Эксплуатация газотурбинного привода компрессорных станций

Технологические схемы устройства компрессорной станции, принципы ее электро- и водоснабжения, химической защиты. Эксплуатация газоперекачивающих агрегатов с турбинным приводом. Измерение надежности приборов. Расчет расхода транспортируемого газа.

Рубрика Производство и технологии
Вид книга
Язык русский
Дата добавления 22.11.2010
Размер файла 6,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Центральная диспетчерская связь организуется по каналам тональной частоты (TЧ) различных кабельных систем передачи (К-60П, ИКМ-30, ИКМ-120, К12+12 и др. отечественного производства и KNK-30, ВК-300 импортного производства), а также по радиорелейным линиям связи. В эту сеть связи включены диспетчеры всех КС для оперативной связи с главным диспетчером диспетчерского Управления предприятия (Рис. 1.45).

Рис. 1.43. Схема организации связи на рабочем месте диспетчера по газу.

Условные обозначения: - кабель связи и телефонной канализации;

- линия прямого абонента; - линия связи KNK-3О-S;

- выделенная линия связи

Районная диспетчерская связь организована на радиокабельных системах БК/Г венгерского производства и на системах передачи К-6Т отечественного производства по одночетверочным (ЗКП, КСПП) и четырехчетверочным (МКС, ТЗ) кабелям связи. По этим системам связи диспетчеры КС имеют линейную диспетчерскую связь с бригадами линейных эксплуатационных служб по радиоканалу и по диспетчерскому кабельному каналу со всеми ГРС и домами операторов в зоне обслуживания подразделения предприятия.

Местная и междугородняя телефонная связь всех КС организованы на базе современных цифровых коммутационных станций семейства - "Харрис 20+20".Унификация коммутационного оборудования дает существенные преимущества в вопросах послегарантийного обслуживания и обучения эксплуатационного персонала. Автоматические телефонные станции, обслуживающие КС, имеют 100 %-й резерв по центральному управляющему процессору и картам общего телефонного оборудования, а также аккумуляторную батарею на 6 ч работы.

Цифровые АТС имеют в своем составе цифровые карты и, следовательно, дают возможность пользоваться основным абонентам всеми услугами цифровой связи. В перечень основных абонентов КС входят руководящий состав, начальники эксплуатационных служб и диспетчер главного щита.

Автоматические телефонные станции КС имеют полноавтоматический выход на общегосударственную сеть телефонной связи общего пользования по пучку соединительных линий (СЛ), что, с одной стороны, обеспечивает качественную связь с потребителями газа, а с другой - дает возможность использовать свободную емкость АТС для предоставления услуг местной телефонной связи физическим и юридическим лицам в пределах местной телефонной сети, и, в первую очередь, телефонизировать жилые поселки газовиков, находящиеся вблизи предприятия ОАО "Газпром".

Диспетчеры КС являются прямыми абонентами сети связи ручной коммутации, которая существует параллельно сети автоматической телефонной связи и является ее резервом на случай отказа АТС.

Каждая компрессорная станция обеспечивается абонентским телеграфным терминалом сети автоматической телеграфной связи предприятия от центральной ТЛГ станции "Электроника МС-12/12" на 64 номера. В качестве абонентского терминала используется PC (персональный компьютер) с модемом "Альфа-телекс".

Кроме технологической связи, промплощадки КС комплектуются громкоговорящими установками для целей оповещения обслуживающего персонала в аварийных ситуациях и студийным оборудованием для проведения селекторных совещаний руководства и производственных отделов предприятия с использованием аппаратуры связь селекторных совещаний МСС-12.

Каждая компрессорная станция охвачена региональной сетью передачи данных "ГОФО-2" через маршрутизаторы "CISKO-4000" и "CISKO-2500" подсистемы СОМ, обслуживаемой персоналом служб связи.

Зоновая радиосвязь КС функционирует на оборудовании фирмы "Моторолла" в части базовых радиостанций и периферийного оборудования производства фирмы "Алинко" в носимом и автомобильном вариантах. С целью расширения зоны обслуживания антенны базовых станций устанавливаются на свободно стоящие башни высотою примерно 60 м. Зоновые сети радиосвязи сопряжены с сетью ручной коммутации, а при использовании телефонных модемов - с сетью автоматической телефонной связи.

