Воздушно-реактивный двигатель

История создания, развитие и принцип работы воздушно-реактивного двигателя. Принципиальная схема действия прямоточного воздушно-реактивного двигателя: дозвуковые, сверхзвуковые, ядерные ПВРД. Турбореактивный, турбовинтовой и винтовентиляторный двигатели.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 03.02.2011
Размер файла 36,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды -- малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламененяется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Схема работы ПуВРД

Цикл работы ПуВРД иллюстрируется рисунком справа:

1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.

2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.

3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) -- ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме, ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД -- его работа описывается циклом Хамфри (Humphrey), в то время как работа ПВРД и ТРД описывается циклом Брайтона.

Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автколебания становятся устойчивыми, а амплитуда колебаний каждого элемента -- максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно -- это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи -- поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска[11]).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла.

8.2 Другие пульсирующие ВРД

В литературе встречается описание двигателей, подобных ПуВРД.

Бесклапанные ПуВРД, иначе -- U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеру, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД -- их низкой долговечности (на самолёте-снаряде Фау-1 клапана прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).

Детонационные ПуВРД. (англоязычное название PDE) В этих двигателях горение топливной смеси происходит в режиме детонации (в отличие от дефлаграции, которая имеет место при горении топливно-воздушных смесей во всех ВРД, рассмотренных выше). Детонационная волна распространяется в топливной смеси гораздо быстрее, чем звуковая, поэтому за время химической реакции детонационного горения объём топливной смеси не успевает существенно увеличиться, а давление возрастает скачкообразно (до значений свыше 100 ат), таким образом имеет место изохорический (при постоянном объёме) нагрев рабочего тела. После этого начинается фаза расширения рабочего тела в сопле с образованием реактивной струи. Детонационные ПуВРД могут быть как с клапанами, так и без них.

Потенциальным преимуществом детонационного ПуВРД считается термический КПД более высокий, чем в ВРД любого другого типа. Практическая реализация этого двигателя находится в стадии эксперимента[14].

8.3 Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный, зато простой и дешёвый. Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД -- следствие неполного сгорания топлива в камере.

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС, поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой). При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

По простоте и дешевизне ПВРД практически не уступает ПуВРД, но на скоростях менее 0,5М он неработоспособен. На более высоких скоростях, ПВРД превосходит по эффективности ПуВРД (при закрытом клапане резко возрастает лобовое сопротивление ПуВРД и на околозвуковых скоростях оно «съедает» почти всю тягу, создаваемую этим двигателем).

Совокупность этих обстоятельств и определяют ту нишу, в которой находит применение ПуВРД -- беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5М,-- летающие мишени, беспилотные разведчики.

Клапанные, так же, как и бесклапанные, ПуВРД имеют распространение в любительской авиации и авиамоделировании, благодаря простоте и дешевизне.

9. Основные характеристики ВРД

Основные параметры, характеризующие двигатели следующие.

1. Тяга для двигателей прямой реакции / мощность для двигателей непрямой реакции.

2. Масса.

3. Габариты (входной диаметр и длина по оси).

4. Удельный расход топлива. (отношение расхода топлива за единицу времени к создаваемой двигателем тяге/мощности).

5. Расход воздуха.

6. Степень повышения полного давления.

7. Температура газа перед турбиной.

10. Некоторые распространенные заблуждения, связанные с ВРД

B-17 над Европой

1. Двигатель отталкивается от воздуха турбинами. На самом деле, турбина это только привод компрессора и вентилятора.

2. Тяга создается в сопле. Если бы тягу создавало только сопло -- остальные части двигателя были бы не нужны. Тягу создает весь двигатель.

3. Рёв турбин. ВРД создают немало шума, однако турбина -- один из самых «тихих» узлов двигателя. основную часть шума создают компрессор, вентилятор, воздушные винты, сопло.

