Снабжение природным газом городов и населенных пунктов

Улучшение бытовых условий населения и экологической обстановки в городах и населенных пунктах. Определение расчетных расходов газа отдельными потребителями. Факторы, влияющие на систему газоснабжения. Определение физико-химических параметров газа.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 19.02.2012
Размер файла 542,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Изобретение поясняется чертежами, где на рисунке 1 представлен поперечный разрез водонагревателя; на рисунке 2 - вид сверху; на рисунке 3 - вид спереди водонагревателя с двумя жаровыми трубами.

Водонагреватель емкостной газовый содержит цилиндрический теплоизолированный резервуар 1, с крышей 2, в котором расположены жаровые трубы 3 Г-образной конфигурации, состоящие из соединенных друг с другом горизонтальных 4 и вертикальных 5 участков. Горизонтальные участки 4 одним концом закреплены в стенке резервуара 1 и подключены к горелочному устройству 6, а другим концом - размещены на опоре скольжения 7, закрепленной на днище резервуара 1. На крыше 2 резервуара 1 расположены соосно вертикальным участкам 5 жаровых труб 3 патрубки 8, имеющие дефлекторы 9. Взрывной клапан 10 также расположен на крыше 2 резервуара 1. Над крышей 2 размещена дымовая труба 11, являющаяся одновременно продолжением вертикального участка жаровой трубы. Горелочное устройство 6 подключено к блоку управления 12, через отсечной клапан 13. Датчик температуры 14, расположенный на стенке внутри резервуара, подключен также к блоку управления 12. Водонагреватель имеет также подогреватели газа 15, жестко закрепленные в стенке резервуара 1 и расположенные компланарно по отношению к соответствующим горизонтальным участкам 5 Г-образных жаровых труб 3, регул тор давления, расположенный перед отсечным клапаном 13. Подвод воды осуществляется по подпиточному и циркуляционному водоводам, а отвод воды - по отводящему водоводу (не показаны). Подвод воздуха к горелкам осуществляется по отдельному воздуховоду 16.

Водонагреватель емкостной газовый работает следующим образом.

Нагрев жидкости в резервуаре 1 осуществляется за счет передачи теплоты через стенку каждой из жаровых труб 3 от продуктов сгорания, выходящих из горелочных устройств 6. При этом, длину горизонтального участка 4 подбирают таким образом, чтобы исключить образование конденсата водяных паров в жаровой трубе. При этом среднюю температуру стенки жаровой трубы 3 выбирают выше температуры конденсации водяных паров на стенке жаровой трубы 3 или «точки росы по водяным парам».

В качестве примера конкретного исполнения определения оптимальной длины L горизонтального участка Г-образной жаровой трубы в двухтрубном водонагревателе используем следующие исходные данные:

- расход нагреваемой воды G=7,67 кг/с;

- теплоемкость нагреваемой воды С=4,19 кДж/(кг,o С);

- температура нагреваемой воды на выходе из резервуара tвых =15 єС;

- температура нагреваемой воды на входе в резервуар tвх =1 єС;

- количество Г-образных жаровых труб n=2;

- средний коэффициент теплопередачи от стенки жаровой трубы к нагреваемой воды К=0,2 кВт/(мІ єС);

- наружный диаметр жаровой трубы D=0,53 м;

- высота вертикального участка жаровой трубы, смачиваемого жидкостью, Н= 4,5 м;

- средняя температура стенки жаровой трубы tст =100 єС.

При подстановке исходных данных можно определить, что при номинальной теплопроизводительности длина горизонтальных участков каждой из двух жаровых труб должна быть L=2,8 м. При этом водяные пары, образующиеся при сжигании газа, вывод тс с дымовыми газами из жаровых труб 3 и не конденсируются на их внутренней стенке.

Формула изобретения:

1. Водонагреватель емкостный газовый, содержащий резервуар с крышей, внутри которого расположены Г-образные жаровые трубы, горизонтальные участки каждой из которых подключены к горелочному устройству и расположены на опорах, установленных на днище резервуара под вертикальными участками, каждый из которых имеет соосно размещенный с ним патрубок, отличающийся тем, что длину горизонтального участка каждой из Г-образных жаровых труб выбирают из условия.

2. Водонагреватель емкостный газовый, отличающийся тем, что он дополнительно снабжен блоком управления, подключенным к датчику температуры, расположенному внутри резервуара на его стенке, и к горелочному устройству.

3. Водонагреватель емкостный газовый, отличающийся тем, что он дополнительно содержит взрывной клапан, расположенный на крыше резервуара.

4. Водонагреватель емкостный газовый, отличающийся тем, что каждый из вертикальных участков Г-образных жаровых труб выполнен выступающим за пределы резервуара и патрубка, при этом каждый патрубок снабжен дефлектором, расположен на крыше резервуара и имеет высоту менее одного диаметра Г-образной жаровой трубы.

5. Водонагреватель емкостный газовый, отличающийся тем, что опора выполнена в виде опоры скольжения.

6. Водонагреватель емкостный газовый, отличающийся тем, что он дополнительно содержит подключенные к горелочному устройству подогреватели газа, жестко закрепленные в стенке резервуара и расположенные компланарно по отношению к каждому из горизонтальных участков Г-образных жаровых труб.

Изобретение относится к водяным системам отопления и горячего водоснабжения и может быть использовано для нагрева воды в системах с индивидуальным отоплением. Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению надежности и КПД установки и снижению температуры дымовых газов и давления в системе отопления. Котельная установка состоит из котла, имеющего патрубки прямой и обратной линии воды, дымовую трубу, верхняя часть которой над котлом выполнена в виде вертикального трубчатого кольцеобразного экономайзера, содержащего переливную трубку с запорным устройством, соединенным с котлом через патрубок прямой линии и через патрубок с подающей линией системы отопления, верхняя часть экономайзера выполнена в виде расширительного бака, последний соединен с воздушным ресивером посредством воздушной трубки, на обратной линии патрубка установлены предохранительный клапан и подпиточное устройство (рисунок 4).

Рисунок 2. Конструкция блочной котельной(вид спереди)

Конструкция котельной установки

Известна котельная установка, содержащая снабженный контактными воздухонагревателем и экономайзером котел, параллельно подключенный подвод щей и отвод щей лини ми к греющим трактам тепловой сети и поверхностного теплообменника, нагревающий тракт которого соединен с контактным воздухонагревателем и снабжен регул тором расхода, а экономайзер сообщен с подвод щей линией котла, установка содержит также датчик температуры воздуха (см. а.с. СССР №1666855, кл. F 22 D 1/36). Недостатком данной котельной установки являются высокие затраты на нагрев воды. Известны также котельные установки, состоящие из котла, в верхней чести соединенного с экономайзером и прямой линией отопления.

