совпадать с осью отливки. В этом случае внутренние полости образуют с помощью стержней, а металл заливают в центральный общий литник, из которого по радиально расположенным питателям он попадает в полость формы. Такой способ называется центрифугированием. Использование высокопроизводительных центробежных установок, отсутствие стержней и работ, связанных с их производством, намного повышает производительность труда, а отсутствие литниковой системы и прибылей значительно экономит металл. Центробежное литье применяют в массовом, серийном и единичном производстве отливок из различных сплавов в металлических и песчаных формах. Этим способом отливают трубы, цилиндровые втулки, гильзы автотракторных двигателей, заготовки для поршневых колец, шестерни, шкивы, орудийные стволы, а также получают двухслойные (биметаллические) отливки, поочередно заливая форму различными сплавами.

5.2 Центробежный способ получения литых чугунных труб является самым распространенным. Металлическая форма 3 вращается электродвигателем 1 и охлаждается водой. Форма установлена на рельсовой тележке с уклоном 2...50. Жидкий чугун из ковша 5 по неподвижному желобу 4 попадает в форму. Форма, помимо вращения, по мере заполнения металлом перемещается влево. В крайнем левом положении форма продолжает вращаться до полной кристаллизации металла. Затем форма возвращается в исходное положение вправо, а труба вместе со стержнем 2 (образующим раструб трубы) удаляется из формы клещами влево.

24. Основные операции свободной ковки

В зависимости от формы и размеров изготавливаемой поковки могут применяться различные ковочные операции. Наиболее характерными являются: осадка, протяжка, гибка, прошивка, рубка, кузнечная сварка.

При осадке уменьшается высота заготовки и за счет этого увеличивается поперечное сечение. При этом возможна полная осадка всей заготовки и неполная, когда осаживается только одно место заготовки (например, головка болта). Неполная осадка обычно называется высадкой.

Протяжка предназначена для увеличения длины заготовки за счет уменьшения ее поперечного сечения, ина выполняется путем многократного обжатия заготовки от ее середины к краям ударами молота по подбойке или между бойками ковочного молота. При этом после каждогообжатия заготовка поворачивается вокруг своей оси на 90 и IW.

При протяжке механические свойства поковки повышаются в продольном направлении. Если требуется, чтобы поковка имела высокие качества во всех направлениях, то она сперва осаживается, а затем протягивается.

Гибка предназначена для придания заготовке изогнутой формы по заданному контуру. Приемы выполнения операции зависят от формы и размеров заготовки. Загибание малой поковки производится на роге наковальни. Полосовая заготовка небольшого сечения укладывается между верхним и нижним 2 бойками молота и загибается с помощью ударов кувалды, а заготовка большого сечения -- в подкладном штампе 4 с помощью раскатки 3.

Для получения отверстия в поковке последнюю нагревают, укладывают над отверстием в наковальне и по установленному сверху пробойнику наносят удары. Операция называется прошивкой. Отверстие пробивается сначала с одной стороны заготовки; затем окончательно с другой. Большое отверстие в толстой заготовке получают в два приема: сначала его пробивают малым пробойником, затем расширяют большим.

Рубка служит для разделения заготовки яа части. Заготовка надрубается зубилом (топором) с одной стороны, затем поворачивается на 180° и отрубается.

Кузнечная сварка применяется для соединения металлических частей. Места сварки нагреваются до определенной температуры я затем свариваются частыми и несильными ударами кувалдой либо ковочными молотами или прессами. В зависимости от формы свариваемых частей различают сварку встык, в паз и внахлестку.

Размещено на Allbest.ru


Подобные документы

  • Технологические процессы приготовления литейных расплавов, их свойства. Классификация кокилей, область применения; литниковая система; достоинства и технико-экономические показатели производства отливок. Изготовление кокильного литья из серого чугуна.

    курсовая работа [57,5 K], добавлен 13.02.2013

  • Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

    контрольная работа [318,1 K], добавлен 03.10.2014

  • Характеристика чугуна как железоуглеродистого сплава, содержащего 2 % углерода. Классификация чугуна по металлической основе и форме графитовых включений. Физические особенности структура разновидностей чугуна: белого, серого, высокопрочного, ковкого.

    реферат [1,0 M], добавлен 13.06.2012

  • Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.

    презентация [7,7 M], добавлен 14.10.2013

  • Чугун - сплав железа с углеродом. Его распространение в промышленности. Классификация чугунов, его особенности, признаки, структура и свойства. Скорость охлаждения отливки. Характеристика серого, высокопрочного, легированного, белого и ковкого чугуна.

    реферат [507,9 K], добавлен 03.08.2009

  • Маркировка, химический состав и механические свойства хромистых чугунов. Основные легирующие элементы, стойкость чугунов в коррозии. Литая структура чугунов с карбидами. Строение евтектик белых износостойких чугунов, области применения деталей из них.

    курсовая работа [435,0 K], добавлен 30.01.2014

  • Точечные дефекты в кристаллической решетке реальных металлов: вакансии, дислоцированные атомы и примеси. Образование линейных дефектов (дислокаций). Роль винтовой дислокации в формировании растущего кристалла. Влияние плотности дислокаций на прочность.

    презентация [205,4 K], добавлен 14.10.2013

  • Расчет плавильного отделения, технологический процесс выплавки чугуна в печи. Программа формовочного и стержневого отделений. Очистка отливок в галтовочном барабане периодического действия. Контроль процесса литья. Модифицирование серого чугуна.

    дипломная работа [5,3 M], добавлен 01.02.2012

  • Получение литейных расплавов. Классификация, изготовление кокилей. Изготовление кокильного литья из серого чугуна. Достоинства и технико-экономические показатели производства отливок в кокили. Технические требования к конструкции и материалу кокилей.

    курсовая работа [98,9 K], добавлен 12.03.2013

  • Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.

    презентация [1,5 M], добавлен 21.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.