Полимерные композиты на основе химических волокон, их основные виды, свойства и применение
Особенности набухания фотополимерных композитов с различным содержанием высокодисперсного кремнезёма. Методика определения цикла отливки на термопластавтомате деталей из термопластов. Виды полимерных матриц (связующих). Армирующие волокнистые наполнители.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.11.2011 |
Размер файла | 533,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При изготовлении деталей и изделий, несущих высокую механическую нагрузку, широко применяются трехмерные тканые, вязаные и плетеные структуры. Эти АВН изготовляют обычно на основе высокопрочных и/или высокомодульных нитей: параарамидных, углеродных или неорганических. Получаемым объемным структурам придается внешняя форма изготовляемых деталей или изделий, причем нити в них располагаются таким образом, чтобы они были ориентированы в направлении действия наибольших механических напряжений.
Для получения листовых текстолитов с умеренными механическими характеристиками чаще всего используются нетканые материалы и другие волокнистые слои (холсты) на основе волокон. Они широко используются при изготовлении изделий методами прессования и контактного формования (выкладки), поскольку более податливы, чем тканые и другие структуры из нитей вследствие подвижности отдельных волокон. Благодаря этому обеспечивается возможность изготовления изделий со сравнительно малым радиусом изгиба при сохранении целостности и с незначительным утонением волокнистого слоя при прессовании. Нетканые полотна предпочтительнее для получения формованных изделий сложной формы.
полимерный композит химическое волокно
Для обеспечения заданных механических характеристик ПКМ применяются гибридные волокнистые наполнители. К ним относятся сверхпрочные органические волокна и нити, имеющие высокие удельные механические характеристики при растяжении, но высокую анизотропию свойств, а значит недостаточный уровень прочности в поперечном направлении и при сдвиге. Последнее вызывает необходимость повышения поперечных свойств в анизотропных композитах - слоистых пластиках и других однонаправленных структурах.
Повышение поперечных свойств композитов особенно важно при армировании параарамидными волокнами, нитями и АВН на их основе. В этом случае в качестве второго компонента используются углеродные, стеклянные или другие неорганические волокна и нити. При этом возможно как получение гибридных АВН (лент, жгутов, тканей и других видов полотен), так и совместное их применение в процессе послойной выкладки при получения композитов. Гибридные АВН могут иметь вид волокнистых слоев, тканей, плетеных структур, вязаных (трикотажных) материалов.
Еще одной целью применения гибридных АВМ является придание им некоторых дополнительных физических или других свойств. Так, для получения электропроводных композитов и изделий из них в АВн вводят элетропроводящие углеродные волокна или нити. Таким путем создаются композиты с заданной электропроводностью или обладающие антистатическими свойствами.
Важным случаем является изготовление гибридных АВН, где второй компонент несет вспомогательные функции и затем удаляется либо входит в состав матрицы при получении композита. Примером этого является получение тканых или вязаных АВН из жестких и хрупких углеродных нитей или тонких проволок тугоплавких металлов (молибдена, вольфрама и др.). В качестве нити-спутника используется хлопчатобумажная пряжа (которая затем либо удаляется выжиганием или кислотным травлением, либо остается в составе композита), а также нить из растворимых, например, поливинилспиртовых волокон (которая либо удаляется растворением водой, либо набухает и входит в состав почти любого термореактивного связующего).
При получении слоистых (листовых) бумажных пластиков - гетинаксов, а также сотовых конструкций используются бумаги на основе химических волокон, в частности, арамидных термостойких волокон, либо бумаги, содержащие коротко резаные углеродные волокна.
Основные методы и стадии получения композитов и изделий. Для получения композитов и/или формования изделий из наполненных и армированных термопластов и реактопластов применяются различные исходные составы: порошкообразные и волокнистые наполнители; матрицы (связующие) в виде расплавов или жидких композиций (растворов и эмульсий, компаундов, содержащих исходные мономеры или олигомеры), премиксов (на основе эпоксидных, полиэфирных или других связующих), паст, порошков, гранул и таблеток, рыхловолокнистых смесей, препрегов (на основе нитей, жгутов, лент, тканей, нетканых матов и холстов, бумаг, пропитанных связующим) и др.
Стадии получения волокнистых композитов и изделий из них в зависимости от вида матрицы (связующего), представлены в табл.5.
