Переработка жидкого топлива

Нефть, ее происхождение и состав. Методы извлечения нефти из скважин. Виды и характеристики нефтепродуктов. Характеристика первичной и вторичной перегонки нефти: крекинга, риформинга. Физико-химические основы процессов. Коксование нефтяных остатков.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 20.02.2012
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

без регенерации катализатора и

с регенерацией катализатора (ультраформинг).

Выбор катализатора риформинга определяется механизмом реакций, протекающих на нем. Реакции гидрирования и дегидрирования протекают по окислительно-восстановительному механизму и катализируются металлами, реакции изомеризации и гидрокрекинга протекают по ионному механизму и катализируются кислотами. Поэтому в каталитическом крекинге используются бифункциональные катализаторы состава {Me + + Al2Оз}, где: Me = молибден, платина, рений, Al2O3 -- катализатор изомеризации, промотируемый фторидами или хлоридами металлов, являющийся одновременно носителем.

В соответствии с природой катализатора различают следующие разновидности процесса риформинга:

платформинг (катализатор -- платина),

рениформинг (катализатор -- рений),

риформинг на молибденовом катализаторе.

Вследствие низкой активности молибденовых катализаторов они в настоящее время в промышленности не используются. Высокой активностью и селективностью обладают полиметаллические катализаторы, содержащие платину, кадмий и рений, например, катализатор, КР-104, стабильно работающие без регенерации до одного года и обеспечивающие выход бензина с ОЧ до 90. Все катализаторы на основе платины чувствительны к каталитическим ядам, к числу которых относятся соединения серы, азота и некоторых металлов. Поэтому сырье перед подачей на операцию риформинга подвергается гидроочистке и сушке.

Превращения углеводородов при риформинге описываются уравнением реакции 1 порядка

U = кср(а-х), (1.3)

где кср -- усредненная константа скорости.

Тепловой эффект процесса зависит от удельного веса в нем эндотермических реакций ароматизации (?Н1) и, следовательно, от содержания в сырье нафтенов и экзотермических реакций гидрокрекинга (?Н2). Соотношение это таково, что суммарный тепловой эффект риформинга ?Н = ?Н1 - ?Н2 < 0. Риформинг на платиновом катализаторе (платформинг) характеризуется следующими параметрами процесса:

температура 470--520 С,

давление водородсодержащего газа 2--1 МПа,

объемная скорость сырья 1 -- 2ч-1,

кратность циркуляции водородсодержащего газа 1300-- 1100 м33. Понижение температуры приводит к увеличению выхода бензина и уменьшению содержания в них ароматических углеводородов. Повышение давления снижает скорость образования газа и кокса, но уменьшает выход ароматических углеводородов. Снижение объемной скорости сырья влияет аналогично повышению температуры, однако при меньших скоростях возрастает объем аппаратуры и падает экономичность процесса.

7.2 Технология каталитического риформинга

В зависимости от цели процесса существует две разновидности каталитического риформинга:

ароматизация -- получение ароматических индивидуальных углеводородов и

облагораживание бензина -- получение бензина с высоким содержанием ароматических углеводородов и высоким ОЧ.

Эти процессы различаются природой сырья, технологическим режимом и составом получаемых продуктов. В табл.1.4 приведены основные данные по этим процессам платформинга.

Таблица 1.4 - Характеристика процессов платформинга

Характеристика

Вариант платформинга

Облагораживание

Ароматизация

Цель процесса

Повышение октаново-

Синтез индивидуальных

го числа бензина

углеводородов

Сырье

Широкая фракция бен

Узкие фракции бензина

зина прямой гонки

прямой гонки

Температура, °С

410--520

410--520

Давление, МПа

3--4

2

Продукты процесса

Катализат 15%,

Бензол, толуол,

газ 15%

ксилолы

Применение продуктов

Автобензин, газ для

Сырье для органическо

гидрокрекинга

го синтеза

Рис.1.11 - Схема платформинга для облагораживания бензина

Установки каталитического риформинга состоят из трех блоков:

блока предварительной гидроочистки сырья;

блока платформинга очищенного сырья (гидрогената);

блока стабилизации бензина (катализата) в случае облагораживания бензина или блока выделения углеводородов в случае ароматизации.