На прилагаемой схеме организации связи диспетчера КС наглядно показаны все виды и направления связи, действующие на компрессорной станции.

Общее руководство технической политикой в области технологической связи предприятия и ее текущей эксплуатации возложено на Управление связи.

1.18 Электрохимзащита компрессорной станции

Защита трубопроводов компрессорных станций от подземной коррозии должна быть комплексной, в связи с чем применяются два метода защиты: пассивный и активный.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий. На территории компрессорных станций разрешается применять только усиленный тип изоляции. На предприятии "Мострансгаз" последние 3 года в качестве изоляционного покрытия применяется двухкомпонентная мастика "Фрусис-1000А" (импортного производства). Мастика наносится в трассовых условиях и предназначена для антикоррозионной защиты горячих участков подземных коммуникаций КС. Толщина наносимого покрытия 2,5-3,0 мм. Эксплуатационная температура до 80 °С. Мастика может с успехом применяться как на прямолинейных участках газопроводов, так и на участках сложной конфигурации (запорная арматура, фланцы, отводы и т.д.).

Однако на практике не удается добиться полной сплошности изоляционного покрытия. Различные виды покрытия имеют неодинаковую диффузионную проницаемость и поэтому обеспечивают разную степень изоляции трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита.

Для защиты подземных трубопроводов от коррозии сооружаются установки катодной защиты (УКЗ). В состав УКЗ входят источник постоянного тока, анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. Анодные заземления на КС выполняют, как правило, глубинные из стальных труб диаметром 220 мм, толщиной стенки 10 мм.

Глубина заложения этого типа заземлителей составляет от 50 до 200 м. Применяются также поверхностные аноды из железокремниевых сплавов (ферросилидов) типов АЗМ, "Менделеевец" или графитопластовые электроды типа ЭГТ.

В качестве источника постоянного тока используются преобразователи типов ПСК, ПАСК, ТДЕ-9, В-ОПЕ.

Главным критерием достижения катодной защиты является так называемый "поляризационный потенциал". Значением поляризационного потенциала, достаточного для катодной защиты, является минус 0,85 В. При наличии в грунте сульфатвосстанавливающих бактерий, значение защитного потенциала - 0,95В, на участках трубопроводов транспортируемого продукта - от 60 до 80 °С, поляризационный потенциал рекомендуется повышать до 1,00 В, а при температуре свыше 80 °С - до минус 1,05 В.

Эксплуатацией УКЗ занимается служба ЭХЗ. Контроль за работой УКЗ осуществляется ежедневно. Один раз в месяц проводится измерение потенциала "труба-земля" в точке дренажа УКЗ, два раза в год измеряется потенциал по всей промплощадке в специально отведенных точках и раз в 5 лет проводится комплексное обследование коммуникаций КС.

Комплексное обследование включает в себя измерения потенциала через каждые 5 м, отыскание мест повреждений изоляции с помощью прибора искателя повреждений изоляции (ИПИ). По результатам комплексного обследования проводится шурфование трубопроводов. В шурфах определяется состояние металла трубы и изоляционного покрытия, после чего проводится необходимый ремонт.

1.19 Грозозащита компрессорной станции

Для защиты зданий и сооружений компрессорной станции и линейной части газопроводов от прямых ударов молнии, которая может вызвать пожар, взрыв и поражение людей, применяется молниезащита. Молниезащита выполняется в соответствии с "Инструкцией по устройству молниезащиты зданий и сооружений" ( ) в зависимости от категорийности объекта по ( ).

I категория - это здания и сооружения зон класса B-I и B-II.

II категория - это здания и сооружения зон плана B-Ia, B-Iб, B-Iг, B-IIa.

Ill категория - все остальные.

В соответствии с этим объекты транспорта газа относятся к II и III категориям.