Основные параметры процессов получения композитов - это давление, температура и время. Давление обеспечивает уплотнение материала и создание изделий заданной формы. Температурно-временные режимы получения деталей и изделий определяются протеканием в материале физических (кристаллизация, релаксация) и химических (отверждение и сшивка) процессов. Кроме того, продолжительность технологического процесса зависит от скорости прогрева или охлаждения перерабатываемого материала, что определяет выравнивание температуры по его толщине.
Промежуточной стадией получения армированных волокнистых полуфабрикатов в технологическом процессе получения композиционных материалов или изделий является пропитка волокнистых наполнителей. Для этого используют расплавы термопластов и растворы, жидкие олигомеры или дисперсии исходных компонентов для реактопластов. Пропитку ведут на машинах периодического или непрерывного действия, затем следует сушка (при пропитке растворами или дисперсиями) и охлаждение пропитанного наполнителя.
В процессах переработки термопласты, в том числе наполненные, переводятся в высокоэластическое или вязкотекучее состояние и при снижении температуры затвердевают. В расплавленном или текучем состоянии материал деформируется, приобретая форму детали или изделия. При охлаждении термопластов происходят процессы кристаллизации и релаксации (снятия внутренних напряжений), что необходимо для придания изделию стабильности размеров и формы.
При переработке реактопластов на первой стадии материал также плавится или размягчается, деформируется и приобретает необходимую форму. На второй стадии протекают реакции образования химических сшивок и сетчатой структуры полимера. Часто при отверждении реактопластов с выделением тепла происходит разогрев материала, вызывая его деструкцию. Поэтому в цикле формования может появиться необходимость отвода выделяющегося тепла.
После процесса формования изделий происходит их усадка как вследствие уменьшения объема при охлаждении и кристаллизации, так и особенно при отверждении реактопластов. Неполнота этих процессов может приводить к последующим усадочным явлениям и короблению готовых изделий.
При использовании исходных материалов, содержащих растворители, а также при отверждении реактопластов для сохранения монолитности композита низкомолекулярные продукты реакции должны быть удалены. Получению монолитного материала способствует также применение давления, поскольку остаточная часть низкомолекулярных компонентов, выделившаяся в виде газовой фазы (пузырей), под давлением может быть растворена со временем и уже не препятствует нормальному процессу формования изделий.
Армированные волокнистые полуфабрикаты (АВП) являются промежуточными материалами, содержащими заданное количество волокнистого наполнителя и полимерной матрицы. АВП являются удобной выпускной формой полуфабрикатов. На их основе различными методами переработки получают композиционные материалы и изделия самой различной формы.
Основные виды АВП зависят от вида используемого АВН: премиксы и волокниты, препреги, АВП с термопластичными матрицами (полиэтиленом, полипропиленом, полиамидами и пр.) и заранее добавленными красителями или другими компонентами могут храниться до их переработки в композиты практически неограниченное время.
АВП с термореактивными матрицами изготовляют на основе олигомеров термореактивных смол, не полностью отвержденных и потому текучих при нагревании (фенолформальдегидных, полиэфирных, эпоксидных и др.) с добавлением порошкообразных наполнителей, красителей, смазывающих веществ (для исключения прилипания к пресс-формам). Срок хранения таких АВП определяется техническими условиями, поскольку даже при комнатной температуре происходит медленное отверждение связующего. Часто рекомендуется их хранение при пониженной температуре.
Готовыми к применению АВП являются пресс-волокниты, изготовляемые на основе коротко резаных волокон как дисперсных наполнителей с применением термореактивных связующих. Их выпускная форма - таблетки или частицы неправильной формы. Такие АВП перерабатываются в изделия обычно методом горячего прессования.
Методы получения изделий из волокнистых полимерных композитов
Для формования изделий из наполненных полимеров и термопластичных АВП применяются следующие методы: литье под давлением; литьевое прессование; прямое прессование высоковязких термопластов; прокатка; экструзия; каландрование; вакуум - и пневмоформование; метод окунания и напыления; метод ротационного формования; метод штамповки из листов и др.
Особенностью изготовления изделий из армированных полимерных материалов на основе реактопластов является во многих случаях образование материала в процессе изготовления изделия. Применяются следующие основные методы: прессование; послойная выкладка на макете; пултрузия; прокатка; напыление; формование в стягиваемой форме и термокомпрессионное формование; намотка и обмотка тел вращения; пропитка армирующего наполнителя в разъемной форме; вакуумный и вакуумно-автоклавный методы; пресс-камерный метод и др.
