Металлы и их свойства

Металлы и классы конструкционных материалов, характеризующиеся определённым набором свойств: пластичность, теплопроводность и электропроводность. Классификация возможных видов кристаллических решеток. Коэффициент металла по критериям его прочности.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 23.09.2011
Размер файла 567,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Проведение периода кипения (доводки). Поскольку составы металла и шлака после расплавления при скрап- и скрап-рудном процессах практически не различаются, период доводки протекает в обоих случаях также одинаково. Обычно после расплавления ванны в печь подают некоторое количество железной руды или продувают ванну кислородом или сжатым воздухом. Продолжительность периода доводки 1 - 3ч.

В общем случае можно выделить следующие периоды мартеновской плавки: заправку, завалку, прогрев, заливку чугуна, плавление, кипение, предварительное раскисление, выпуск.

. Схема мартеновской печи, работающей с использованием газообразного топлива:

1 -- рабочее пространство; 2 -- шлаковики; 3 -- регенераторы; 4 -- воздушные клапаны; 5, 9 -- дымовые шиберы: 6 - 8 -- газовые клапапы; 10--вентилятор; 11--дымовая труба

Задание 5

Условие: выберите оборудование и опишите технологию получения отливок прокатного валка из стали марки 60ХН массой 30т. Изложите метод контроля качества отливок.

Решение:

Характеристика стали 60ХН

Марка:

60ХН

Классификация:

Сталь инструментальная валковая

Применение:

рабочие валки блюмингов, слябингов, заготовочных, рельсобалочных и крупносортных станов, рабочие опорные валки листовых станов для горячей прокатки металлов.

Температура критических точек стали 60ХН.

Ac1=730, Ac3(Acm)=775, Ar3(Arcm)=570, Ar1=480, Mn=207

Механические свойства при Т=20oС стали 60ХН.

Сортамент

Размер

Напр.

sв

sT

d5

y

KCU

Термообр.

-

мм

-

МПа

МПа

%

%

кДж / м2

-

Поковки

max толщина 200

 

1050

690

15

27

 

Нормализация 860oC,Отпуск 600oC,

Твердость стали 60ХН после закалки и отпуска

HB=255-302

Твердость стали 60ХН нормализованного

HB=229-285

Технологические свойства стали 60ХН.

Свариваемость:

не применяется для сварных конструкций.

Флокеночувствительность:

чувствительна.

Склонность к отпускной хрупкости:

склонна.

Отливка - заготовка изделия, реже готовое изделие (деталь), полученное заливкой жидкого материала (металла или сплава, шлака, стекла, пластмассы и т.п.) в литейную форму, в которой он затвердевает. Отливки подразделяют на полуфабрикаты -- чушки для послед, переплавки, слитки, обрабатываемые давлением; фасонные отливки, подвергающиеся, как правило, обработке резанием; готовые изделия, которые только очищаются или окрашиваются.

Литье - технологический процесс изготовления отливок, заключается в заполнении форм расплавленным материалом (литейным сплавом на основе черных и цветных металлов, пластмассой, некоторыми горными породами, шлаком) и дальнейшей обработке получения изделий.

В качестве получения отливок прокатного валка принимаю метод получения отливок с помощью центробежного литья,технология получения отливок выглядит следующим образом.

Сущность центробежного литья заключается в том, что заполнение формы расплавом и формирование отливки происходит при вращении формы вокруг горизонтальной, вертикальной, наклонной оси или при сложном вращении формы. Это обеспечивает дополнительное воздействие на расплав и затвердевающую отливку поля центробежных сил. Процесс реализуется на специальных центробежных машинах и столах. Чаще используют два варианта способа, при которых расплав заливается в форму с горизонтальной осью вращения или с вертикальной осью вращения. В первом случае получают отливки - тела вращения малой и большой протяженности, во втором - тела вращения малой протяженности и фасонные отливки.