Молниезащита объектов КС и газопроводов по II категории выполняется в виде отдельно стоящих молниеотводов, наложением металлической сетки на неметаллическую кровлю или использованием в качестве молниеприемника металлической кровли здания. Для отвода молнии в землю применяется заземлитель в виде одного или нескольких металлических уголков или арматуры, толщиной не менее 10 мм, забитых на глубину 1,5 -2,5 м в зависимости от удельного сопротивления грунта.

Сопротивление растекания заземлителя молниеотвода должно быть не более 10 Ом, при высоком удельном сопротивлении грунта допускается до 50 Ом.

Количество молниеотводов выбирается таким образом, чтобы они перекрывали все здания и сооружения, подлежащие защите.

Кроме того, молния может привести к заносу высоких потенциалов по подземным трубопроводам и кабелям и электромагнитной индукции. Занос высоких потенциалов и электромагнитная индукция приводят к поражению людей, пожару и взрыву от искрения, выходу из строя электронного оборудования КИПиА и связи. Защита от заноса высоких потенциалов выполняется присоединением трубопроводов и оболочек кабеля к защитному заземлению с сопротивлением не менее 10 Ом.

Защита от электромагнитной индукции осуществляется привариванием металлических перемычек между трубопроводами в местах их сближения менее 10 см через каждые 25 м.

Глава 2. ЭКСПЛУАТАЦИЯ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ С ГАЗОТУРБИННЫМ ПРИВОДОМ

2.1 Организация эксплуатации цехов с газотурбинным приводом

Под понятием "техническая эксплуатация ГПА" понимается выполнение комплекса технических и организационных мероприятий, обеспечивающих эффективное использование и длительное поддержание на высоком техническом уровне состояния газоперекачивающего и вспомогательного оборудования компрессорных станций. Это значит, что план транспорта газа при эксплуатации газоперекачивающего оборудования необходимо выполнить с минимальными расходами топливного газа и смазочного масла, отсутствием вынужденных и аварийных остановок ГПА и обеспечением номинальной загрузки агрегатов.

Высокий уровень эксплуатации ГПА достигается прежде всего выполнением следующих основных положений:

- точным и неукоснительным знанием и выполнением эксплуатационным персоналом КС инструкций заводов-изготовителей, "Правил технической эксплуатации магистральных газопроводов" и других нормативных документов, действующих в системе ОАО "Газпром";

- соблюдением и выполнением установленных сроков проведения планово-предупредительных ремонтов (ППР) основного и вспомогательного оборудования, а также своевременным выполнением профилактических остановок компрессорных цехов;

- организацией работ по повышению надежности и эффективности работы газоперекачивающего и вспомогательного оборудования, а при необходимости и выполнения работ по реконструкции и техническому перевооружению компрессорной станции;

- создание условий для безопасной и безаварийной работы обслуживающего персонала.

Для обеспечения качественного уровня эксплуатации ГПА необходим постоянный и надежный контроль за его работоспособностью как функционирования ГПА в целом, так и отдельных его элементов в соответствии с техническими условиями на всех режимах работы. Контроль проводится эксплуатационным персоналом по показателям, объем и точность измерений которых должны быть достаточными для обоснованного вывода о соответствии фактических показателей агрегата нормативным. В соответствии с этим эксплуатационный (дежурный) персонал КС обязан поддерживать заданный оптимальный режим работы ГПА, осуществлять контроль и периодическую регистрацию эксплуатационных параметров, анализировать их отклонение от нормальных величин, принимать меры по предупреждению опасных режимов работы.

Организация эксплуатации осуществляется целым рядом эксплуатационных служб, входящих в состав линейных управлений. Среди них основными являются службы:

- газокомпрессорная, обеспечивающая организацию эксплуатации механической части основного технологического оборудования и трубных обвязок КС, а также всего вспомогательного оборудования, участвующего в транспорте газа;

- энерговодоснабжения, обеспечивающая эксплуатацию электротехнического оборудования КС, а также систем: тепловодоснабжения и промышленной канализации;

- контрольно-измерительных приборов и АСУ, обеспечивающая эксплуатацию средств автоматизации основного и вспомогательного оборудования КС и телемеханики.