Установки платформинга по режиму работы делятся на:

установки со стационарным слоем катализатора и

установки с движущимся слоем катализатора.

На рис. 1.11 представлена принципиальная схема платформинга для получения облагороженного бензина.

Технологическая схема установки со стационарным слоем катализатора АП-64 производительностью один миллион тонн в год бензина АИ-95 приведена на рис.1.12.

Исходное сырье, пройдя теплообменник 1, смешивается с циркулирующим газом гидроочистки и избыточным водородсодержащим газом риформинга и нагревается в первой секции печи 2. Образовавшаяся газосырьевая смесь поступает в реактор гидроочистки 3, где очищается от соединений серы, азота и кислорода. Очищенная парогазовая смесь охлаждается в теплообменнике 1 и холодильнике 4 и поступает в сепаратор гидроочистки высокого давления 5, где разделяется на циркуляционный газ и жидкий гидрогенизат (очищенный бензин). Газ, содержащий водород и сероводород, подается в абсорбер 6, где очищается от сероводорода раствором этаноламина, после чего в виде циркуляционного газа смешивается с сырьем, поступающим на гидроочистку. Гидрогенизат из сепаратора 5 поступает в отпарную колонну 7, где из него удаляют остатки сероводорода, водяные пары и газообразные углеводороды. Стабильный гидрогенизат выводится из нижней части колонны, проходит теплообменник 1, смешивается с водородсодержащим газом риформинга и, пройдя вторую секцию печи 2, поступает в батарею из трех реакторов платформинга 9. Из последнего реактора батареи газопродуктовая смесь проходит теплообменник 1 и холодильник 10 и охлажденная до 30°С поступает в сепаратор высокого давления 11 для отделения циркуляционного газа от жидкого катализата. Циркуляционный газ возвращается в систему платформинга и гидроочистки, а нестабильный катализат (бензин) поступает в сепаратор низкого давления 12.

Рис.1.12 - Технологическая схема облагораживания бензина:

1, 1 -- теплообменники, 2 -- печь двухсекционная, 3-- реактор гидроочистки, 4,10, 14-- холодильники, 5 -- сепаратор гидроочистки, 6 -- этанола-минный абсорбер, 7 -- отпарная колонна, 9 -- реактор платформинга, 11 -- сепаратор платформинга высокого давления, 12 -- сепаратор платформинга низкого давления, 13 -- колонна стабилизации

Из сепаратора катализат направляется в колонну стабилизации 13, где из него отделяются легколетучие продукты, направляемые на сжижение. Стабильный бензин отбирается из нижней части колонны и, пройдя холодильник 14, поступает на фракционирование.

Технологический процесс платформинга, проводимый с целью получения индивидуальных ароматических углеводородов (ароматизация), не отличается принципиально по аппаратуре и условиям от процесса облагораживания бензина, но имеет ряд особенностей:

Сырье (бензин прямой гонки) предварительно разгоняется на узкие фракции, каждая из которых ароматизируется отдельно. Отбирают фракции с интервалами температур кипения: головная до 60°С, бензольная 62--15°С, толуольная 15--115°С и ксилольная 115--150°С.

Полученные ароматические углеводороды выделяются из ароматизированных фракций экстракцией этиленгликолем или диэтиленгликолем, в которых не растворяются алканы и нафтены.

Смесь ксилолов разделяется сверхчеткой ректификацией на колонне с 320 тарелками, а пара- и метаизомеры -- кристаллизацией.

На рис. 1.13 представлена принципиальная схема ароматизации.

Выход ароматических углеводородов при ароматизиции составляет от массы бензина: бензол 25%, толуол 30%, ксилолы 20--30%, газ, содержащий водород, метан, этан и пропан до 20%.

8. Очистка нефтепродуктов

Полученные в результате прямой гонки и различных вторичных процессов нефтепродукты содержат компоненты, отрицательно сказывающиеся на их эксплуатационных свойствах. В светлых нефтепродуктах (бензин, керосин, дизельное топливо) содержатся алкены и алкадиены, органические соединения серы (тиоспирты тиоэфиры), нефтяные кислоты, высшие амины и азотсодержащие гетероциклы. Помимо этих примесей в дизельном топливе присутствуют высшие алканы с температурой затвердевания -10°С и выше, которые кристаллизуются при низких температурах. В нефтяных маслах, полученных разгонкой мазута, могут содержаться также смолы и полициклические ароматические углеводороды с боковыми цепями.