Наиболее распространен способ литья во вращающиеся металлические формы с горизонтальной осью вращения пустотелых цилиндрических отливок. По этому способу отливка формируется в поле центробежных сил со свободной цилиндрической поверхностью, а формообразующей поверхностью служит внутренняя поверхность изложницы. Расплав из ковша заливают во вращающуюся форму через заливочный желоб. Расплав растекается по внутренней поверхности формы, образуя под действием поля центробежных сил пустотелый цилиндр. После затвердевания металла и остановки формы происходит извлечение от-ливки. Такой способ характеризуется наиболее высоким технологическим выходом годного (ТВГ~100 %), так как не расходуется металл на литниковую систему.

При получении отливок со свободной параболической поверхностью при вращении формы вокруг вертикальной оси расплав из ковша заливают в форму , закрепленную на шпинделе , приводимом во вращение электродвигателем . Расплав под действием центробежных и гравитационных сил распределяется по стенкам формы и затвердевает, после этого вращение формы прекращают и извлекают из нее затвердевшую отливку .

Отливки с внутренней поверхностью сложной конфигурации получают с использованием стержней в формах с вертикальной осью вращения. Так отливают венцы зубчатых колес. Расплав из ковша через заливочное отверстие и стояк поступает в центральную полость формы, выполненную стержнями и , а затем через щелевые питатели (под действием центробежных сил) в рабочую полость формы. Технологический выход годного здесь меньше, чем в предыдущем способе. Избыток расплава (сверх массы отливок) в центральной полости формы служит прибылью и питает отливки при затвердевании.

Преимущества центробежного литья:

· Возможность улучшения заполняемости форм расплавом под действием давления, развиваемого центробежными силами; повышение плотности отливок вследствие уменьшения усадочных пор, раковин, газовых, шлаковых и неметаллических включений;

· уменьшение расхода металла и повышение выхода годного благодаря отсутствию литниковой системы при изготовлении отливок типа труб, колец, втулок или уменьшению массы литников при изготовлении фасонных отливок;

· исключение затрат на стержни при изготовлении отливок типа втулок и труб. Наряду с высокой производительностью и простотой процесса центробежный способ литья по сравнению с литьем в стационарные песчано-глинистые и металлические формы обеспечивает более высокое качество отливок, почти устраняет расход металла на прибыли и выпоры, увеличивает выход годного литья на 20...60 %.

Особенности формирования отливки обусловливают и недостатки этого способа литья:

· высокая стоимость форм и оборудования и ограниченность номенклатуры отливок,

· трудности получения отливок из сплавов склонных к ликвации;

· загрязнение свободной поверхности отливок неметаллическими включениями и ликватами; - неточность размеров и необходимость повышенных припусков на обработку свободных по-верхностей отливок, вызванная скоплением неметаллических включений в материале отливки вблизи этой поверхности и отклонениями дозы расплава, заливаемого в форму.

Нарушение технологии -- главная причина возникновения дефектов в отливках. Причиной возникновения дефектов может быть также неудовлетворительное качество применяемых для литья исходных материалов, неисправность кокильной оснастки и оборудования, погрешности в технологическом процессе и т. п. Следовательно, качество получаемых отливок зависит от многих факторов, которые надо учитывать при производстве кокильного и другого литья. Поэтому задачей современного контроля является не только сортировка отливок на годные, дефектные и бракованные, но и осуществление взаимно увязанных мер по повышению качества и предупреждению дефектов отливок.

Работу по повышению качества литья на предприятиях ведут на основе ряда научно обоснованных комплексных мероприятий, которые предусмотрены системой управления качеством продукции.

Наиболее часто встречающиеся дефекты в отливках условно можно разделить на следующие четыре группы:

1. внешние дефекты, обнаруженные непосредственно на поверхности отливки (несоответствие размеров и массы, спаи, заливы, недоливы, засоры, перекос и т. д.);

2. объемные дефекты, расположенные полностью или частично внутри отливки и нарушающие ее сплошность (газовые и шлаковые раковины, поры, горячие и холодные трещины и т. д.);

3. несоответствие химического состава и структуры отливки;

4. неудовлетворительные механические свойства материала отливки.