Для соединения деталей из волокнистых полимерных материалов применяются процессы сварки, склеивания, механической сборки.
Для заключительной обработки изделий из волокнистых полимерных материалов применяются: термическая стабилизация (релаксация), радиационная и лазерная обработка, механическая обработка и другие методы.
Полимерные композиты различного волокнистого состава
Под органопластиками (органокомпозитами) подразумевают полимерные материалы, армированные наполнителями на основе химических волокон, с использованием термопластичных и термореактивных связующих (матриц). В их число обычно не включают композиты на основе АВН из природных, углеродных и неорганических волокон, выделяя их в отдельные группы.
Состав органопластиков может быть весьма различным в зависимости от назначения и комплекса желаемых свойств. В качестве армирующих чаще всего применяются следующие АВН: полиэфирные (для органопластиков электротехнического назначения); термостойкие, например из метаарамидных волокон (для органопластиков, эксплуатируемых при высоких температурах, в том числе электротехнического и антифрикционного назначения); параарамидные (для высокопрочных и высокомодульных органопластиков).
В качестве связующих используются фенолформальдегидные, полиэфирные, а также эпоксидные, эпоксифенольные, полиимидные и другие реактопласты (последние - для высокопрочных органопластиков). Содержание связующего в зависимости от схемы армирования составляет 30.50%.
В качестве термопластичных матриц используются полиолефины (полиэтилен высокой плотности, полипропилен), фторопласты, поливинилхлорид, полиуретаны и др. Содержание наполнителя составляет от 5 до 70% (об.), реже - более высокое. Введение в термопласты АВН повышает их механические свойства и эксплуатационные характеристики (табл.6).
Получение органопластиков не имеет заметных отличий от получения других видов армированных композитов, разница состоит лишь в выборе компонентов и технологических режимов.
Свойства органопластиков существенно зависят от вида АВН и матрицы, соотношения компонентов, схемы армирования (расположения волокон), особенностей взаимодействия компонентов матрицы с волокнами, технологии изготовления. Для этих материалов характерны низкая плотность, высокие механические показатели, особенно удельные, сравнительно низкая теплопроводность, хорошие диэлектрические свойства, устойчивость к действию активных сред.
Для органопластиков характерна умеренная теплопроводность в направлениях, перпендикулярных расположению армирующего наполнителя (0,012.0,02 Вт/ (см·К). Они также имеют высокие диэлектрические показатели, особенно в случае армирования полиэфирными волокнами: невысокую диэлектрическую проницаемость (3,7.4,2), низкий тангенс угла диэлектрических потерь (0,01.0,25) в широком диапазоне частот, высокое объемное электрическое сопротивление (1013.1015 Ом·см) и электрическую прочность (20.30 кВ/мм).
Термостойкость органопластиков определяется соответствующими показателями компонентов. В то же время они довольно устойчивы к действию активных сред - многих растворителей, нефтепродуктов, воды.
Применение органопластиков достаточно широкое. Они являются важными конструкционными электро- и радиотехническими материалами, используются в изделиях машиностроения, в том числе транспортного и химического, в летательных аппаратах, в качестве радиопрозрачных материалов, для изготовления спортивного снаряжения, в медицинской технике.
Арамидопластики могут быть выделены в особый вид органопластиков с наиболее высокими механическими и термическими характеристиками.
Достижение наиболее высоких механических характеристик требует использования высокомодульных армирующих наполнителей: нитей, жгутов, лент, тканей, материалов на основе резаных волокон, а также высокопрочных термореактивных связующих с высокой адгезией к арамидным волокнам. Применение резаных арамидных волокон и нетканых материалов менее эффективно, так как в этих случаях высокие механические свойства арамидных волокон не реализуются полностью, однако оно все же позволяет рационально использовать отсортированные партии арамидных волокон или АВН с более низкими показателями свойств.
В качестве матриц часто используются эпоксидные, эпоксифенольные, полиимидные и другие модифицированные связующие на основе эпоксидов и полиимидов. Реже - термостойкие термопласты. Применение обычных типов термореактивных и термопластичных матриц, как правило, не позволяет использовать высокие механические и термические свойства арамидных волокон и потому малоэффективно.