Многие из этих соединений вызывают нестабильность свойств нефтепродуктов при хранении и транспортировке, коррозию аппаратуры, образование нагара и токсичных продуктов сгорания. Для их удаления используют методы депарафинизации и очистки нефтепродуктов.

Рис. 1.13 - Схема платформинга для ароматизации

Депарафинизацией называется процесс выделения из нефтепродуктов твердых углеводородов, выпадающих в виде кристаллов при охлаждении. Наиболее распространенным методом депарафинизации стал метод с использованием селективных растворителей, основанный на различной растворимости углеводородов. В качестве растворителей используются ацетонто-луольная или метилэтилкетонтолуольная смесь и спиртовой раствор карбамида. При карбамидной депарафинизации карбамид образует с алканами нормального строения с числом углеродных атомов более шести и циклическими углеводородами с длинными алифатическими радикалами кристаллические комплексы

RH + CO(NH2)2 - RH · CO(NH2)2 -?Н.

Полнота извлечения алканов возрастает с понижением температуры (-?Н), увеличением времени обработки нефтепродуктов растворителем и снижением вязкости системы. Для этого используют растворители, хорошо растворяющие как алканы, так и карбамид. Образовавшиеся кристаллические комплексы отделяют от нефтепродуктов отстаиванием, фильтрованием или центрифугированием. Для очистки нефтепродуктов от примесей используются методы адсорбции, абсорбции и гидрирования.

При адсорбционной очистке в качестве адсорбентов используют естественные глины, синтетические алюмосиликаты, активированный уголь. Для повышения адсорбционной активности поглотители предварительно активируют обработкой кислотами и прокаливанием и диспергируют до размеров частиц около 0,1 мм.

При абсорбционной очистке используют такие селективные растворители, как фенол, фурфурол, смесь фенола с пропаном, жидкий оксид серы (IV), серная кислота, гидроксид натрия. Так, например, при щелочной абсорбционной очистке протекают реакции:

H2S + 2NaOH = Na2S + 2Н2О, RSH + NaOH = RSNa + H2O,

RCOOH + NaOH = RCOONa + H2O

с образованием соединений, растворимых в воде и удаляемых при очистке.

При кислотной очистке из нефтепродуктов удаляются, главным образом, алкены, ароматические углеводороды и некоторые соединения серы:

R-CH=CH2 + H2SO4 = R-CH(OSO3H)-CH3,

С6Н6 + H2SO4 = C6H5OSO3H + H2O,

H2S + H2SO4 = S + SO2 + 2H2O,

2RSH + H2SO4 = R-S-S-R + SO2 + 2H2O.

Технологическая схема абсорбционной очистки нефтепродуктов включает операции экстракции, разделения образующихся фаз, непрерывной регенерации растворителя и его обезвоживания.

Заключительной операцией очистки нефтепродуктов, которую проходят почти все нефтяные топлива прямой гонки, крекинга и риформинга, является гидроочистка. Ее используют также для облагораживания смазочных масел. Гидроочистка представляет одну из разновидностей гидрогенизационного процесса и протекает в условиях, близких к условиям гидрокрекинга и на тех же катализаторах.

В процессе гидроочистки из нефтепродуктов удаляются соединения серы, азота, кислорода и некоторых металлов и гидрируются ненасыщенные углеводороды:

RSH + H2 = RH + H2S

R2S + 2H2 = 2RH + H2S

RNH2 + H2 = RH + NH3

ROH + H2 = RH + H2O

R-CH=CH2 + H2 = R-CH2-CH3.

Образовавшиеся продукты гидрирования отделяются от нефтепродуктов путем поглощения их сорбентами (этаноламин, раствор гидроксида натрия).

9. Коксование нефтяных остатков

Коксованием называется термохимический процесс превращения тяжелых остатков нефтепереработки (гудрон, асфальт, крекинг-остаток) в нефтяной кокс и светлые нефтепродукты (бензин, газойль). Коксование позволяет не только получать беззольный электродный кокс, но и увеличить выход светлых нефтепродуктов за счет расщепления высококипящих углеводородов коксуемых остатков и тем самым повысить глубину переработки тяжелого нефтяного сырья.