Рисунок 3. Конструкция блочной котельной(вид сбоку)

Эти установки утилизируют тепло отходящих топочных газов котлов, работающих на твердом, жидком и газообразном топливе, одновременно позволяет производить подогрев воды из хозпитьевого водопровода (см. промышленные котлы ДЕ, ДКВР, ЭБ-2-94, ЭБ-1-300). Недостатком данных котельных установок является сложность конструкции, высокая стоимость получения тепла.

Рисунок 4. Конструкция блочной котельной (вид сбоку)

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятый авторами за прототип является жаротрубный вертикальный водогрейный котел, содержащий топку с горелочным устройством, патрубками прямой и обратной воды, при этом верхняя часть котла выполнена в виде бака, содержащего переливную трубку и воздушную трубку с манометром, установленную на высоте, равной или большей отношения увеличения объема горячей воды в системе отопления и площади сечения в верхней части котла между вертикальным пучком жаровых труб и внешней трубой (см. пат. РФ №2150051, кл. F 24 Н 1/28). Недостатком данного котла является высокая температура дымовых газов после котла (170 °С) и необходимость в связи с этим поддерживать высокое давление в системе отопления (8 атм) с целью исключения закипания воды в верхней части котла. Технический результат, который может быть достигнут с помощью предлагаемого изобретения сводится к повышению надежности КПД установки и снижению температуры дымовых газов и давления в системе отопления. Технический результат достигается с помощью котельной установки, содержащей котел с патрубками прямой и обратной линией воды, дымовую трубу, расширительный бак, при этом верхняя часть дымовой трубы выполнена в виде вертикального трубчатого кольцеобразного экономайзера, снабженного переливной трубкой с запорным устройством, соединенным с котлом с помощью патрубка прямой линии, при этом верхняя часть экономайзера выполнена в виде бака, последний соединен с воздушным ресивером посредством воздушной трубки.

Котельная установка состоит из котла 1, имеющего патрубок 2 прямой и патрубок 3 обратной линии воды, дымовую трубу 4, верхняя часть которой над котлом 1 выполнена в виде вертикального трубчатого кольцеобразного экономайзера, содержащего переливную трубку 5 с запорным устройством 6, соединенным с котлом 1 через патрубок 2 прямой линии и через патрубок 7 с подающей линией системы отопления (на фиг. не показано), верхняя часть экономайзера выполнена в виде расширительного бака 8, последний соединен с воздушным ресивером 9 посредством воздушной трубки 10, на обратной линии патрубка 3 установлены предохранительный клапан 11 и подпиточное устройство 12.

Котельная установка работает следующим образом.

Система отопления заполняется холодной водой через подпиточное устройство 12 до уровня переливной трубки 5, после запорное устройство 6 и подпиточное устройство 12 закрываются. Котел 1 включается в работу, вода нагревается в котле 1, поднимается вверх и через патрубок 2 прямой линии воды поступает в верхнюю часть дымовой трубы 4, выполненной в виде вертикального трубчатого экономайзера, и продолжает нагреваться отходящими дымовыми газами от котла 1, при этом уровень воды над переливной трубкой 5 поднимается, возникает циркуляционное давление в системе отопления, вода поступает в систему отопления по патрубку 7 и возвращается в котел 1 по патрубку 3 с предохранительным клапаном 11, температура дымовых газов после экономайзера снижается до 100 °С. Поднявшаяся вода над переливной трубкой 5 вытесняет воздух из расширительного бака 6 в воздушный ресивер 9 по воздушной трубке 10, что повышает давление в системе на 0,3-0,5 атм и препятствует вскипанию воды в расширительном баке, обеспечивая надежную работу системы отопления и повышая коэффициент полезного действия котельной установки. Предлагаемое изобретение по сравнению с прототипом и другими известными техническими решениями имеет следующие преимущества: повышение коэффициента полезного действия котельной установки на 7-9%; повышение надежности работы системы отопления; удешевление производства теплоэнергии; снижение затрат на нагрев воды; снижение температуры дымовых газов и давления в системе отопления; биологическая чистота окружающей среды.

Формула изобретения:

Котельная установка, содержащая котел с патрубками прямой и обратной воды, дымовую трубу, расширительный бак, отличающаяся тем, что верхняя часть дымовой трубы выполнена в виде вертикального трубчатого кольцеобразного экономайзера, снабженного переливной трубкой с запорным устройством, соединенным с котлом с помощью патрубка прямой линии, при этом верхняя часть экономайзера выполнена в виде расширительного бака, последний соединен с воздушным ресивером посредством воздушной трубки.

Изобретение предназначено для нагрева воды и может быть использовано в теплоснабжении. Котел содержит газотрубную и водотрубную части, установленные в одном корпусе. Газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева. Котел снабжен передней поворотной камерой, расположенной на фронте котла, и имеет со стороны фронта дополнительные поверхности нагрева в виде фронтового экрана и переднего кольцевого канала, одновременно выполняющего функции коллекторов фронтовою экрана и тепловой изоляции корпуса котла. В конвективной камере теплообменная поверхность нагрева выполнена в виде съемного конвективного блока с ходом газов сверху вниз, состоящего из плоских секций, представляющих собой трубчато-мембранные панели, соединенные с коллекторами прямоугольной формы. В конвективной камере предусмотрена дополнительная поверхность нагрева в виде заднего кольцевого канала, одновременно выполняющего функции коллекторов раздачи воды в съемный блок и вод ной объем газотрубной части котла, а также тепловой изоляции корпуса котла. Изобретение обеспечивает надежность, ремонтопригодность, эффективность и удобство эксплуатации котла.

Изобретение относится к области теплоснабжения и может быть использовано в стальных водогрейных котлах.

Известны водогрейные газотрубные котлы, содержащие топку, выполненную в виде жаровой трубы или жарового пространства, одноходовой газотрубный конвективный пучок, а также “водотрубные” (возможны при этом щелевые, кольцевые или коробчатые) элементы, по которым вода движется с существенными скоростями, значительно превышающими скорости в вод ной рубашке жаротрубных котлов. При этом все эти элементы находятся внутри общей цилиндрической или коробчатой камеры (см. а.с. СССР №779756, МПК F 24 Н 1/28, бюл. №42, 15.11.80 г.; а.с. СССР №1744378, МПК F 24 Н 1/38, бюл. №24 от 30.06.92 г.; патент РФ №2160874, МПК F 24 Н 1/00 от 20.12.2000 г.).

Недостатком таких конструкций котлов является сложность выполнения таких “водотрубных” элементов, а также то, что определенный элемент, как правило, осуществляет одну или две из следующих функций: распределение воды, или увеличение поверхности нагрева, или повышение надежности работы, или улучшение условий эксплуатации котла, или снижение потерь в окружающую среду.

Наиболее близким аналогом к предлагаемому техническому решению является водогрейный котел, содержащий газотрубную и водотрубную часть, причем газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева, сообщенной с конвективным пучком и топкой, установленными в одном корпусе (см. патент RU №2162574, МПК F 24 Н 1/32, опубл. 27.01.01 г.).