Получение органопластиков не имеет заметных отличий от получения других видов армированных композитов, разница состоит лишь в выборе компонентов и технологических режимов
Свойства арамидопластиков наиболее высокие среди различных видов органокомпозитов. Их механические характеристики сведены в табл.7, табл.8.
По удельному модулю упругости арамидопластики превосходят стеклопластики почти в 2 раза, а по прочности - в 1,3.1,8 раза. Они имеют высокие усталостные характеристики, устойчивы к вибрации и обладают высоким коэффициентом поглощения звука и вибрации.
Благодаря высокой анизотропии свойств арамидных волокон арамидопластики целесообразно эксплуатировать в условиях действия растягивающих нагрузок в направлении армирования. В то же время их прочность при растяжении в других направлениях, при сжатии и сдвиге сравнительно невысока. Для ее повышения находят применение гибридные армирующие наполнители с включением в их состав углеродных, стеклянных и других неорганических волокон и нитей, расположение которых определяется необходимыми механическими характеристиками изделий. Как материалы с весьма высокими механическими показателями однонаправленные органопластики рассматриваются отдельно.
Теплофизические свойства арамидопластиков непосредственно зависят от расположения армирующего наполнителя. Их теплопроводность в направлении, перпендикулярном к волокнам, невысока. Коэффициент термического расширения в направлении армирования может быть даже отрицательным (варьируется в диапазоне 2·10-5. - 4·10-6 1/°С).
Диэлектрические характеристики арамидопластиков находятся на уровне показателей других органопластиков.
Термостойкость арамидопластиков достаточно высокая, применение термостойких связующих позволяет длительно эксплуатировать их при температуре до 200.250°С. Это трудногорючие материалы. При использовании фенольных и полиимидных связующих в процессе высокотемпературного пиролиза они способны к коксованию с высоким выходом кокса. Арамидопластики устойчивы к действию активных сред, многих органических растворителей, нефтепродуктов, воды.
Применение арамидопластиков определяется их высокими механическими и термическими свойствами. Они эффективны в тех областях, где требуются высокие удельные механические характеристики - в летательных аппаратах, транспортных средствах, защитном (бронежилеты, каски), спасательном и спортивном снаряжении, медицинской технике.
Стеклопластики - это композиционные материалы на основе стекловолокон и полимерных связующих. Для армирования используются различные виды стекловолокон, нитей и волокнистых материалов.
Стекловолокнистые наполнители и связующие для стеклопластиков подбираются с учетом эксплуатационных условий:
для стеклопластиков конструкционного назначения применяются стекловолокнистые наполнители из бесщелочного алюмоборосиликатного стекла
для материалов и изделий, работающих в условиях высоких механических нагрузок, применяют АВН из высокопрочных и высокомодульных стеклонитей на основе магнезиально-алюмосиликатного стекла, имеющие прочность на 25.50%, а модуль упругости на 25.30% выше, чем обычные стеклонити
устойчивые в кислых средах стеклопластики (химическое оборудование, аккумуляторные баки и др.) изготовляют из хемостойкого боросиликатного стекла, для этой цели используют также базальтовые АВН
крупногабаритные изделия, не несущие очень высокие механические нагрузки (корпуса судов, строительные панели и др.), изготовляют из тканей на основе дешевого щелочного алюмоборосиликатного стекла
термостойкие изделия, работающие при температуре 300°С и выше, изготовляют из кремнеземных и кварцевых нитей;
для композитов электротехнического назначения используют АВН из боросиликатного стекла, имеющие диэлектрическую проницаемость на 30.40% ниже, чем у других видов стекол.
В качестве полимерных матриц применяются преимущественно термореактивные смолы (фенольные, эпоксидные, полиимидные), а также термостойкие термопласты - ароматические полиамиды, полисульфоны, поликарбонаты. Низкоплавкие термопласты типа полиолефинов применяются относительно редко, так как они имеют низкую адгезию к стекловолокнам и не позволяют реализовать свойства стекловолокнистых наполнителей. Однако используется стеклонаполненный полиамид. Для стеклопластиков электрорадиотехнического назначения используются связующие с высокими диэлектрическими характеристиками: кремнийорганические, эпоксидные и др.
