Конструкционные материалы и технология обработки
Кристаллическое строение материалов. Строение и свойства сплавов. Структурные составляющие железоуглеродистых сплавов. Влияние структурного состава железоуглеродистых сплавов на их свойства. Термическая обработка стали. Свойства и применение чугуна.
Рубрика | Производство и технологии |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 15.05.2011 |
Размер файла | 5,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
9. Композиционные материалы
Классификация композиционных материалов
Композиционными материалами (КМ) называют материалы, созданные из двух и более компонентов, различающихся по химическому составу, разделенные ярко выраженной границей с новыми свойствами, отличающимися от свойств компонентов.
Компонент, непрерывный в объеме КМ, называют матрицей, прерывистый армирующим элементом.
В зависимости от материала матрицы КМ можно разделить на следующие основные группы: композиции с металлической матрицей металлические композиционные материалы (МКМ), с полимерной полимерные композиционные материалы (ПКМ), с резиновой резиновые композиционные материалы (РКМ) и с керамической керамические композиционные материалы (ККМ).
Название обычно присваивают в зависимости от армирующего материала. Например, ПКМ, армированные стеклянными волокнами, называют стеклопластиками. Аналогично получили свои названия металлопластики, асбестопластики, углепластики, боропластики и т.д.
По типу арматуры и ее ориентации КМ подразделяют на две основные группы: изотропные и анизотропные.
Изотропные КМ имеют одинаковые свойства во всех направлениях. К этой группе относят КМ с порошкообразными наполнителями и КМ, армированные короткими (дискретными) частицами (в дисперсно-упрочнен-ных КМ), (рис. 4, в).
У анизотропных материалов свойства зависят от направления армирующего материала: однонаправленные (рис. 4, а), слоистые (рис. 4, б) и трехмерно-направленные.
9.1 Армирующие материалы
Армирующие материалы подразделяют на порошкообразные и волокнистые. Порошковые материалы должны удовлетворять требованиям по химическому составу, размерам и форме отдельных фракций, по технологическим свойствам (насыпная масса, текучесть, прессуемость, спекаемость) при изготовлении изделий порошковой металлургией. Они не должны содержать загрязнений, влаги, масел и других примесей, должны храниться в условиях, исключающих окислительные процессы на поверхности порошковых зерен.
Армирующие волокна, используемые для получения КМ, должны иметь малую плотность, высокую температуру плавления, минимальную растворимость в материале матрицы, высокую прочность во всем интервале рабочих температур, высокую химическую стойкость, технологичность, отсутствие фазовых превращений в зоне рабочих температур.
Применяют в основном три вида волокон: нитевидные кристаллы, металлическую проволоку, неорганические и поликристаллические волокна.
Нитевидные кристаллы («усы») наиболее перспективный материал для армирования металлов, полимеров, керамики. Они имеют сверхвысокую прочность в широком диапазоне рабочих температур, малую плотность, химическую инертность ко многим материалам матрицы.
Металлическая проволока из высокопрочной стали, вольфрама, молибдена и других металлов имеет меньшую прочность, чем нитевидные кристаллы, но стоимость ее более низкая, поэтому ее широко применяют в качестве арматуры, особенно для КМ на металлической основе.
Неорганические и поликристаллические волокна имеют малую плотность, высокую прочность и химическую стойкость. Широко применяют углеродные, борные, стеклянные и другие волокна для армирования пластмасс и металлов.
Основное назначение наполнителей придание КМ специальных свойств. Например, волокнистые наполнители вводят с целью получения максимальных прочностных характеристик.
Из волокнистых КМ изготавливают многослойные ленты, листы, стержни, трубы, профили конструкционного назначения, лопатки турбин, детали для авиации и космической техники.
Жаропрочные КМ изготавливают на основе сплавов никеля и кобальта, упрочненных керамическими (SiC, Si3Ni4, Al2O3) и углеродными волокнами. КМ применяют для изготовления тяжелонагруженных деталей газотурбинных двигателей, камер сгорания, тепловых экранов, жаростойких труб и т.д.
9.2 Материалы матриц
Матрица в армированных композициях является основой, придает изделию форму и делает материал монолитным. Материал матрицы должен позволять композиции воспринимать внешние нагрузки.