Недостатками котла-прототипа являются неразборность, плохая доступность к элементам, следовательно, низкая ремонтопригодность конвективной поверхности нагрева, а также высокое аэродинамическое сопротивление и возможность засорения конвективной поверхности нагрева. Задачей создания изобретения является разработка простой, надежной, ремонтопригодной, эффективной и удобной в эксплуатации конструкции котла.

С помощью кольцевых каналов осуществляется сразу несколько функций: увеличение поверхности нагрева котла, распределение воды, повышение надежности и срока службы котла, увеличение КПД, улучшение условий эксплуатации.

Котел содержит топку 1 в виде жаровой трубы, поворотную камеру газов 2 во фронтовой части котла, одноходовой газотрубный конвективный пучок 3, конвективную камеру 4, съемный конвективный блок 5 из плоских секций 6, содержащих трубчато-мембранные панели 7 и коллекторы прямоугольной формы 8, соединительные трубы 9 плоских секций, передний кольцевой канал 10 с разделительными перегородками 11, фронтовой экран 12 с камерой 13 дл горелки и водотрубными элементами 14, задний кольцевой канал 15 с разделительными перегородками 16, перепускной трубопровод 17 из переднего кольцевого канала 10 в задний кольцевой канал 15, перепускные трубопроводы 27 из заднего кольцевого канала 15 в съемный конвективный блок 5, переднюю трубную доску 18, заднюю трубную доску 19 с отверстиями 20 для выхода воды из задней кольцевой камеры в водяной объем 26 газотрубной части котла, выходное окно газов 21, заднюю дверцу котла 22, переднюю дверцу котла 23, собственно корпус котла 28, входной патрубок воды 24, выходной патрубок воды 25. Конвективный блок 5 достается из конвективной камеры котла 4 через заднюю дверцу 22. Передний кольцевой канал 10 соединяется с задним кольцевым каналом 15 перепускным трубопроводом 17.

Котел работает следующим образом: образующиеся при сжигании топлива в топке 1 дымовые газы поступают в поворотную камеру 2, расположенную со стороны фронта котла, далее, проход внутри трубок газотрубного конвективного пучка 3, направляются в конвективную камеру 4, проходят сверху вниз через конвективные плоские секции 6 съемного конвективного блока 5, разворачиваются на 90° и покидают котел через выходное окно 21. Вода из системы трубопроводов котельной поступает в середину переднего кольцевого канала 10 через входной патрубок воды 24, проходит через верх кольцевого канала и на противоположной стороне заходит в трубы 14 фронтового экрана 12, проходит камеру 13 дл горелки, остальные трубные элементы 14 фронтового экрана 12, и снизу переднего кольцевого экрана выходит в перепускной трубопровод 17. Циркуляция в трубных элементах фронтового экрана организуется с помощью разделительных перегородок 11 переднего кольцевого канала 10. Из перепускного трубопровода 17 вода поступает в нижнюю часть заднего кольцевого канала 15, поднимается по нему к конвективному блоку 5, проходит через перепускной трубопровод 27, плоские секции 6, их соединительные трубы 9 и выходит через трубопровод 27 в противоположную сторону заднего кольцевого канала 15, далее через отверстия 20 в задней трубной доске 19 - в водяной объем 26 газотрубной части котла, поднимается по нему вверх и выходит из корпуса котла 28 через выходной патрубок 25 в систему трубопроводов котельной. Циркуляция в заднем кольцевом канале 15 осуществляется с помощью разделительных перегородок 16.

Формула изобретения:

Водогрейный котел, содержащий газотрубную и водотрубную части, установленные в одном корпусе, при этом газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева, отличающийся тем, что он снабжен передней поворотной камерой, расположенной на фронте котла и имеет со стороны фронта котла дополнительные поверхности нагрева в виде фронтового экрана и переднего кольцевого канала, одновременно выполняющего функции коллекторов фронтового экрана и тепловой изоляции корпуса котла, а в конвективной камере теплообменная поверхность нагрева выполнена в виде съемного конвективного блока с ходом газов сверху вниз, состоящего из плоских секций, представляющих собой трубчато-мембранные панели, соединенные с коллекторами прямоугольной формы, причем в конвективной камере предусмотрена дополнительна поверхность нагрева в виде заднего кольцевого канала, одновременно выполняющего функции коллекторов раздачи воды в съемный блок и вод ной объем газотрубной части котла, а также тепловой изоляции корпуса котла.

Рисунок 5. Поперченый разрез по Б-Б

Рисунок 6. Поперечный разрез по В-В

Рисунок 7. Поперченый разрез Г-Г по Д-Д

На основании изучения и анализа выбрана блочная котельная c водогрейный котел, содержащий газотрубную и водотрубную часть, причем газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева, сообщенной с конвективным пучком и топкой, установленными в одном корпусе (патент RU №2162574, МПК F 24 Н 1/32, опубл. 27.01.01 г.), как наиболее технически совершенная и имеющая минимальные экономические показатели.

3.2 Технико-экономическое обоснование проекта

Выбор оптимального варианта трассы сводится к выявлению такого положения головной магистрали, при котором суммарная металлоемкость ответвлений к потребителям имеет минимальное значение. В этом случае используется метод математической статистики, который позволяет найти уравнение прямой (кривой) линии, расположенной на минимальном расстоянии от нескольких случайных точек (метод наименьших квадратов).

Суть метода заключается в следующем. На генеральном плане населенного пункта, промплощадки или какой-либо другой территории произвольно наносится система координат XOY и на ней фиксируется положение потребителей.

Поскольку общая металлоемкость ответвлений прямо пропорциональна их суммарной длине и среднему диаметру, при выборе оптимального варианта трассировки головной магистрали необходимо учитывать не только количество и положение потребителей, но и их нагрузка.

Анализ гидравлических режимов эксплуатации систем газо- и теплоснабжения показывает, что диаметр трубопровода при прочих равных условиях определяется расходом транспортируемой среды G в степени m. Показатель степени имеет следующие численные значения:

газопроводы низкого давления m = 0,368;

трубопроводы тепловых сетей m = 0,38;

газопроводы высокого (среднего) давления m = 0,38.

Для определения расчетных координат головной магистрали распределительного трубопровода используется следующее выражение:

(33)

Где: x, y - расчетные координаты магистрали;

a, b - искомые параметры прямой.

Задача заключается в нахождении наименьшей суммы квадратов отклонений расчетных значений координат по уравнению

(34)

Где: n - количество ответвлений к потребителям;

xi, yi - заданные координаты потребителей.

Дифференцируя функцию S по искомым параметрам a и b и приравнивая полученные выражения к нулю, приходим к следующей системе:

(35)

решая которую, находим aopt, bopt и оптимальную трассировку трубопровода:

(36)

В частном случае, когда нагрузки потребителей одинаковы, то есть Gi = const, целевая функция задачи (34) трансформируется в уравнение

(37)

Нахождение искомых значений параметров aopt, bopt сводится к решению следующей системы:

(38)

Пример: Найти оптимальную трассировку распределительного трубопровода на три потребителя с координатами

x1 = 1,0 км; y1 = 1,5 км;

x2 = 3,0 км; y2 = 2,5 км;

x3 = 5,0 км; y3 = 3,0 км;

x4 = 8,0 км; y4 = 9,0 км.