Производственные задачи, права и обязанности инженерно-технических работников этих служб определяются положениями и должностными инструкциями. Непосредственное управление и контроль за режимом работы КС осуществляется сменным персоналом и центральной диспетчерской службой (ЦДС) объединения.

Для обеспечения нормальной эксплуатации должны быть обязательно выполнены следующие условия:

- к эксплуатации ГПА должен допускаться только персонал, прошедший специальное обучение, сдавший экзамен и получивший разрешение на самостоятельную работу;

- эксплуатационный персонал должен быть обеспечен необходимой технической документацией: инструкциями заводов-изготовителей, проектно-исполнительной документацией, соответствующими инструкциями по обслуживанию оборудования КС, в которые своевременно должны вноситься изменения и дополнения;

- эксплуатационный персонал должен быть обеспечен необходимыми оборотными средствами и запасными частями и приспособлениями (ЗИП) для поддержания оборудования в соответствии с техническими условиями (ТУ) заводов-изготовителей.

2.2 Схемы и принцип работы газотурбинных установок

Термин турбина происходит от латинского слова turbineus - вихреобразный, или turbo - волчок. Турбина и есть двигатель, в котором механическая работа на валу силовой турбины получается за счет преобразования кинетической энергии газовой струи, которая, в свою очередь, получается в результате преобразования потенциальной энергии - энергии сгоревшего топлива, подведенного к камере сгорания, в поток воздуха.

В основе современных представлений о превращении теплоты в работу в двигателях внутреннего сгорания лежат два важнейших положения термодинамики: во-первых, невозможность создания вечного двигателя первого рода, т.е. такого двигателя, который без затраты какой-либо энергии может производить механическую работу (следствие первого начала термодинамики) и, во-вторых, невозможность создания вечного двигателя второго рода, в котором бы теплота полностью превращалась в работу (следствие второго начала термодинамики).

Поэтому непременным условием создания любого теплового двигателя является наличие материальной среды - рабочего тела и, по меньшей мере, двух тепловых источников: источника высокой температуры (нагреватель), от которого получают теплоту для преобразования части ее в работу, и источника низкой температуры, которому отдается часть неиспользованной в двигателе теплоты.

Следовательно, каждый двигатель внутреннего сгорания должен состоять из нагревателя, расширительной машины, холодильника и компрессорной машины. Так как процесс превращения теплоты в работу происходит непрерывно, то необходимо непрерывно, наряду с расширением, осуществлять процесс сжатия рабочего тела, причем при таких условиях, чтобы работа сжатия была естественно меньше работы расширения. Получаемая полезная работа определяется как разность работ расширения и сжатия рабочего тела.

Характерной особенностью осуществления круговых процессов в газотурбинных двигателях является то, что все основные процессы цикла - сжатие, подвод теплоты, расширение непрерывно осуществляются в различных элементах двигателя (компрессор, камера сгорания, газовая турбина), расположенных последовательно по ходу рабочего тела.

В зависимости от способов подвода теплоты к рабочему телу, организации процессов сжатия и расширения рабочего тела газотурбинные установки могут быть выполнены по различным схемам (Рис. 2.1). ГТУ простейшего цикла в механическом отношении могут быть выполнены как одновальные (Рис. 2.1,а), так и двухвальные (Рис. 2.1,б).

В одновальных установках все элементы газоперекачивающего агрегата (ГПА) - осевой компрессор, газовая турбина и нагнетатель находятся на одном валу, что естественно приводит к тому, что при работе все они имеют одну и ту же частоту вращения. Различный закон изменения характеристик газопровода и одновальной ГТУ приводит к тому, что при снижении частоты вращения, одновальная ГТУ быстрее теряет мощность, чем снижается мощность, потребляемая нагнетателем. Это приводит к тому, что одновальная ГТУ будет обеспечивать режим работы нагнетателя только в ограниченном диапазоне изменения частоты вращения. При ухудшении КПД нагнетателя или элементов ГТУ осуществить оптимальную работу ГПА с приводом от одновальной ГТУ без перепуска и дросселирования газа или без существенного повышения температуры газа перед ТВД будет уже трудно. Все это привело к тому, что в настоящее время одновальные ГТУ для перекачки газа на газопроводах не используются.