Отливки с дефектами подразделяют на неисправимые (брак) и исправимые. Неисправимые дефекты это те, которые исправить невозможно или экономически не выгодно. Отливки с такими дефектами бракуют и отправляют на переплавку.

Контроль химического состава. В цеховой или заводской лаборатории проверку состава сплава производят методами химического или спектрального анализа. Химическому анализу подвергаются расплавы всех плавок. Проверяют основные элементы сплава и количество вредных примесей. Если химический состав шихты известен точно, то контроль химического состава производится выборочно, например для каждой десятой плавки.

Химический анализ позволяет после растворения некоторого количества исследуемого сплава выделить в чистом виде или в виде соединений отдельные элементы сплава и определить их процентное содержание. Химический анализ дает точные сведения о содержании элементов в сплаве, но требует много времени.

Спектральный анализ получил в последнее время большое распространение для определения химического состава сплава. Основан он на рассмотрении спектра лучей, излучаемых при воздействии лугового разряда на поверхность материала. По спектру определяется качественный и количественный состав сплава.

Преимущество спектрального анализа перед химическим состоит в быстроте, высокой точности даже при малой концентрации в сплаве определенного элемента, универсальности и возможности определить химический состав без повреждения отливки.

Внешний осмотр отливок. Внешний осмотр отливок (производят два раза. Первый, предварительный осмотр делают сразу же после выталкивания отливки из пресс-формы, что позволяет выявить причины литейных дефектов на поверхности и наметить меры устранения брака. Второй осмотр проводят после окончательной очистки отливок от литников и облоя.

Чистоту поверхности отливок оценивают визуально, сравнивая их с эталоном. Отливки, имеющие дефекты, сравнивают с допустимыми дефектами утвержденных эталонов или описанными в технических условиях.

Контроль размеров. Геометрические размеры проверяют по литейному чертежу, на котором обычно указаны только те размеры, которые следует проверять в литейном цехе.

Проводят два вида контроля: периодический контроль всех размеров отливки и постоянный контроль колеблющихся размеров.

Все размеры отливок проверяются при освоении новой пресс-формы после ее изготовления и доводки.

В этом случае все отливки нескольких партий обмеряют, результаты сверяют с размерами чертежа; чтобы получить точные размеры ребер и стенок, отливки разрезают на части.

При длительной работе пресс-формы размеры оформляющей полости изнашиваются, поэтому периодически производят контроль-размеров отливок.

Проверку размеров отливок ведут от базовых поверхностей, от которых их затем обрабатывают в механическом цехе.

Задание 6

Условие: выберите оборудование, инструмент и опишите технологию получения деталей из пластмасс методом литьевого прессования. Изложите стадии этого процесса.

Решение:

Пластмассами называются материалы, полученные на основе естественных и синтетических высокомолекулярных соединений (полимеров), способные вследствие своей пластичности принимать необходимую форму под воздействием тепла и давления.

По технологической классификации пластмассы подразделяются на термореактивные пластмассы и термопластичные пластмассы.

Термореактивные пластмассы под действием тепла и давления размягчаются, заполняют пресс-форму и переходят в неплавкое и нерастворимое состояние. Материал изделия становится необратимым, т.е. при повторном нагреве он в пластическое состояние не возвращается. Допускают разгрузки пресс-форм в нагретом состоянии. К ним относятся: фенолформальдегид, селиконопласты, и т.д.

Термопластичные пластмассы под действием тепла и давления приобретают текучесть, заполняя пресс-форму, после охлаждения отвердевают, но не переходят в неплавкое и нерастворимое состояние.