Нагрузки потребителей одинаковы.

Подставляя координаты в уравнение (38), получим

После преобразований имеем

откуда aopt = -0,45; bopt = 1,05.

Таким образом, оптимальное положение головной магистрали распределительного трубопровода определяется уравнением:

(39)

В общем случае, когда конфигурация головной магистрали представляет собой ломаную линию, содержащую k линейных участков, задача решается последовательно для каждого участка трубопровода. При этом условие оптимальной трассировки магистрали реализуется следующей системой уравнений:

где j = 1,2,….k. (40)

Если при реальном проектировании осуществить оптимальную трассировку не представляется возможным (специфика рельефа местности, особенности застройки населенного пункта и другие обстоятельства), принимаем тот вариант трассы, который обеспечивает максимальное приближение к оптимальному с учетом заданных ограничений.

На экономическую эффективность проектного (планового) решения большое влияние оказывает фактор времени.

Согласно нормативной методике, распределенные во времени затраты приводятся к сравниваемому уровню (базисному году) с помощью коэффициента приведения. Сущность этого методического подхода заключается в следующем. Денежные средства, подлежащие затрате в последующий (за базисным годом) период, определенное время используются в других отраслях народного хозяйства, отдаление предстоящих затрат, чем больше их окупаемость, тем меньше та, приведенная к сравниваемому уровню часть этих затрат, которую следует учитывать в экономических расчетах. Если затраты предшествуют базисному году, возникает экономический ущерб от замораживания денежных средств. Чем больше отдаление предшествующих затрат, тем больше народнохозяйственный ущерб и тем больше та, приведенная к сравниваемому уровню величина этих затрат, которую необходимо учитывать в экономических расчетах.

Сравнивание вариантов с учетом фактора времени происходит в тех случаях, когда варианты имеют:

- различные сроки службы;

- различную продолжительность строительства (в одну или несколько очередей);

- различное время выхода объектов на проектную эксплуатацию и т. д.

Характерной особенностью задач первого типа является необходимость учета дополнительных затрат в замену менее долговечной техники за время службы более долговечной техники. Для определения приведенных затрат по сравниваемым вариантам используется уравнение:

(41)

при m=0,1,2,…..n,

где: m - номер очередного вложения капитальных затрат;

n - количество замен оборудования за расчетный период (срок службы объекта), определяемое по уравнению

(42)

Где: - коэффициент приведения затрат для года, отдаленного от базисного на mt0 - лет.

Задачи второго типа решаются при экономическом обосновании строительства объекта (системы) в несколько этапов (очередей). Сметная стоимость строительства объекта в несколько очередей возрастает за счет дополнительных работ, связанных со сменой части установленного оборудования, устройством временных торцевых стен зданий, монтажом и демонтажем строительной техники и механизмов и т. д. Вместе с тем происходит снижение расчетных затрат во вторую и последующие очереди вследствие их отдаленности во времени. Обеспечивается также экономия расходов по эксплуатации за счет более полного использования установленного оборудования и других основных фондов. Для определения приведенных затрат по сравниваемым вариантам используется уравнение:

(43)

Где: З - суммарные приведенные затраты, руб;

tсл - срок службы объекта;

Кt - капитальные вложения в t-ом году, руб;

Иt - расходы по эксплуатации t-ом году (без отчисления на реновацию), руб;

бt - коэффициент приведения равнопеременных затрат базисному году, определяемый по формуле:

(44)

Где: Енп - норматив приведения разновременных затрат, равный 0,08;

t - разность между годом приведения и базисным годом;

tн - начальный год расчетного периода, определяемый началом финансирования строительства объекта.

Задачи третьего типа имеют особое значение при проектировании систем инженерного оборудования новых городов или жилых массивов. По мере застройки населенного пункта, ввода потребителей в эксплуатацию расчетные нагрузки (тепло-, водо-, газопотребление и т. д.) возрастают практически от нуля до проектных (планируемых) величин. Поэтому оптимальное решение подобных задач требует подробной информации о темпах роста населенного пункта, развития его структуры и застройки, динамике потребления топливно-энергетических ресурсов и других определяющих параметров по всем годам расчетного периода строительства.

Пример. Газораспределительная станция (ГРС) может быть построена сразу на полную мощность при сметной стоимости К1= 1500000 рублей или в две очереди (вторая через 4 года) при сметной стоимости К2 = 1980000 рублей, в том числе затраты на первую очередь 1200000 рублей. Переменная часть годовых эксплуатационных расходов составляет 5% от соответствующих капитальных вложений. Срок службы станции tсл = 25 лет. Необходимо определить экономически более целесообразный вариант строительства.

Расчетные затраты по вариантам определяем, используя формулу (43):

а) При строительстве ГРС в одну очередь

б) При строительстве ГРС в две очереди

Следовательно, экономически целесообразным является строительство ГРС в одну очередь.

При проектировании многоступенчатых систем газоснабжения населенных пунктов возникает необходимость определения оптимального количества точек питания сети низкого давления, то есть выбора оптимального количества газорегуляторных пунктов.

С увеличением радиуса действия ГРП (с уменьшением количества ГРП) снижаются приведенные затраты в газорегуляторные пункты и распределительные сети высокого давления. Вместе с тем возрастают затраты в распределительные сети низкого давления за счет увеличения их среднего диаметра.

Примем в качестве целевой функции суммарные приведенные затраты по комплексу: ГРП - сети низкого давления - сети высокого (среднего) давления:

(45)

Под радиусом действия ГРП подразумевается расстояние по прямой от ГРП до точки встречи потоков газа на границе зон действия двух соседних ГРП. Выявим взаимосвязь между радиусом R действия ГРП и радиусом действия газопровода между радиусом Rг. Рассмотрим два варианта размещения ГРП на территории населенного пункта: шахматный и коридорный.

При шахматном размещении ГРП радиус действия ГРП совпадает с радиусом действия газопровода, то есть Rг = R. При коридорном варианте радиусы действия ГРП и газопровода связаны между собой следующим соотношением:

(46)

В общем случае, при смешанной схеме размещения ГРП, можно записать:

(47)

Численное значение коэффициента б изменяется в пределах от 1 до и в среднем может быть принято б ? 1,3. Выразим количество газорегуляторных пунктов n через радиус действия ГРП и площадь газоснабжаемой территории F.

и (48)

Откуда (49)

а также (50)

Следовательно, (51)

Выявим приведенные затраты по элементам газоснабжающей системы. Капитальные вложения в ГРП можно определить по формуле:

(52)

или с учетом (51) (53)

где: К'грп - удельные капитальные вложения в один ГРП, руб. Принимаются по сметным нормативам в зависимости от конструктивного решения регуляторного пункта (ГРП, ШРП и т. п.) и его пропускной способности.