В установках с разрезным валом, или с независимой силовой турбиной, где вал полезной мощности выделен от турбокомпрессора, нет такой однозначной связи и нагнетатель может практически иметь любую частоту вращения, ему необходимую. Следовательно, у двухвальной ГТУ каждому режиму работы системы ГТУ - нагнетатель, т.е. требованию = idem, соответствует ряд значений по компрессору в границах изменения температуры наружного воздуха (при заданной температуре газов перед турбиной) или наоборот.

При постоянной частоте вращения вала осевого компрессора и переменной частоте вращения силового вала, температура перед газовой турбиной высокого давления может практически оставаться постоянной в достаточно широком диапазоне изменения частоты вращения вала силовой турбины. Это значит, что полезная мощность ГТУ будет изменяться пропорционально изменению КПД силовой турбины.

Кроме того, двухвальные ГТУ имеют несколько лучшие экономические характеристики не только на частичных нагрузках, но и на расчетной, когда одновальная установка, имея некоторый запас по мощности, на номинальной нагрузке будет обеспечивать режим работы нагнетателя ниже расчетного.

Благодаря этим особенностям, двухвальные установки с регенерацией (3.1в) и без регенерации (3.1б) теплоты отходящих газов и получили широкое распространение на газопроводах. Рабочий процесс установки с регенерацией теплоты отходящих газов осуществляется следующим образом: атмосферный воздух после прохождения системы фильтров (на схеме они не показаны) и сжатия в осевом компрессоре (К) поступает в воздухоподогреватель (регенератор) (Р), где за счет использования теплоты отходящих из турбины газов его температура повышается на 200-250 °С. После регенератора сжатый воздух поступает в камеру сгорания (КС), куда одновременно извне подводится топливный газ. В результате сжигания топлива температура образовавшихся продуктов сгорания перед газовой турбиной высокого давления (ТВД) доводится до величины, обусловленной жаростойкостью дисков и лопаток турбины. После расширения в газовой турбине продукты сгорания проходят регенератор, в котором они частично охлаждаются, отдавая часть теплоты воздуху, идущему из осевого компрессора в камеру сгорания, и затем через дымовую трубу выбрасываются в атмосферу.

Сверху, Рис. 2.1в показаны процессы, характеризующие образование цикла ГТУ в координатах и . На этих графиках процесс 1-2 - характеризует сжатие в осевом компрессоре; 2-3 - процесс подвода теплоты в регенераторе и камере сгорания; 3-4 - процесс расширения рабочего тела в газовой турбине; 4-1- процесс выхлопа рабочего тела в атмосферу. Здесь же приведен цикл ГТУ и в координатах . Линиями 1-2' и 3-4' отмечены соответственно реальные процессы сжатия и расширения рабочего тела в цикле, штриховыми 1-2 и 3-4 - процессы сжатия и расширения в идеальном цикле ГТУ. Коэффициент полезного действия установок с регенерацией теплоты отходящих газов при существующих параметрах цикла может достигать величины 32-35%, что во всех случаях при тех же параметрах цикла на 4-5% больше, чем в установках без регенерации теплоты отходящих газов.

Рис. 2.1. (а,б) - Простейшие схемы ГТУ открытого типа; (в) - ГТУ с регенерацией теплоты отходящих газов; (г) - ГТУ простого цикла с двумя компрессорами; (д) - ГТУ с промежуточным подводом теплоты при сжатии и промежуточным отводом теплоты при расширении с регенерацией теплоты:

К - осевой компрессор; КС - камера сгорания; Р - регенератор, ТВД - турбина высокого давлеия; ТНД - турбина низкого давления; ТСД - турбина среднего давления; Н - нагнетатель; ПО - рекуператор (промежуточный холодильник)

В настоящее время около тысячи агрегатов, в основном мощностью 6 и 10 МВт, эксплуатируются в ОАО "Газпром" с пластинчатыми регенераторами теплоты (Рис. 2.2). Однако необходимо отметить, что эти пластинчатые регенераторы имеют ряд конструктивных и технологических недоработок, которые после нескольких десятков пусков и остановок ГТУ начинают сказываться на потере герметичности регенератора. В результате регенератор теряет свои показатели, падает степень регенерации, а следовательно и ухудшаются характеристики ГТУ. В настоящий момент на смену им приходят трубчатые и термопластинчатые регенераторы.