При повторном нагреве они возвращаются в пластическое состояние (полистирол, полиэтилен, полиуретан и т.д.) разгрузка пресс-форм может производиться только после охлаждения. По способу переработки пластмассы могут быть разделены на следующие группы:

1. Термореактивные пресс-порошки и пресс-материалы горячего прессования;

2. Термораеактивные пресс-порошки и пресс-материалы холодного прессования;

3. Термопластические порошки;

4. Жидкие литьевые термореактивные смолы;

5. Листовые и фасонные слоистые материалы;

6. Пленочные материалы - стирофлекс, эфироцеллюлозные пленки и др.

Для выбора рационально способа изготовления изделий из пластмасс, необходимо знание их технологических свойств. Такими свойствами пластмасс являются: удельный объем, текучесть, скорость отвердевания, летучесть, усадка.

Удельный объем пресс-материала рассчитывается в см3/г или м3/кг. Знание удельного объема необходимо для определения объема пресс-формы.

Текучесть пресс-материала - способность материала заполнять пресс-форму под давлением при определенной температуре: определяется в мг/с. Чем меньше текучесть пресс-материала, тем больше должно быть давление прессования и наоборот. Скорость отвердевания - характеризует продолжительность перехода пластмассы из пластического состояния в твердое. Она выражается в секундах или минутах на 1 мм толщины образца (с/мм). Летучесть - (содержание летучих веществ и влаги) - определяется по разнице в весе до и после высушивания пресс-материала в термостате при температуре (103-105)єС в течении 30мин; определяется в % и колеблется в различных материалах 1,5-5%.

Содержание летучих веществ вредно, увеличивает усадку, вызывает коробление, трещины и вздутия, снижает электроизоляционные и радиотехнические свойства пластмасс. Усадка - характеризует уменьшение размеров детали с момента излечении ее из нагретой пресс-формы до полного остывания. Исчисляется в процентах по формуле: Y= (a-b)/b•100%, (1) где а - размер гнезда пресс-формы при температуре прессования; b - размер изделия при температуре равной 20єС.

В настоящее время известно значительно число способов формирования пластмассовых изделий, которые применяют в зависимости от их конструкций, типа и размеров, технически требований, предъявляемых к использованию изделий. Наиболее распространенными являются:

- прессование, применяемое для переработки термореактивных пластмасс (реактопластов);

- литье под давлением - для обработки термопластичных материалов (термопластов);

- формование - предание необходимой формы листовым термопластичным материалам.

Сущность всех этих способов обработки заключается в том, что исходное сырье подвергается обработке в специальных формах, которые называются пресс-формами, под давлением при соответствующем нагреве в процессе формирования формообразования или после него. Построение типового технологического процесса зависит от конструкций и назначения детали. При выборе операций и переходов решаются следующий вопросы:

1. Подбор и дозировка компонентов: полимер, стабилизатор, пластификатор, краситель, инициатор, парообразователь и др.;

2. Образование исходного материала (пластмассы): смешение; гранулирование; растворение и т.д.;

3. Изготовление изделия (переработка материала): прессование, литье под давлением, выдувание, напыление, окунание и т.д.;

4. Доработка изделия: декоративная отделка, термообработка, механическая обработка и т.д.

Приемы и методы подбора, дозировки компонентов и образования исходного материала пластмассы рассматриваться не будут. Рассмотрим основные способы переработки пластмасс в изделия.

Технологически процесс прессования заключается в том, что под влиянием нагрева и давления пресс-материал заполняет рабочее пространство пресс-формы и полимеризуется в твердое состояние.

Прессование подразделяется на горячее, холодное и литьевое.

Горячее прессование термореактивных пластмасс применяется для изготовления деталей простой формы с ограниченным количеством арматуры или без нее.

Пресс-материал в виде таблеток или порошка загружается непосредственно в формообразующую полость горячей пресс-формы, после чего подвергается давлению пресса.

Нагретый пресс-материал размягчается, заполняет гнезда пресс-формы и остается в ней определенное время до полного затвердевания. После этого пресс-форму открывают и извлекают отформованную деталь. Скорость отвердевания термореактивного материала зависит от его марки и температуры прессования.