Затраты по эксплуатации ГРП могут быть выражены в виде годовых отчислений от капитальных вложений по формуле:

(54)

Приведенные затраты на ГРП с учетом (53) и (54) определяется функцией:

(55)

Выявим расчетные затраты в сети низкого давления. Для газопроводов, работающих в режиме «гладких» труб:

(56)

Где: d - диаметр газопровода, см;

a - коэффициент пропорциональности, зависящий от состава газа;

Q - расход газа по трубопроводу, мі/ч;

l - длина газопровода, м;

ДP - потеря давления в газопроводе, Па.

Положив в уравнение (56) (57)

получим для среднего диаметра распределительных газопроводов низкого давления

(57)

Где: ДPн - нормативный перепад давлений в уличных распределительных сетях, Па.

Считая, что газопроводы несут только путевую нагрузку, можно записать для среднего расхода газа:

(58)

Где: q - удельный путевой расход газа, мі/ч·м.

Численные значения указанного параметра определяются по формуле

(59)

Где: ?Q - максимальный часовой расход газа населенным пунктом, мі/ч;

?lн.д. - общая протяженность уличных газопроводов низкого давления, м.

Подставив (58) в (57) и преобразуя полученное выражение, имеем

(60)

Удельные капитальные вложения в 1 м газопровода определяется по формуле

(61)

Где: а, в - стоимостные параметры 1 м газопровода, имеющие размерность руб/м и руб/м·см соответственно;

d - диаметр газопровода, см.

Численные значения параметров a и в зависят от способа прокладки газопровода (надземная или подземная), характера грунта, типа дорожных покрытий и других условий. Для подземных газопроводов низкого давления допускается применение упрощенной зависимости:

(62)

Общие капитальные вложения в сети низкого давления:

(63)

или с учетом (60) (64)

Расходы по эксплуатации одного метра газопровода низкого давления определяется по формуле:

(65)

Общие расходы по эксплуатации сетей низкого давления:

(66)

или с учетом (60) и (62) (67)

Приведенные затраты в сети низкого давления:

(68)

Подставляя (64) и (67) в (68), нетрудно убедиться, что затраты в сети низкого давления представляют собой функцию радиуса действия ГРП

(69)

Выявим расчетные затраты в сети высокого (среднего) давления.

Изменение радиуса действия ГРП (количества ГРП) мало сказывается на общей конфигурации сети высокого (среднего) давления. Изменяются, в основном, количество и протяженность ответвлений к газорегуляторным пунктам.

Суммарная протяженность ответвлений определяется количеством ГРП и их радиусом по формуле:

(70)

Численные значения коэффициента пропорциональности в зависят от схемы размещения ГРП на территории населенного пункта и варьируется в условиях реального проектирования от нуля до двух. На стадии предпроектных проработок допустимо принимать в=1.

Переменная часть капитальных вложений в сети высокого (среднего) давления

(71)

или с учетом (62) (72)

где: dср - средний диаметр ответвлений, см.

В условиях реального проектирования диаметр ответвлений к ГРП составляет dу = 50-100 мм. На стадии предпроектных проработок допустимо принимать dср = 7,5 см.

Подставив в уравнение (72) уравнения (70), получим (73)

Расходы по эксплуатации одного метра газопровода высокого (среднего) давления определяется по формуле:

(74)

Переменная часть эксплуатационных расходов по сетям высокого (среднего) давления:

(75)

или с учетом (62), (70) (76)

Переменная часть приведенных затрат по сетям высокого (среднего) давления:

(77)

Подставляя (73) и (76) в (77), нетрудно убедиться, что затраты в сети высокого (среднего) давления представляют собой функцию от радиуса действия ГРП:

(78)

Таким образом, общие затраты в систему газоснабжения будут:

(79)

Для нахождения оптимального радиуса действия ГРП необходимо взять первую производную от затрат и приравнять ее к нулю.

В результате детальной проработки приведенных уравнений получено следующее выражение для оптимального радиуса действия ГРП:

(80)

Где: Ropt - оптимальный радиус действия ГРП, м;

µ - коэффициент плотности сети низкого давления, 1/м;

q - удельная нагрузка сети низкого давления, мі/(ч·м).

На основании статистического анализа технико-экономических показателей реальных проектов газоснабжения предложены следующие расчетные уравнения:

(81)

(82)

Где: m - плотность населения газоснабжаемой территории, чел/Га;

l - удельный часовой расход газа на одного человека, мі/(ч·чел);

?Q - максимальный часовой расход газа населенным пунктом, мі/ч;

?lн.д - общая протяженность уличных газопроводов низкого давления, м;

F - площадь газоснабжаемой территории, Га.

Положив в уравнение (80) в =0,55 руб/(м·см), получим с учетом (81) и (82):

(83)

При известном значении радиуса Ropt оптимальную нагрузку ГРП находим по формуле:

(84)

Где: 2R2 - площадь территории, снабжаемой газом от одного ГРП.

Оптимальное количество ГРП в населенном пункте:

(85)

Если в проекте не удается выдержать оптимальное количество ГРП (исходя из целочисленности или технических ограничений), то лучше запроектировать меньшее количество пунктов, так как целевая функция в направлении R>Ropt изменяется более полого, чем в направлении R<Ropt.

В реальном проектировании результаты расчетов по уравнениям (80) - (85) необходимо уточнить путем дополнительных вариантных сравнений.

Пример. Определить оптимальный радиус действия, количество и оптимальную пропускную способность ГРП для системы газоснабжения со следующими исходными данными:

1. Стоимость одного ГРП К'грп =75000 руб;

2. Нормируемый перепад давлений в уличных газопроводах низкого давления ДPн = 1200 Па;

3. Плотность населения m = 360 чел/Га;

4. Удельный часовой расход газа на одного человека l = 0,08 м3/(ч·чел);

5. Площадь газоснабжаемой территории F = 8400 Га.

По уравнению (82) коэффициент плотности сети низкого давления:

Оптимальный радиус действия ГРП по формуле (83):

Оптимальная пропускная способность одного ГРП по формуле (84):

Оптимальное количество ГРП по формуле (85):

штук.

4. Организация строительства

4.1 Выбор методов производства работ

На выбор способов производства работ влияет объем работ и условия, в которых осуществляются эти работы. Наиболее рациональным методом организации монтажа санитарно-технических систем является поточный метод, при котором работы осуществляются специализированными звеньями, переходящими с одной захватки на другую и выполняющими свой комплекс работ. Монтаж производится из узлов и деталей, изготовленных на заводах или мастерских. При организации работ по монтажу санитарно-технических систем необходимо стремиться к использованию средств механизации, которые облегчат производство работ и повышают производительность труда. При выборе типа механизмов следует подбирать наиболее эффективные, которые обладают необходимыми техническими характеристиками и которые можно использовать в данных конкретных условиях монтажа санитарно-технических систем.