Регенераторы экономически эффективно устанавливать на компрессорных станциях, где загрузка по времени работы составляет не менее 80 %. Чисто конструктивно такие ГТУ имеют низкую степень сжатия за осевым компрессором и вследствие этого получается значительная разница температуры воздуха за осевым компрессором и температуры отработанных газов, что обеспечивает высокий коэффициент регенерации теплоты в ГТУ.

Рис. 2.2. Воздухоподогреватель (регенератор) пластинчатого типа:

1 - теплообменные поверхности; 2 - ребра; 3 - коллектор; 4 - опора

Тем не менее, регенерация теплоты отходящих газов с использованием герметичных регенераторов (в частности, трубчатых) остается одним из наиболее доступных и термодинамически эффективных способов повышения экономичности ГТУ в эксплуатационных условиях, когда одним из главных направлений по дальнейшему совершенствованию газотранспортной системы страны является разработка и использование ресурсоэнергосберегающих технологий при транспорте природных газов.

О целесообразности использования регенеративных ГТУ на КС свидетельствует и тот факт, что в последние годы отмечены случаи перевода ряда эксплуатируемых безрегенеративных установок типов ГТК-10И и ГТК-25И на работу по регенеративному циклу с использованием для этого регенераторов трубчатого типа (Рис. 2.3).

Рис. 2.3. Воздухоподогреватель (регенератор) трубчатого типа:

1 - трубчатый пучок; 2 - трубная доска; 3 - разделительная трубная доска; 4 - камера продуктов сгорания; 5 - коллектор; 6 - опора

Вопрос о целесообразности применения регенеративных ГТУ на газопроводах должен решаться на основе термодинамических и основанных на них технико-экономических расчетах с учетом накопленного опыта эксплуатации установок подобного типа и для каждой конкретной станции индивидуально, исходя из цены на энергоносители.

На Рис. 2.1г приведена схема ГТУ простого цикла с двумя осевыми компрессорами без промежуточного охлаждения воздуха между ними и независимой силовой турбиной для привода нагнетателя. Установки подобных схем, созданные по типу авиационных ГТУ, позволяют получить в цикле высокую степень сжатия (до 18-25) и обеспечить оптимальную работу компрессоров на пусковых и переменных режимах. Высокая степень сжатия при относительно высоких температурах продуктов сгорания перед турбиной, позволяет получить в таких установках КПД на уровне 33-35% и выше. Компактность таких установок достигается размещением обоих компрессоров, камер сгорания и газовых турбин в одном корпусе. Привод компрессоров низкого и высокого давления осуществляется соответственно от турбины среднего и высокого давления, используя схему "вал в валу".

Опыт эксплуатации газоперекачивающих агрегатов типа ГТН-25-1, производства НЗЛ, который реализовал этот цикл с двумя осевыми компрессорами, показал, что агрегаты данной конструкции имеют очень низкую надежность и большие затраты при проведении ремонта.

Газотурбинные установки более сложных теплотехнических схем (Рис. 2.1д) - с промежуточным отводом теплоты в процессе сжатия, промежуточным подводом теплоты в процессе расширения и с регенератором, при существующих достижениях в области компрессоростроения и турбостроения позволяют достичь КПД установки на уровне 43-47%. Цикл такого двигателя в координатах приведен на Рис. 2.4.