Для удобства применения в ограниченных количествах изготовляются АВП на основе стекловолокнистых наполнителей и полимерных смол, т.е. содержащие заданное количество армирующего наполнителя и полимерной матрицы материалы, подготовленные для изготовления деталей и изделий - на основе термореактивных связующих и реже - термопластов (препреги, пресс-волокниты, премиксы).
Получают стеклопластики с применением методов прессования, выкладки с последующим прессованием, пултрузии и др. Высокопрочные и высокомодульные углепластики изготовляют из стеклонитей, жгутиков (ровинга), жгутов и лент с высокими механическими характеристиками. В качестве связующих применяют чаще всего термореактивные смолы - фенольные, полиэфирные, эпоксидные, полиимидные, которые обеспечивают высокую адгезию и высокую степень реализации механических свойств стекловолокон. Наполненные термопласты перерабатывают методами прессования, литьевого прессования, литья и др.
Полученные материалы и изделия при необходимости подвергают механической обработке. Однако из-за абразивных свойств стекловолокон предпочтительно применение твердосплавного или алмазного инструмента.
Основные характеристики стеклопластиков (пресс-волокнитов, текстолитов, материалов на основе однонаправленных армирующих волокон) достаточно известны и приведены в справочной литературе. Некоторые показатели сведены в табл.9.
Механические свойства стеклопластиков в направлении армирования в значительной мере определяются свойствами армирующих волокон и их расположением, в меньшей степени они зависят от связующего. Температурные характеристики стеклопластиков обусловлены в основном свойствами связующих.
Стеклотекстолит превосходит обычные текстолиты и органотекстолиты по механическим характеристикам, теплостойкости, электроизоляционным свойствам, действию влаги и активных сред, другим зксплуатационным воздействиям.
Стеклонаполненные пресс-материалы и текстолиты служат для изготовления различных деталей, в качестве конструкционных, электрорадиотехнических, хемостойких и др. Широкое применение стеклопластики находят в судостроении, транспортных стредствах, при изготовлении крупных емкостей и для других целей.
Базальтопластики во многом близки к стеклопластикам. Однако более высокая стойкость базальтовых волокон к кислотам и щелочам по сравнению со стекловолокнами позволяет получать более хемостойкие материалы.
В качестве наполнителей используются рубленые базальтовые волокна, нити, жгуты, ткани, нетканые материалы, в редких случаях - бумаги. В качестве связующих используются те же виды, что и в производстве асбо - и стеклопластиков.
Технология переработки базальтопластиков и стеклопластиков в композиты и изделия также во многом похожа. Основной метод переработки - прессование под давлением до 30.50 МПа
Свойства базальтопластиков определяются как характеристиками применяемого волокна, так и свойствами связующего. Они являются высококачественными конструкционными материалами с высокими механическими свойствами, термо - и огнестойкостью и особенно хемостойкостью. Поскольку базальтовые волокна более стойки к действию влаги, чем стекловолокнистые материалы, и мало изменяют свои диэлектрические характеристики при увлажнении, они используются также как высокотемпературные конструкционные диэлектрики.
Базальтопластики применяются в основном как хемостойкие материалы и изделия, для футеровки оборудования, а также для изготовления изделий электротехнического назначения.
Углепластики - это композиционные материалы на основе углеродных волокон и полимерных связующих, где для армирования используются различные виды углеродных волокон и волокнистых материалов.
Состав углепластиков определяется требованиями к изготовляемым из них изделиям. К углепластикам на основе карбонизованных или графитированных волокон относятся: пресс-материалы на основе углеродных (обычно карбонизованных) нетканых материалов и резаных волокон; углетекстолиты на основе углеродных (карбонизованных) и графитированных тканей; высокопрочные и высокомодульные углепластики на основе углеродных (графитированных) нитей, лент, жгутов в виде профилей, намотанных изделий, листов.
Графитированные волокна и волокнистые материалы имеют более высокие механические и термические свойства, однако они довольно дорогие.
В качестве полимерных матриц применяются преимущественно термореактивные смолы (эпоксидные, полиимидные, фенольные), а также термостойкие термопласты: ароматические полиамиды, полисульфоны, поликарбонаты. Применение низкоплавких термопластов типа полиолефинов, алифатических полиамидов мало целесообразно, так как они не позволяют реализовать многие свойства углеродных наполнителей.