При организации строительства наружных инженерных сетей приходится выполнять целый комплекс трудоемких работ: разработка грунта для прокладки трубопроводов, монтаж сборных железобетонных конструкций, прокладка трубопроводов и т.д. Для выполнения указанных работ используются различные строительные машины и механизмы, и очень важно правильно подобрать наиболее экономичный комплект машин, обладающий необходимыми техническими характеристиками.

Срезка растительного слоя и предварительное планирование площадей ведется бульдозером ДЗ-28 на базе трактора Т-100.Технические характеристики: длина отвала - 3,03м, высота отвала - 1,1м, управление - канатное, мощность - 79кВт. Разработка навымет ведется экскаватором ЭО-3322В, оборудованным обратной лопатой с гидравлическим приводом. Технические характеристики: вместимость ковша - 0,65м3, наибольшая глубина копания - 7,1м, наибольшая высота выгрузки - 4,5м, максимальный радиус копания - 7,1м, мощность двигателя - 59кВт. Ограждения траншей и котлованов выполняют из инвентарных щитов высотой до 1,2м. Временные металлические пешеходные мосты из готовых деталей. Выгрузка материалов выполняется стреловидными самоходными кранами грузоподъемностью до 25т, при общей массе поднимаемого груза до 0,5т. Доработка грунта выполняется экскаватором Э 4010, оборудованным планировочным ковшом вместимостью до 0,4м3, на базе КрАЗ - 221. Технические характеристики: скребок длиной - 2,5м, высотой - 0,4-0,45м, наибольший вылет стрелы в горизонтальной плоскости - 7,38м, наибольшая глубина копания с удлинением - 4,05м, наибольший радиус копания с удлинением - 11м. Уплотнение грунта выполняют грунтоуплотняющей машиной ДУ-12Б на базе Т-100. Технические характеристики: ширина полосы уплотнения - 2,5м, глубина уплотняемого слоя - 1,2м, скорость перемещения 150м/ч.

Земляные работы. Общие положения. При строительстве линейно-протяженных сооружений и устройстве газовых сетей ведут планировку, разработку, перемещение, укладку и уплотнение грунта. Непосредственному выполнению данных процессов предшествуют или сопутствуют подготовительные процессы. Все земляные сооружения создают путем образования выемок в грунте или насыпей, которые могут быть временными или постоянными. Отдельные выемки называют котлованами, если соотношение их длины к ширине не более 10:1, и траншеями, если оно более этой величины. Наклонные боковые поверхности выемок называют откосами.

Транспортно- заготовительные работы включают в себя доставку и выгрузку материалов со складов на места производства монтажных работ.

К общестроительным работам относятся: доработка грунта в траншеи экскаватором оборудованным планировочным ковшом, устройство песчаного основания слоем 200 мм вручную.

Монтажные работы по прокладке наружных газовых сетей должны вестись согласно проекту производства работ. Современные сети газоснабжения характеризуются сборностью деталей, узлов и фасонных частей заводского изготовления: секций труб, заглушек, отводов, полу отводов, переходов, узлов для колодцев и т.п. К монтажно-сборочным работам на площадке относят следующие технологические операции: подготовка концов труб, их стыковка, подготовка концов звеньев труб, их стыковка, установка тройников, отводов, установка задвижек, монтаж присоединений для продувки, установка контрольно- измерительной аппаратуры.

Испытание газопроводов. Перед испытанием смонтированных газопроводов на прочность и герметичность должна производиться их продувка с целью очистки внутренней полости от влаги и засорений. Испытание газопроводов манометрическим методом производится строительно-монтажной организацией в присутствии технологического надзора заказчика и представителя газового хозяйства в две стадии: на прочность и герметичность. Испытание газопроводов производится с установленной арматурой и оборудованием но если они не рассчитаны на испытательное давление, то вместо них на период испытания устанавливают катушки, заглушки или пробки. Окончательное испытание газопроводов производят при их полной засыпки до проектной отметки. Сначала газопровод наполняют воздухом, а затем его выдерживают на время, необходимое для уравновешивания температуры воздуха в трубопроводе с температурой грунта.

После произведения испытательных работ производится сдача объекта в эксплуатацию.

4.2 Расчет потребности в товарно-материальных ценностях

Потребность в основных строительных материалах, деталях и оборудовании, оказывающем влияние на организацию складского хозяйства, определяем на основе результатов расчета объемов работ и норм расхода на единицу измерения по производственным нормам расхода, номенклатуре типовых индустриальных изделий. Полученные результаты заносим в таблицы.

Таблица 16. Ведомость потребности в основных строительных материалах

№ пп

Наименование работ

Ед. изм.

Кол-во работ

Наименование материалов

Ед. изм.

Расход материалов

На еди-ницу.

На весь объем

1

2

3

4

5

6

7

8

1.

2.

Антикоррозийная изоляция стыков

764

894,5

1084

764

894,5

1084

Сварка поворотных и не поворотных стыков.

764

894,5

1084

1стык

1стык

1стык

1стык

1стык

1стык

на 10 стыков.

206

49

14

206

49

14

20,6

4,9

1,4

Битум для изоляционных слоев.

Крафт - бумага.

Расход электродов.

кг

кг

кг

м2

м2

м2

кг

кг

кг

6,7

3,93

3,28

1,79

1,04

0,87

9,3

4,6

2,7

1380,2

192,57

45,92

368,74

51

12,2

191,58

22,54

3,78

Таблица 17. Ведомость потребности в изделиях, деталях и оборудовании

№ пп

Наименование работ

Ед. изм.

Кол-во работ

Наименование изделий, деталей и оборудования.

Ед. изм.

Расход изделий, деталей и оборудования

На единицу.

На весь объем

1

2

3

4

5

6

7

8

2.

Установка задвижек.

764

894,5

1084

шт.

6

1

1

Фланцевая задвижка для топливного газа.

М30Ч7БК

Серый чугун.

кг

167

167

167

1002

116

167

По циклограмме потока строится сетевой график. График строится с учетом следующих принципов:

1. Каждая работа на захватке является самостоятельной и имеет свой шифр, а также свои предшествующие и последующие события и работы;

2. При построении топологии сети надо следить за тем, чтобы в ней были правильно отражены технологические и организационные взаимосвязи между работами и комплексами.

3. При нумерации событий необходимо, чтобы номер предшествующего (начального) события был меньше последующего (конечного).

После проверки правильности взаимосвязей между работами приступают к расчету параметров сетевого графика. Сетевой график представлен в графической части курсового проекта. В таблице 18 представлены результаты расчета.