Для большинства термореактивных пластмасс температура прессования изменяется от 130 до 180є С. Время выдержки для отвердевания для разных пластмасс устанавливается в пределах 0,5-2,5 мин на 1 мм наибольшей толщины изделия.

Удельные давление для различных пластмасс изменяются в пределах от 10 до 40 МН/м2 (МПа).

Холодное прессование состоит в том, что пресс-порошок загружают в холодную пресс-форму, подвергают сжатию при высоких удельных давлениях 60-120МН/м2 и выдерживают под таким давлением в течении 5-15 с.

Затем заготовки извлекаются из пресс-формы и запекаются в термостате при температуре 150-170є С для полимеризации связующего вещества. При холодном прессовании значительно увеличивается производительность труда, но качество изделий хуже, поверхность - матовая. Этот метод не применим для изделий сложной формы.

Литьевое прессование применяется для изготовления изделий сложной конфигурации из термореактивных пластмасс. Отличием литьевого прессования является наличие в конструкции пресс-формы дополнительной загрузочной камеры, которая соединяется с матрицей тонким литниковым каналом.

Пластмассу (1) помещают в загрузочную камеру (2). Там она нагревается от стенок загрузочной камеры, переходит в вязко-текучее состояние и под воздействием усилия пуансона (3) через литниковую систему (4) поступает в оформляющую разъемную полость матрицы (5). Сечение литниковых каналов мало и материал поступает в плоскость и с большой скоростью в полужидком состоянии.

Температура нагрева материала находится в пределах от 140є С до 170є С. Давление в загрузочной камере - 50-200 МН/м2 (МПа). Особенностями литьевого прессования является возможность получения в деталях глубоких отверстий малого диаметра, высокая точность деталей и возможность заформовывать в изделия тонкую арматуру.

Недостатки: сложная и дорогостоящая пресс-форма и большой расход материала (на литники).

Список использованной литературы

1. Гуляев А.П. Металловедение. - М.: Металлургия, 1977.

2. Самохоцкий А.И. Технология термической обработки металлов, М., Машгиз, 1962.

3. Пожидаева С.П. Технология конструкционных материалов: Уч. Пособие для студентов 1 и 2 курса факультета технологии и предпринимательства. Бирск. Госуд. Пед. Ин-т, 2002.

4. Марочник сталей и сплавов. 2-е изд., доп. и испр. / А.С. Зубченко, М.М. Колосков, Ю.В. Каширский и др. Под общей ред. А.С. Зубченко - М.: Машиностроение, 2003.

5. Металловедение и термическая обработка стали. Справочник. / Под ред. Л.М. Бернштейна, А.Г. Рахштадта, М.: Металлургия, 1987.

6. Технология производства ЭВМ / А.П. Достанко, М.И. Пикуль, А.А. Хмыль: Учеб. - Мн. Выш. Школа, 2004 - 347с.

7. Технология деталей радиоэлектронной аппаратуры. Учеб. пособие для ВУЗов / С.Е.Ушакова, В.С. Сергеев, А.В. Ключников, В.П. Привалов; Под ред. С.Е. Ушаковой. - М.: Радио и связь, 2002. - 256с.

8. Тявловский М.Д., Хмыль А.А., Станишевский В.К. Технология деталей и периферийных устройств ЭВА: Учеб. пособие для ВУЗов. Мн.: Выш. школа, 2001. - 256с.

9. Технология конструкционных материалов: Учебник для машиностроительных специальностей ВУЗов / А.М. Дольский, И.А. Арутюнова, Т.М. Барсукова и др.; Под ред. А.М. Дольского. - М.: Машиностроение, 2005. - 448с.

10. Технология производства ЭВМ / А.П. Достанко, М.И. Пикуль, А.А. Хмыль: Учеб. - Мн. Выш. Школа, 2004 - 347с.

11. Технология деталей радиоэлектронной аппаратуры. Учеб. пособие для ВУЗов / С.Е.Ушакова, В.С. Сергеев, А.В. Ключников, В.П. Привалов; Под ред. С.Е. Ушаковой. - М.: Радио и связь, 2002. - 256с.