Для удобства применения на основе углеродных и графитированных волокон и полимерных смол выпускают АВП, т.е. материалы, содержащие заданное количество армирующего наполнителя и полимерной матрицы, подготовленные для изготовления деталей и изделий: препреги, пресс-волокниты, премиксы.
Получают углепластики обычно из заранее подготовленных премиксов или препрегов, используя методы прессования, пултрузии, выкладки с последующим прессованием. Высокопрочные и высокомодульные углепластики изготовляют из соответствующих видов углеродных нитей, жгутов и лент с высокими механическими характеристиками. Для наиболее полной реализации механических свойств углеродных наполнителей используется преимущественно однонаправленная и перекрестная укладка. В качестве связующих применяют чаще всего термореактивные смолы - эпоксидные, фенольные, полиимидные, которые обеспечивают высокую адгезию и высокую степень реализации механических свойств углеродных волокон.
Углеродным волокнам присуща высокая хрупкость, что требует осторожности при их переработке в углепластики: необходимо проводить прессование при высоких давлениях, а также избегать резких перегибов армирующих наполнителей.
Основные характеристики углепластиков (пресс-волокнитов, текстолитов, материалов на основе однонаправленных армирующих наполнителей) приведены в литературе, ряд из них сведен в табл.10.
Механические свойства углепластиков в направлении армирования определяются в значительной мере свойствами армирующих волокон и их расположением, в меньшей мере они зависят от связующего. Температурные характеристики углепластиков определяются в основном свойствами связующих.
Углеродные пресс-материалы и текстолиты служат для изготовления различных деталей, в качестве антифрикционных, хемостойких и др. Из них изготовляют, в частности, вкладыши подшипников. На основе пресс-волокнитов и листовых углеродных препрегов с фенольными и другими хемостойкими матрицами изготовляют детали насосов, арматуру, теплообменники, композиционные хемостойкие покрытия на металлических изделиях (чаще всего емкостях и другой химической аппаратуре). Углепластики используются также взамен ранее применявшихся материалов на основе асбеста (фаолит).
Углепластики на основе фенольных и полиимидных связующих, а также углерод-углеродные материалы используются в качестве высокотермостойких конструкционных изделий и покрытий. Выбор указанных связующих обусловлен тем, что при карбонизации они превращаются в кокс с высоким выходом по углероду, образуя при этом достаточно прочную углеродную матрицу. Углерод-углеродные материалы могут эксплуатироваться при высоких температурах, а в инертной среде - до 2500°С.
Высокопрочные и высокомодульные углепластики, а также углетекстолиты применяются для изготовления наиболее ответственных деталей и изделий в летательных аппаратах, в судах, других транспортных средствах, медицинской технике, в спортивных изделиях, протезах.
Термопласты, содержащие углеродные волокна в количестве до 2.3%, применяются как антистатические материалы. Эффективность применения углеродных волокон как наполнителя существенно выше, чем традиционных добавок технического углерода, так как волокна образуют электропроводную "сетку" в материале при существенно меньшем их содержании.
Боропластики. Армирующим материалом в них являются борные нити или АВН на их основе. Боропластики состоят из армирующих борных мононитей, жгутов, а также лент или тканей (в двух последних борные нити обычно переплетены другими нитями) и термореактивных высокопрочных или термостойких связующих - эпоксидных, полиимидных и др.
Процессы получения боропластиков и стеклопластиков примерно аналогичны. Из-за большого диаметра борных мононитей (80.100 мкм) и их высокой хрупкости они не выдерживают перегибов, поэтому нитепроводящие детали не должны иметь высокой кривизны. Изделия изготовляют методами послойной выкладки, намотки с последующим формованием в автоклавах под давлением до 1,6 МПа при температуре до 200°С (эпоксидные смолы) или до 300°С (полиимидные смолы).
Для повышения адгезии к связующим волокна перед применением подвергают травлению азотной кислотой, что существенно повышает прочность композита при сдвиге и ударную вязкость. Последняя может быть увеличена путем введения в связующее коротких неорганических волокон или игольчатых кристаллов.
Боропластики являются высокопрочными, высокомодульными композитами. В основном они изготовляются как однонаправленные материалы. Их свойства сведены в табл.11.