4. Инверсионный след -- это реактивный след. Инверсионный след не имеет ни малейшего отношения непосредственно к реактивным двигателям. Это -- результат взаимодействия частичек сгоревшего топлива и (или) поверхностей самолёта с атмосферным воздухом.

11. Литература

1. Стечкин Б. С. Избранные труды. Теория тепловых двигателей. -- М.: Наука, 1977. -- 410 с.

2. Казанджан П. К., Алексеев Л. П., Говоров А. Н., Коновалов Н. Е., Ю. Н. Нечаев, Павленко В. Ф., Федоров Р. М. Теория реактивных двигателей. М. Воениздат. 1955

3. В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987

4. Кулагин В. В. Теория, расчёт и проектирование авиационных двигателей и энергетических установок. Изд. 2-е. М. Машиностроение. 2003.

5. Клячкин А. Л., Теория воздушно-реактивных двигателей, М., 1969

Размещено на Allbest.ru


Подобные документы

  • Принцип действия и классификация воздушно-реактивных двигателей, их схемы и разрезные макеты. Сведения о турбовальном трехвальном двигателе Д-136. Модули двигателя, максимальный взлетный режим. Компрессоры низкого и высокого давления, камера сгорания.

    лабораторная работа [1,0 M], добавлен 22.12.2010

  • Конструкция трехфазного синхронного реактивного двигателя, исследование его рабочих свойств. Опыт холостого хода и непосредственной нагрузки двигателя. Анализ рабочих характеристик двигателя при номинальных значениях частоты и напряжения питания.

    лабораторная работа [962,8 K], добавлен 28.11.2011

  • Расчет параметров потока и построение решеток профилей ступени компрессора и турбины. Профилирование камеры сгорания, реактивного сопла проектируемого двигателя и решеток профилей рабочего колеса турбины высокого давления. Построение профилей лопаток.

    курсовая работа [1,8 M], добавлен 27.02.2012

  • Основные технические характеристики маслосистемы. Измерение противодавления внешней маслосистемы. Крепление маслонасоса откачки масла из коробки приводов. Назначение воздушно-масляного радиатора. Описание смазки трущихся поверхностей деталей двигателя.

    курсовая работа [836,9 K], добавлен 02.08.2015

  • Выбор и обоснование параметров двигателя, его термогазодинамический расчет. Термогазодинамический расчёт двигателя на ЭВМ. Согласование параметров компрессора и турбины. Профилирование ступени компрессора, газодинамический расчет турбины на ЭВМ.

    курсовая работа [4,2 M], добавлен 22.09.2010

  • Воздушно-плазменная резка металлов и сплавов, ее физическая основа, достоинства метода. Схемы плазмообразования, описание оборудования и отличительные особенности этого вида резки. Параметры, влияющие на скорость резки. Расчет экономической эффективности.

    доклад [713,0 K], добавлен 08.12.2010

  • Понятие и основные функции асинхронной электрической машины, ее составные части и характеристика. Принцип действия и назначение асинхронного двигателя. Факторы, влияющие на эффективность и производительность работы асинхронного двигателя, учет потерь.

    контрольная работа [12,0 K], добавлен 12.12.2009

  • Технологическая схема установки телескопического кормораздаточного транспортера в коровнике, основные элементы и их взаимодействие, принцип действия и назначение. Выбор частоты вращения двигателя и технологических данных редуктора, подбор двигателя.

    курсовая работа [211,2 K], добавлен 08.11.2009

  • Понятие, виды, преимущества комбинированного двигателя. Ракетно-прямоточный двигатель, который представляет собой двигатель прямоточной схемы, в воздушном контуре которого установлены ракетные двигатели. Турбопрямоточный двигатель Pratt & Whitney J58-P4.

    реферат [3,4 M], добавлен 03.12.2011

  • Разработка схемы управления на магнитном пускателе с кнопочной станцией для трехфазного асинхронного двигателя. Технические характеристики магнитного пускателя. Принципиальная схема пуска двигателя постоянного тока параллельного возбуждения по времени.

    контрольная работа [301,4 K], добавлен 05.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.