Таблица 18. Определение параметров сетевого графика

код

работ

продолжительность

работ

сроки работ

резервы времени

раннее

позднее

частные

общие

tнр

tор

tнп

tоп

ri-j

Ri-j

1-2

3

0

3

0

3

0

3

2-3

3

3

6

6

9

0

79

2-5

0

3

3

3

3

0

0

3-4

3

6

9

85

88

0

79

3-7

0

6

6

9

9

3

3

4-9

0

9

9

88

88

7

79

5-6

6

3

9

3

9

0

0

6-7

0

9

9

9

9

0

0

6-11

0

9

12

9

12

0

0

7-8

7

9

16

9

16

0

72

8-9

0

16

16

88

88

0

72

8-13

0

16

16

35

35

0

28

8-17

0

16

16

16

16

0

0

9-10

2

16

18

88

90

0

72

10-15

0

18

18

90

90

1

72

11-12

4

12

16

12

16

0

28

12-13

0

16

16

35

35

0

28

12-17

0

16

16

16

16

0

0

13-14

3

16

19

35

38

0

71

14-15

0

19

19

90

90

0

71

14-19

0

19

19

38

38

19

19

15-16

1

19

20

90

91

0

71

16-21

0

20

20

91

91

40

71

17-18

22

16

38

16

38

0

9

18-19

0

38

38

47

47

0

0

18-23

9

38

47

38

47

0

0

19-20

22

38

60

38

60

0

31

20-21

0

60

60

91

91

0

31

20-25

0

60

60

69

69

0

9

20-29

0

60

60

60

60

0

0

21-22

8

60

68

91

97

0

29

22-27

0

68

68

97

97

3

29

23-24

13

47

60

47

60

0

0

24-29

0

60

60

60

60

0

0

25-26

11

60

71

69

80

0

26

26-27

0

71

71

97

97

0

26

26-31

0

71

71

80

80

9

9

27-28

3

71

74

97

100

0

26

28-33

0

74

74

100

100

26

26

29-30

20

60

80

60

80

0

0

30-31

0

80

80

80

80

0

0

30-35

21

80

101

80

101

0

0

31-32

20

80

100

80

100

0

4

32-33

0

100

100

100

100

0

0

32-36

0

100

100

104

104

4

4

33-34

7

100

107

100

107

0

0

34-37

0

107

107

107

107

0

0

35-36

3

101

104

101

104

0

0

36-37

3

104

107

104

107

0

0

37-38

3

107

110

107

110

0

0

Стройгенплан (СГП) является частью комплексной документации на строительство и его решения должны быть увязаны с остальными разделами проекта, в том числе с принятой технологией и сроками строительства, установленными графиками. СГП должен обеспечивать наиболее полное удовлетворение бытовых нужд работающих в строительстве Решения СГП должны обеспечивать рациональное прохождение грузопотоков на площадке путем сокращения числа перегрузок и уменьшения расстояния перевозок.

Общая площадь складов для хранения материалов определяется по формуле:

(86)

Где: запас материалов для хранения

количество материалов, укладываемых на площади склада.

коэффициент использования склада, принимаемый для закрытых складов 0,5-0,7; навесов 0,5-0,6; открытых складов 0,6-0,8.

Таблица 19. Определение площадей складов

Наименование материала, узлов

Единица измерения

Суточный расход

Запас материалов

Норма складирования на 1м2

Способ хранения

Размер тип склада

На сколько дней

Кол-во

Песок

м3

28,5

3

85,5

1,5

0,6-0,8

Открытый

6*3=18

Трубы стальные

т

0,33

3

0,99

1,5-1,7

0,5-0,7

Закрытый

6*3=18

Расчет площадей временных зданий и сооружений произведен на максимальное количество работающих в смену, определяемое по графику движения рабочих с учетом рабочих, занятых на неосновном производстве (24%), неучтенных работ (10%) и ИТР (1ИТР на 20 рабочих).

Таблица 20. Расчет временных зданий

Наименование помещений

Наименование показателей

Единица измерения

норма

Кол-во чел.

Требу-емая пло-щадь

Размеры здания

Контора прораба

Площадь на 1 чел ИТР

м2

3-3,25

1

3

6Ч3=18

Умывальные и гардероб

Площадь на 1 рабочего

м2

0,4-0,5

9

4,5

6Ч2,7=14,4

Душевые

Число человек на 1 душ

чел

10-20

9

27

Площадь на 1 душ

м2

3

Помещение для сушки одежды

Площадь на 1 рабочего

м2

0,2

9

1,8

6,5Ч2,6=16,9

Помещение для обогрева рабочих

Площадь на 1 рабочего

м2

0,1

9

0,9

Помещение для приема пищи

Площадь на 1 рабочего

м2

1

9

9

Уборные

Число рабочих на 1 унитаз

чел

15-20

9

23,4

7,3Ч3,1=22,63

Площадь на 1 унитаз

м2

2,6

Расчет временного водопровода произведен по максимальному суточному расходу воды на производственные и бытовые нужды.

Максимальный секундный расход на производственные нужды, л/сек определяется по формуле:

(87)

где:коэффициент неравномерности потребления воды в смену;

суммарный максимальный суточный расход воды на производственные нужды, взятый согласно нормам расхода техникой и установками (бульдозером ДЗ-28 50 л/сут., экскаватором ЭО-3322В 50 л/сут.)

Расход воды на хозяйственно-бытовые нужды согласно нормам расхода на одного рабочего составит:

(88)

Где: nр- наибольшее количество рабочих в смену;

n1- норма потребления на 1 человека в смену - 15л;

n2- норма на прием одного душа - 30л;

к2- коэффициент неравномерности потребления воды 2,7;

к3- коэффициент использования душа 0,3.

Хозяйственно - питьевой расход при отсутствии канализации 15 л/смену; душевые установки 30 л/смену. 15 рабочих:

Расчетный расход воды составит:

(89)

Где:расход воды пожарным гидрантом, ;

По полученному расходу определим диаметр труб временного трубопровода, мм.

(90)

Принят минимальный диаметр 125 мм.

Потребность в электроэнергии определяется на основании данных о потребности в электроэнергии машинами и механизмами.

(91)

где: - мощность силовая, кВт;

- мощность устройств освещения, кВт;

к1 и к2 - коэффициенты одновременности потребления (к1=0,75, к2=1,0);

- принимается равным 0,75.

В данном случае электроэнергия расходуется на дежурное освещение в ночное время, на освещение административных и бытовых помещений, проездов и переходов:

- охранное освещение 2 кВт на 1 км;

- освещение административных и бытовых помещений 15 Вт на 1м2;

- монтаж стальных и железобетонных конструкций, сварка труб 2,4 Вт на 1 мІ;

- внутреннее освещение закрытых складов 3 Вт на мІ.

Так как суммарный расход электроэнергии менее 20 кВт, питание осуществляем от местных электрических сетей.

(92)

где:наибольший внутренний диаметр испытываемых труб, м;

испытательное давление, МПа;

средняя длина трубопроводов испытываемых в смену, м.

4.3 Решения по технике безопасности

При работе в темное время суток рабочие места должны быть освещены, а механизмы - иметь индивидуальное освещение. Спускаться в траншею и подниматься из нее следует по специальным лестницам.