Для сохранения высоких механических свойств борных нитей в изделиях они не должны иметь резких перегибов (допустимый радиус изгиба не менее 300 мм). Термостойкость и хемостойкость боропластиков определяются в основном соответствующими показателями связующих. Их высокая стойкость к действию активных сред, эксплуатационных воздействий (влаги, смазочных материалов), атмосферных факторов в течение 10 лет снижается не более чем на 10.15%.
Из-за высокой стоимости борных волокон боропластики весьма дороги. Они применяются как конструкционные материалы с высокими удельными механическими характеристиками для изготовления высоконагруженных деталей в наиболее ответственных изделиях - летательных аппаратах, космической технике, так как позволяют существенно снизить массу изделия.
Антифрикционные композиционные материалы
На основе полимеров предназначены для работы в паре с металлическими поверхностями в присутствии жидкостей, не обладающих смазочным действием (водой и др.). Однако некоторые их виды могут использоваться и при работе в присутствии органических смазочных материалов, если последние не вызывают набухания антифрикционного слоя.
К данным материалам относятся как наполненные реактопласты, так и термопласты с наполнителем. Основа термореактивных антифирикционных материалов - фенолоформальдегидные, эпоксидные, эпоксикремнеорганические, фурановые смолы. Антифрикционные термопласты - полиэтилен высокой плотности, полиамиды, полиацетали (полимеры и сополимеры формальдегида), полиарилаты, полиимиды, фторполимеры (фторопласты). ПКМ на основе фторопластов обычно применяют без смазки. Для повышения триботехнических свойств в антифрикционные материалы в качестве дисперсных наполнителей вводят графит, дисульфид молибдена, гексагональный нитрид бора, фторопласты, графитированные углеродные волокна, металлические порошки и другие наполнители.
В качестве антифрикционных ПКМ используются также армированные пластики на основе резаных волокон, тканей, нетканых материалов - прессованные пластики, текстолиты, намотанные изделия (втулки), а также древесина твердых пород, древесные пластики. Высокие триботехнические свойства имеют волокнистые антифрикционные слои, изготовленные на основе двух - и многослойных тканей. Антифрикционный лицевой слой изготовляют из фторопластовых нитей, тогда как нижний слой состоит из обычных волокон, позволяющих приклеивать материал к твердой поверхности.
Углеграфитовые антифрикционные ПКМ изготовляют на основе пористых углеродных ПКМ и углерод-углеродных волокнистых материалов.
Получение антифрикционных полимерных материалов основывается на обычных методах переработки: прессовании, литьевом прессовании, намотке и др.
Триботехнические свойства антифрикционных материалов в паре с металлическими поверхностями определяются их составом - они отличаются сравнительно низким коэффициентом трения и малой степенью износа. Из антифрикционных ПКМ изготовляют вкладыши, направляющие втулки, подшипники и другие детали узлов трения, работающих в паре с металлическими полированными поверхностями. Они используются для работы в условиях сухого трения или жидкостного трения с водой и другими несмазывающими жидкостями. Возможно применение и органических смазочных веществ, если они не вызывают набухания антифрикционного материала. Фторопластовые антифрикционные материалы не требуют применения смазок.
Фрикционные композиционные материалы изготовляют с использованием термостойких волокон и реактопластов - главным образом на основе асбестовых, углеродных, арамидных, стеклянных, базальтовых высокомодульных волокон. Связующими служат термостойкие смолы - фенольные, модифицированные фенольные с содержанием каучуков и других ингредиентов. В качестве наполнителей используются барит, сурик, кремнезем, сернистый молибден и др. Важным компонентом является медная или латунная проволока, стружка или, реже, порошок, необходимые для интенсификации теплоотвода и снижения температуры поверхности трения.
Фрикционные ПКМ должны обладать стабильным коэффициентом трения в пределах 0,25.0,5, высокой износостойкостью и термостойкостью. Интенсивность их изнашивания в условиях большого диапазона скоростей скольжения и нагрузок не должна превышать I = h/L = 10-7 (где h - толщина истертого слоя; L - путь трения). Полимерные фрикционные материалы применяются в условиях эксплуатации среднего уровня: при температуре на поверхности трения до 400.500°С, в объеме тела - не выше 200.250°С. Из-за вредности продуктов истирания ПКМ содержащих асбест, их применение сокращается, а в ряде стран запрещено.