Коксования нефтяных остатков может проводиться в установках различного типа:

в горизонтальных кубах периодического действия;

в необогреваемых коксовых камерах полунепрерывного действия;

в реакторах кипящего слоя непрерывного действия.

При коксовании в кипящем слое нагретое сырье контактирует в реакторе «КС» с подвижным, нагретым до более высокой температуры, чем сырье, инертным теплоносителем и коксуется на поверхности частиц этого теплоносителя. В современных установках этого типа (рис.1. 14) теплоносителем является гранулированный кокс с размерами частиц до 0,3 мм, который создает в реакторе кипящий слой.

В этом кипящем слое одновременно протекают три процесса:

--собственно коксование, сопровождающееся образованием продуктов разложения и уплотнения;

прокаливание кокса и удаление из него летучих веществ;

вторичные реакции продуктов коксования в паровой фазе.

Жидкое сырье подается в реактор 1, в котором поступающим снизу водяным паром создается кипящий слой кокса. Парогазовая смесь продуктов коксования поступает в парциальный конденсатор реактора 2, где разделяется на газ, бензиновый

Рис. 1.14 - Схема коксования нефтяных остатков:

дистиллят, направляемый на ректификацию, и газойль. Коксовый теплоноситель из реактора подается в коксонагреватель 3, где частично сжигается в токе воздуха. Нагретый кокс охлаждается в коксовом холодильнике 5 и поступает в бункер кокса 6, а частично возвращается в реактор 1. Дымовые газы из коксонагревателя 3 проходят котел-утилизатор 4 и выбрасываются в атмосферу.

Выход продуктов коксования (сырье -- гудрон) составляет: кокс 14%, газойль 63%, бензин 12%, газ 10%.

Размещено на Allbest.ru


Подобные документы

  • Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа [98,4 K], добавлен 14.11.2010

  • Общая схема и этапы переработки нефти. Процесс атмосферно-вакуумной перегонки. Реакторный блок каталитического крекинга. Установка каталитического риформинга, ее назначение. Очистка и переработка нефти, этапы данного процесса, его автоматизация.

    презентация [6,1 M], добавлен 29.06.2015

  • Современные процессы переработки нефти. Выбор и обоснование метода производства; технологическая схема, режим атмосферной перегонки двукратного испарения: физико-химические основы, характеристика сырья. Расчёт колонны вторичной перегонки бензина К-5.

    курсовая работа [893,5 K], добавлен 13.02.2011

  • Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.

    курсовая работа [71,9 K], добавлен 13.06.2012

  • Схема переработки нефти. Сущность атмосферно-вакуумной перегонки. Особенности каталитического крекинга. Установка каталитического риформинга с периодической регенерацией катализатора компании Shell. Определение качества бензина и дизельного топлива.

    презентация [6,1 M], добавлен 22.06.2012

  • Процесс первичной перегонки нефти, его схема, основные этапы, специфические признаки. Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти. Установка с двухкратным испарением нефти, выход продуктов первичной перегонки.

    курсовая работа [1,3 M], добавлен 14.06.2011

  • Физико-химические, эксплуатационные свойства нефти. Абсолютная плотность газов при нормальных условиях. Методы определения плотности и молекулярной массы. Важный показатель вязкости. Предельная температура фильтруемости, застывания и плавления нефти.

    презентация [1,1 M], добавлен 21.01.2015

  • Классификация и физические свойства нефти и нефтепродуктов, ограниченность их ресурсов. Проблема рационального использования нефти: углубление уровня ее переработки, снижение удельного расхода топлива на производство тепловой и электрической энергии.

    курсовая работа [3,4 M], добавлен 05.09.2011

  • Технологические методы переработки твердого топлива. Переработка, крекинг, пиролиз нефти. Топливо, его значение и классификация. Газообразное топливо и его переработка. Деструктивная гидрогенизация - метод прямого получения искусственного жидкого топлива.

    учебное пособие [312,3 K], добавлен 11.04.2010

  • Ректификация нефтяных смесей. Системы теплообмена установок первичной перегонки нефти и ректификации углеводородных газов. Оценка возможности повышения эффективности системы теплообмена. Рассмотрение оптимизированной схемы с позиции гидравлики.

    дипломная работа [854,7 K], добавлен 20.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.