При нагружении за счет пластичности матрицы силы от разрушенных или дискретных (коротких) волокон передаются соседним волокнам. Передача нагрузки зависит, прежде всего, от качества соединений, т.е. от хорошей адгезии между компонентами КМ. Без этого невозможны передача нагрузки волокон и, следовательно, армирование.
Получению качественного соединения способствуют взаимная диффузия с образованием твердого раствора; поверхностное химическое взаимодействие между компонентами композиции; отсутствие на поверхности раздела каких-либо загрязняющих слоев.
При изготовлении композиции в жидкой фазе материал матрицы должен смачивать армирующий материал (волокно). Качество соединения зависит от смачиваемости волокон материалом матрицы, что обусловливается определенной степью физического и химического сродства компонентов. Смачивание может быть улучшено нанесением на армирующие волокна специальных покрытий и введением в материал матрицы специальных легирующих добавок. Улучшить смачивание при пропитке волокон металлическими расплавами можно, применив ультразвуковую обработку жидкой фазы, повышения температуры расплава и увеличения времени нахождения композиции в жидком состоянии.
Таким образом, создавая новые КМ жидкофазными способами, следует принимать во внимание, что материал матрицы должен полностью смачивать армирующие волокна, не должен разъедать или иным способом разрушать волокна. Кроме того, матрице отводится роль защитного покрытия, предохраняющего волокна от механических повреждений и окисления.
В качестве материала матрицы в зависимости от требуемых эксплуатационных свойств применяют следующие материалы: легкие металлы и сплавы на основе алюминия и магния; сплавы на основе титана, меди; жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта; тугоплавкие сплавы на основе вольфрама, молибдена и ниобия.
Алюминиевые сплавы обладают хорошей пластичностью, коррозионной стойкостью, но сравнительно невысокой прочностью. Для пропитки КМ применяют алюминиевые сплавы с хорошими литейными свойствами, например силумины, имеющие в своем составе повышенное содержание кремния. Перспективным для жаропрочных КМ является САП (спеченный алюминиевый порошок), который представляет собой алюминий, упрочненный дискретными частицами оксида алюминия. МКМ на основе САП имеют высокую жаропрочность (до 500 С), хорошо обрабатываются давлением, резанием и обладают высокой коррозионной стойкостью.
Магний и его сплавы характеризуются низкой плотностью, относительно высокими механическими свойствами, способностью сопротивляться ударным нагрузкам и вибрациям. Кроме того, они достаточно пластичны и хорошо обрабатываются давлением.
Титановые сплавы имеют малую плотность, а по прочностным характеристикам превосходят алюминиевые и магниевые сплавы. Они имеют достаточно хорошие литейные свойства и могут обрабатываться пластическим деформированием в широком интервале температур (600…1200 С). Для армирования КМ промышленностью налажен выпуск фольги из титановых сплавов толщиной 3…200 мкм.
Медь и медные сплавы имеют высокую электропроводимость и теплопроводность, высокие пластические свойства.
Жаропрочные и жаростойкие сплавы на основе системы никельхром с легирующими добавками вольфрама молибдена, титана, алюминия стойки к образованию окалины на поверхности в газовых средах при нагреве свыше 500 С. Повышенная длительная прочность, высокое сопротивление ползучести и усталости достигаются за счет введения в сплавы титана и алюминия. Сплавы на никелевой и кобальтовой основе, легированные различными элементами, способны работать при температурах до 1100 С. Пластические свойства таких сплавов низки, поэтому их подвергают обработке давлением.
Порошковой металлургией стало возможно получать МКМ с матрицей из особотугоплавких сплавов ниобия, вольфрама, молибдена и сплавов на их основе. Волокнистыми наполнителями (нитевидными кристаллами из тугоплавких соединений) эти матрицы армируют с целью придания им особых эксплуатационных свойств (ударопрочности, термостойкости и других специальных физических характеристик).
9.3 Свойства композиционных материалов
На свойства КМ значительное влияние оказывают правильное сочетание материала матрицы, форма, размер, химический состав армирующих элементов и способ получения КМ.
Для армирования КМ с металлической матрицей используют высокопрочные волокна углерода, бора, карбида кремния и вольфрама, оксидов алюминия и циркония, проволоку из стальных, вольфрамовых и молибденовых сплавов, а также нитевидные кристаллы («усы»).