В зонах работы строительных машин не должны находиться посторонние лица. Не разрешается переносить грузы над людьми, поднимать краном примерзшие материалы и конструкции, работать с оттяжкой крюка. В нерабочее время машины должны находиться в положении, исключающем возможность доступа к ним посторонних лиц.

На весь период испытания трубопроводов устанавливается охранная зона, вход в которую при повышении давления в трубах и выдерживания их под давлением запрещается. Ширина этой зоны от 7 до 25 м (в обе стороны) в зависимости от вида испытания, материала и диаметра труб.

К работам по монтажу конструкций (колодцев) и трубопроводов допускаются рабочие после проверки знаний по производству монтажных работ и получения соответствующего удостоверения. Монтажные работы должны осуществляться под руководством специально назначенного инженерно-технического работника.

Не допускается производить монтажные работы при скорости ветра более 15 м/сек, а также при гололедице, грозе или тумане, исключающем видимость в пределах фронта работ. Во время испытания трубопроводов устанавливается охранная зона, вход в которую при повышении давления и его выдерживании запрещается. Ширина этой зоны принимается не менее 7 м.

4.4 Технико-экономические показатели

1. Продолжительность строительно-монтажных работ по проекту - 14 дней.

2. Коэффициент неравномерности движения рабочих во времени:

(93)

Где: Туст- период установившегося движения рабочих.

3. Коэффициент неравномерности движения рабочих по количеству:

(94)

Где: Rmax- максимальное количество рабочих, чел.

Среднее количество рабочих, чел.:

(95)

Где: - общее количество затрат труда, чел. дн.;

Тобщ- общий срок строительства.

4. Коэффициент совмещения строительных процессов во времени вычисляется по формуле:

(96)

Где: Тпос- суммарная продолжительность выполнения всех строительных процессов при последовательном их выполнении, дн.;

Тпр- продолжительность выполнения всех строительных процессов по проекту, дн.

5. Трудоемкость 0,09 чел.дн. на 1 пог.м.

6. Уровень комплексной механизации

(97)

где: Ткм - затраты труда на комплексно-механизированный объем работ, маш. дн.;

То - затраты труда на выполнение всех строительных процессов, чел.дн.

6. Энерговооруженность одного рабочего:

(98)

Где: Мм - суммарная мощность используемых машин, механизмов, кВт.

5. Эргономические основы безопасной эксплуатации системы газоснабжения

5.1 Анализ возможных опасных и вредных факторов при эксплуатации системы газоснабжения

В ходе эксплуатации и строительства данного объекта на человека воздействуют множество отрицательных факторов. Эти факторы рассматриваются с точки зрения физиологии человека. С точки зрения эргономики и производственной санитарии при проектировании рабочего места (рабочей зоны) человека необходимо учитывать размеры тела человека, теплообмен человека с окружающей средой; особенность зрения, обоняния, дыхания, нервной системы.

Вредные факторы производственного процесса и выполняемых работ на данном объекте - солнечное излучение, низкие и высокие температуры, повышенная или пониженная влажность, сильный ветер до 8 м/с, повышенный уровень шума на рабочем месте, производственная пыль со стройплощадки - запыленность рабочей зоны, недостаточное освещение, вибрации. В процессе труда на человека кратковременно или длительно воздействуют производственные вредности или факторы, неблагоприятно влияющие на организм человека, можно разбить на три основных вида: физические (неприемлемая температура, шум, вибрация и т.д.), приводящие к виброболезни, глухоте, обморожениям, солнечным ударам, расширению вен и т. д.; химические (пыль, газы, ядовитые вещества, и пр.), приводящие к заболеванию силикозом и к другим острым хроническим заболеваниям, биологические (инфекционные заболевания). Для устранения подобных факторов разрабатываются научно - организационные, санитарно - гигиенические (применение вентиляционных установок, пылеуловителей, водяных и воздушных завес, виброизолирующих устройств) и лечебно - профилактические мероприятия, направленные на оздоровление условий труда и повышение его производительности на всех стадиях технологического процесса.


Подобные документы

  • Определение годовых расходов теплоты в зависимости от численности населения города. Итоговая таблица потребления газа городом. Определение годовых и часовых расходов газа различными потребителями города. Выбор и обоснование системы газоснабжения.

    курсовая работа [483,1 K], добавлен 03.03.2011

  • Организация строительства и монтажа систем газораспределения и газопотребления. Гидравлические расчёты газопроводов (ГП). Продольный профиль трассы ГП. Расчет расходов газа на технологические нужды при продувке и ремонтных работах систем газоснабжения.

    дипломная работа [282,4 K], добавлен 15.06.2017

  • Строительство магистральных и промысловых трубопроводов. Характеристика транспортируемого природного газа. Пересечение газопроводами преград различного назначения. Регулятор давления и его работа. Расчет сужающего устройства. Режимы газопотребления.

    дипломная работа [355,5 K], добавлен 13.11.2015

  • Проектирование наружных сетей газоснабжения. Определение площади застройки территории. Определение численности населения района. Определение годовых расходов теплоты. Годовой расход теплоты в квартирах. Определение годового и часового расхода газа.

    курсовая работа [300,3 K], добавлен 11.10.2008

  • Характеристики газообразного топлива. Расчет городской системы газоснабжения. Определение количества жителей газоснабжаемого района и расчетных расходов газа. Гидравлический расчет газораспределительных сетей. Гидравлический расчет сети среднего давления.

    курсовая работа [87,3 K], добавлен 28.05.2016

  • Определение плотности и теплоты сгорания природного газа. Потребление газа на отопление и вентиляцию. Гидравлический расчет газопровода низкого давления. Методика расчета внутридомовой сети газоснабжения. Технико-экономическая эффективность автоматизации.

    дипломная работа [184,0 K], добавлен 15.02.2017

  • Физико-химические свойства этаноламинов и их водных растворов. Технология и изучение процесса очистки углеводородного газа на опытной установке ГПЗ Учкыр. Коррозионные свойства алканоаминов. Расчет основных узлов и параметров установок очистки газа.

    диссертация [5,3 M], добавлен 24.06.2015

  • Общая характеристика района газификации. Анализ расчетных расходов газа отдельными потребителями. Гидравлический расчет газопровода среднего и низкого давления. Подбор оборудования для котельной. Экологичность и экономическая целесообразность проекта.

    дипломная работа [3,8 M], добавлен 12.07.2011

  • Построение графика потребления газа и определение его расчетных часовых расходов. Выбор общей схемы подачи газа заданным потребителям и составление расчетной схемы. Гидравлический расчет газопровода среднего давления, подбор фильтров и регуляторов.

    курсовая работа [267,2 K], добавлен 13.07.2013

  • Средний состав и характеристика природного газа Степановского месторождения. Низшая теплота сгорания смеси. Определение численности жителей. Газовый расход на бытовые нужды населения. Определение часовых расходов газа по статьям газопотребления.

    курсовая работа [88,6 K], добавлен 24.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.