12. Тявловский М.Д., Хмыль А.А., Станишевский В.К. Технология деталей и периферийных устройств ЭВА: Учеб. пособие для ВУЗов. Мн.: Выш. школа, 2001. - 256с.

13. Технология конструкционных материалов: Учебник для машиностроительных специальностей ВУЗов / А.М. Дольский, И.А. Арутюнова, Т.М. Барсукова и др.; Под ред. А.М. Дольского. - М.: Машиностроение, 2005. - 448с.

14. . Воскобойников В.Г. Общая металлургия: учебник для вузов / В.Г. Воскобойников, В.А. Кудрин, А.М. Якушев. - 6-е изд., доп. и перераб. - М.: ИКЦ «Академкнига», 2002. - 768 с.

15. 2. Металлургия стали: учебник для вузов / под ред. В.И. Явойского. - М.: Металлургия, 1983. - 584 с.

16. 3. Воскобойников В.Г. Технология и экономика переработки железных руд : учебник для вузов / В.Г. Воскобойников. - М.: Металлургия, 1977. - 255 с.

17. 4. Кудрин В.А. Теория и технология производства стали : учебник для вузов / В.А. Кудрин. - М.: Мир, 2003. - 528 с.

18. 5. Бигеев А.М. Металлургия стали: учебник для вузов / А.М. Бигеев. - 2-е изд., доп. и перераб. - М.: Металлургия, 1988. - 480 с.

Размещено на Allbest.ru


Подобные документы

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие [7,6 M], добавлен 29.01.2011

  • Свойства металлов и сплавов. Двойные сплавы. Металлы применяемые в полиграфии. Технические требования к типографским сплавам. Важнейшие свойства типографских сплавов. Металлы для изготовления типографских сплавов. Диаграммы состояния компонентов.

    реферат [32,5 K], добавлен 03.11.2008

  • Определение понятия и классификация свойств конструкционных материалов, из которых изготовляются детали конструкций, воспринимающих силовую нагрузку. Стеклокристаллические материалы, производство стали, классификация, графитизация и маркировка чугунов.

    контрольная работа [651,4 K], добавлен 14.01.2011

  • Типы кристаллических решеток, кристаллическое строение. Элементарные ячейки кристаллических решеток. Дефекты в кристаллах, характеристика и значение. Кристаллизация и кривые кристаллизации метала при охлаждении. Физико-химические свойства кристаллов.

    методичка [1,2 M], добавлен 06.12.2008

  • Основные типы решеток, точечные и линейные дефекты. Связь строения кристаллической решетки с механическими и физическими свойствами материала. Реальное строение кристаллов, формы пластической деформации. Свойства металлов, применяемых в строительстве.

    реферат [218,2 K], добавлен 30.07.2014

  • Цветная металлургия как наиболее конкурентоспособная отрасль промышленности России, инвестиционная политика. Цветные металлы и сплавы: медь, алюминий, цинк, магний; их технологические и механические свойства, применение в промышленности и строительстве.

    реферат [28,2 K], добавлен 05.12.2010

  • Типы кристаллических решёток металлов и дефекты их строения. Свойства и области применения карбида кремния. Электропроводность жидких диэлектриков и влиянии на неё различных факторов. Виды, свойства и применение неметаллических проводниковых материалов.

    контрольная работа [1,5 M], добавлен 09.10.2010

  • Классификация цветных металлов, особенности их обработки и области применения. Производство алюминия и его свойства. Классификация электротехнических материалов. Энергетическое отличие металлических проводников от полупроводников и диэлектриков.

    курсовая работа [804,3 K], добавлен 05.12.2010

  • Классификация металлов по основному компоненту, по температуре плавления. Характерные признаки, отличающие металлы от неметаллов: внешний блеск, высокая прочность. Характерные особенности черных и цветных металлов. Анализ сплавов цветных металлов.

    контрольная работа [374,3 K], добавлен 04.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.