Полимерные фрикционные материалы используются в основном для изготовления тормозных накладок и колодок, дисков и муфт сцепления в транспортных средствах, прессового оборудования, швейных машин и других устройств и механизмов, требующих быстрой и надежной остановки или плавного запуска в действие.
Существуют особые виды фрикционных ПКМ, работающих в тяжелых и сверхтяжелых условиях эксплуатации. Примером наиболее устойчивого к тяжелым условиям эксплуатации полимерного фрикционного материала является гетинакс, получаемый методом горячего прессования композиции из асбестового наплнителя, молотого барита, латунной стружки и фенолоформальдегидной смолы, работающий при температуре поверхности трения до 600°С. Еще более устойчивыми в сверхтяжелых условиях эксплуатации являются фрикционные ПКМ на основе углеродных волокон, графита и термостойких смол, способные работать в паре как с металлическим контртелом, так и с одноименной углеродной парой, в частности, в авиационных тормозах.
Литература
1. Перепелкин К.Е. Полимерные волокнистые композиты, их основные виды, принципы получения и свойства // Химические волокна, 2005, № 4, с.7 - 22.; № 5 - С.55-69; 2006, №1 - в печати.
2. Perepelkin K. E. Polymeric Fibre Composites, Fundamental Types, Principles of Manufacture and Properties // Fibre Chemistry, 2005, V.37, No 4. - P.241-260; No 5; 2006, v.38, No 1 - in press.
Размещено на Allbest.ru
Подобные документы
Этапы производства химических волокон. Графит и неграфитированные виды углерода. Высокопрочные, термостойкие и негорючие волокна и нити (фенилон, внивлон, оксалон, армид, углеродные и графические): состав, строение, получение, свойства и применение.
контрольная работа [676,2 K], добавлен 06.07.2015Пластмассы и их структурные свойства. Полимерные добавки: стабилизаторы, пластификаторы, наполнители и красители. Рассмотрение молекулярной структуры полимеров. Основные виды и особенности контактной сварки пластмасс оплавлением и проплавлением.
реферат [1003,1 K], добавлен 04.10.2014Нанокомпозиты на основе природных слоистых силикатов и на основе монтмориллонита. Анализ методов синтеза полимерных нанокомпозитов. Перспективы производства полимерных нанокомпозитов. Свойства нанокомпозитов кремния. Структура слоистого силиката.
курсовая работа [847,7 K], добавлен 12.12.2013Неразрушающий контроль материалов с использованием источника тепловой стимуляции. Композиты: виды, состав, структура, область применения и преимущества. Применение метода импульсно-фазовой термографии для определения дефектов в образце из углепластика.
курсовая работа [4,2 M], добавлен 15.03.2014Виды искусственных волокон, их свойства и практическое применение. Вискозные, медно-аммиачные и ацетатные волокна, целлюлоза как исходный материал для их получения. Улучшение потребительских свойств пряжи благодаря использованию химических волокон.
курсовая работа [1,3 M], добавлен 02.12.2011Горение полимеров и полимерных материалов, методы снижения горючести в них. Применение, механизм действия и рынок антипиренов. Наполнители, их применение, распределение по группам. Классификация веществ, замедляющих горение полимерных материалов.
реферат [951,6 K], добавлен 17.05.2011Применение химических или физико-химических процессов переработки природных и синтетических высокомолекулярных соединений (полимеров) при производстве химических волокон. Полиамидные и полиэфирные волокна. Формования комплексных нитей из расплава.
дипломная работа [1,5 M], добавлен 20.11.2010Строение ацетатных и триацетатных волокон. Основные элементы структуры швейных изделий. Свойства волокон и область их использования. Текстурированные нити, их виды, получение, свойства и использование. Штопорность швейных ниток и методы ее определения.
контрольная работа [59,2 K], добавлен 26.01.2015Полимерные материалы для деталей сельскохозяйственного оборудования. Составы и технология полимерных деталей, применяемых в автотракторной и сельхозтехнике. Разработка технологической оснастки и изготовления деталей для комплектования оборудования.
контрольная работа [948,8 K], добавлен 09.10.2014Стеклянное волокно, его применение. Общие сведения о базальтовом волокне. Структуры, образующиеся при окислении ПАН-волокна. Плотность и теплопроводность арамидных волокон. Основные свойства полиолефиновых волокон. Поверхностные свойства борных волокон.
контрольная работа [491,1 K], добавлен 16.12.2010