Волокна углерода и бора используют обычно для армирования легких сплавов на основе алюминия и магния. Изделия из этих КМ характеризуются высокими прочностью и жесткостью и могут длительно эксплуатироваться при температурах 300…450 С. Волокна бора с барьерным покрытием из карбида кремния могут успешно эксплуатироваться при температурах 600 С и даже до 800 С при соответствующем материале матрицы.
Волокна карбида кремния и вольфрама предназначены для армирования жаропрочных КМ на основе никелево-хромистых сплавов с рабочими температурами 1100…1300 С.
Термостойкие и жаропрочные волокна из оксидов алюминия и циркония могут быть эффективными при армировании КМ, длительно работающих при температурах 1400…1600 С.
Проволоку из стальных, вольфрамовых и молибденовых сплавов широко используют для армирования высокопрочных КМ.
Нитевидные кристаллы весьма перспективны в качестве армирующего материала для получения высокопрочных и жаропрочных КМ.
Волокна углерода имеют низкую плотность (1400…2000 кг/м3), высокий предел прочности при растяжении (до 3500 МПа), модуль упругости (до 700 000 МПа) и малый диаметр волокон (5…12 мкм).
Волокна углерода имеют относительно высокую химическую стойкость к атмосферным условиям и некоторым кислотам (серной, азотной, соляной), что определяет их долговечность при хранении, а также долговечность КМ на их основе. Термостойкость при длительной эксплуатации не превышает 400 С. К недостаткам углеродных волокон следует отнести низкую прочность на сжатие, химическую активность при взаимодействии с расплавленными металлическими матрицами и малую смачиваемость, особенно с полимерными матрицами.
Волокна бора характеризуются низкой плотностью (2400…3000 кг/см3); прочностью при растяжении (до 3800 МПа) и модулем упругости (до 400 000 МПа). Для повышения термостойкости волокон на бор наносят тонкий слой (2…6 мкм) карбидов кремния или бора.
Волокна карбида кремния обладают плотностью 3200…3500 кг/м3, прочностью при растяжении 1700…2500 МПа, модулем упругости 450 000…480 000 МПа. Они жаростойки и жаропрочны и поэтому весьма перспективны для создания КМ на металлической основе с высокотемпературными характеристиками.
Высокая химическая стойкость к атмосферным воздействиям, практическое отсутствие реакции между материалами матрицы и волокнами и хорошая смачиваемоть позволяют использовать эти волокна без нанесения барьерных покрытий при изготовлении КМ с металлической матрицей.
Волокна из оксидов алюминия, циркония характеризуются высокими прочностью и теплостойкостью.
Металлическая проволока из высокоуглеродистых и высоколегированных сталей широко используется для армирования КМ.
Нитевидные кристаллы («усы») тонкие короткие волокна с монокристаллической структурой, диаметром до 10 мкм и длиной до 10 мм имеют прочность тем выше, чем меньше диаметр. Например, нитевидный кристалл железа диаметром 3 мкм имеет прочность при растяжении более 12 000 МПа, а при диаметре 10 мкм менее 3000 МПа.
Для создания КМ на металлической основе в качестве армирующих элементов применяют нитевидные кристаллы таких тугоплавких соединений, как карбиды кремния, бора, оксида алюминия и др.
Благодаря совершенству структуры нитевидные кристаллы имеют высокие, близкие к теоретическим прочностные характеристики. Например, нитевидные кристаллы из карбида кремния имеют плотность 3320 кг/м3, прочность при растяжении 21 000 МПа и модуль упругости 490 000 МПа.
10. Общие принципы выбора материалов
Качество конструкций, машин и оборудования во многом определяются правильным выбором материала для их изготовления. Материалы работают в различных условиях: при низких или высоких температурах, в агрессивных химических средах, при знакопеременных циклических нагружениях, в условиях трения и др.
Часто материалы работают в условиях одновременного воздействия перечисленных факторов. Поэтому при выборе материала в первую очередь требуется всесторонне рассмотреть условия его работы и ранжировать факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие по возможности. Так, например, при выборе сталей и сплавов для газовых турбинных двигателей и сопел ракет, работающих в условиях воздействия активных газовых сред, следует рассматривать влияние на свойства материалов высоких температур, коррозионного растрескивания, питтинговой и щелевой коррозии, коррозии под напряжением, водородного охрупчивания, эрозии и общей коррозии. Однако обязательно следует учитывать влияние только первых шести факторов, а общую коррозию как менее важный фактор учитывают по возможности.
Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физико-химическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно если в конструкции должны работать разные материалы.
Физико-химические свойства
Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Низкая теплопроводность уменьшает теплопритоки и придает материалу теплоизолирующие свойства, а высокая теплопроводность способствует снижению температурных градиентов в изделиях. Для летательных аппаратов большое значение имеет уменьшение массы конструкции, поэтому для них целесообразно использовать материалы с большой удельной прочностью, которая определяется отношением прочности материала к его плотности. В этом отношении более перспективны алюминиевые, магниевые и титановые сплавы, а также композиционные материалы. Применение в соединениях деталей из раличных материалов обусловливает необходимость учета их коэффициентов линейного расширения.
Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждения в металле и привести к хрупкому разрушению конструкции. Для криогенных конструкций важное значение имеет влияние химического взаимодействия низкокипящих продуктов (жидкий кислород, водород и др.) со сплавами, из которых изготавливаются эти конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.
Механические свойства
Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.
Расчет конструкции на прочность производят по допустимым напряжениям [], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении.
При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности, т.е. к коэффициенту запаса прочности n. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких временное сопротивление:
или .
Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.
В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии. Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии только по временному сопротивлению.
Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.
По данным отечественной практики, рекомендуемые значения коэффициентов запаса для серийных материалов обычной техники составляют: nт = 1,5 и nв = 2,4.
Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок.
Пластичность характеризует способность материала к пластическому течению при повышении предела текучести, а вязкость способность поглощать энергию внешних сил при разрушении.
У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная) легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.
Пластичность и вязкость в конструкторские расчеты не входят и являются качественными показателями.
Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом.
Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению.
Металл установок или изделий, подвергаемых многократному нагреву или захолаживанию, испытывается на сопротивление термической усталости.
В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.
Размещено на Allbest.ru
Подобные документы
Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.
курсовая работа [871,7 K], добавлен 03.07.2015Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.
контрольная работа [347,8 K], добавлен 17.08.2009Понятие о железоуглеродистых сплавах. Структурные составляющие ферри, цементита, аустенита, ледебури. Содержание углерода в перлите. Диаграмма состояния железоуглеродистых сплавов. Система железо-цементит, графит. Линия солидуса кристаллизация сплавов.
презентация [1,3 M], добавлен 14.11.2016Общие сведения о металлах и сплавах. Технология изготовления чугуна и стали. Строение и основные свойства железоуглеродистых сплавов. Углеродистые и легированные стали. Стальной прокат, арматура и изделия. Коррозия металлов и способы защиты от нее.
лекция [473,3 K], добавлен 16.04.2010Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.
курсовая работа [3,7 M], добавлен 03.02.2012Построение кривых охлаждения для сплавов с заданным количеством углерода с использованием диаграммы железо-цементит. Состав, свойства и примеры применения легированных сталей, чугуна, высокопрочного сплава. Термическая обработка деталей. Газовая сварка.
контрольная работа [277,4 K], добавлен 01.03.2016Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.
реферат [24,1 K], добавлен 19.11.2007Особенности медных сплавов, их получение сплавлением меди с легирующими элементами и промежуточными сплавами - лигатурами. Обработка медных сплавов давлением, свойства литейных сплавов и область их применения. Влияние примесей и добавок на свойства меди.
курсовая работа [994,4 K], добавлен 29.09.2011Понятие о металлических сплавах. Виды двойных сплавов. Продукты, образующиеся при взаимодействии компонентов сплава в условиях термодинамического равновесия. Диаграммы состояния двойных сплавов, характер изменения свойств в зависимости от их состава.
контрольная работа [378,1 K], добавлен 08.12.2013Общие понятия анализа диаграммы состояния железоуглеродистых сплавов, исследование свойства фаз и структурных составляющих. Технология построения кривых охлаждения и нагрева сплавов, определение составов фаз и расчет их количественного соотношения.
лабораторная работа [242,2 K], добавлен 01.12.2011