Рис. 2.4. Цикл ГТУ с промежуточным отводом теплоты в процессе сжатия и промежуточным подводом теплоты в процессе расширения

По линии 1-2 здесь осуществляется сжатие воздуха в компрессоре К1 с подводом к нему работы () от турбины среднего давления (см. Рис. 2.1д), по линии 2-3 осуществляется отвод теплоты от воздуха в промежуточном холодильнике (ПО). По линии 3-4 осуществляется дальнейшее сжатие воздуха в компрессоре высокого давления (К), с подводом к нему работы () от турбины высокого давления. По линии 4-6 осуществляется подвод теплоты, вначале в регенераторе на участке 4-5, а затем в камере сгорания высокого давления (КС). После камеры сгорания (КС), продукты сгорания, расширяясь в ТВД, совершают работу (), идущую на привод компрессора (К). После ТВД продукты сгорания направляются в камеру сгорания (КС), где их температура за счет дополнительного подвода теплоты на линии 7-8 вновь доводится до уровня температуры, равной температуре перед ТВД. По линии 8-9 происходит дальнейшее расширение продуктов сгорания, вначале в турбине среднего давления и далее в силовой турбине с получением работы. Работа турбины среднего давления идет на привод компрессора (К ), работа силовой турбины - на привод полезной нагрузки.

Рассмотренный трехвальный двигатель с теплотехническими мероприятиями позволяет получить не только высокий КПД на расчетной нагрузке, но и практически удержать его при нагрузке до 50-60% от номинальной, имея максимум КПД в интервале 80-90% номинальной мощности.

При кажущейся сложности такой трехвальный двигатель может быть выполнен весьма компактным.

Повышение экономичности ГПА с газотурбинным приводом за счет рационального использования теплоты отходящих газов, можно достаточно хорошо осуществить путем использования установок так называемого парогазового цикла (Рис. 2.5), сочетающих в себе цикл газовой турбины на уровне высоких температур рабочего тела и цикл паровой турбины, работающий на отходящих продуктах сгорания ГТУ.

Рис. 2.3. Принципиальная схема ПГУ с котлом - утилизатором:

ОК - осевой компрессор; КС - камера сгорания; ГТ - газовая турбина; Н - нагнетатель; КУ - котел-утилизатор; ПТ - паровая турбина; ЭЛ - электрогенератор; К - конденсатор; КН - конденсатный насос; Д - деаэратор; ПН - питательный насос

По этой схеме продукты сгорания ГТУ после турбины низкого давления поступают в котел-утилизатор для выработки пара высокого давления. Полученный пар из котла-утилизатора поступает в паровую турбину, где, расширяясь, вырабатывает полезную работу, идущую на привод нагнетателя или электрогенератора. Отработанный пар после паровой турбины проходит конденсатор, конденсируется, и полученная жидкость насосом вновь направляется в котел-утилизатор, замыкая цикл силовой установки. Схема цикла парогазовой установки в координатах приведена на Рис. 2.3.

Рис. 2.3. Схема цикла парогазовой установки в координатах

На этой схеме в верхней её части показан цикл ГТУ, в нижней части - цикл паросиловой установки. На линии 1-2 цикла ГТУ осуществляется процесс сжатия воздуха в осевом компрессоре, на линии 2-3 - подвод теплоты в регенераторе и камере сгорания, на линии 3-4 - процесс расширения продуктов сгорания в турбине, на участке 4-5 линии 4-1 - осуществляется отвод теплоты от продуктов сгорания, прошедших газовую турбину к воде и пару в котле-утилизаторе паросиловой установки.

Подвод теплоты к воде в котле-утилизаторе идет на линии 1'-2', где она нагревается до температуры кипения. Дело в том, что температура воды на входе в котел-утилизатор практически равна ее температуре на выходе из конденсатора и лежит значительно ниже температуры кипения, соответствующей давлению воды () на выходе из насоса. Поэтому в паровом котле вода вначале нагревается при постоянном давлении () до температуры кипения по линии 1'-2' и испаряется, превращаясь в сухой насыщенный пар (линия 2'-3'). Полученный пар поступает в пароперегреватель, который обычно составляет одно целое с паровым котлом, перегревается там (линия 3'-4') до нужной температуры (t) и затем поступает в паровую турбину, где расширяется по линии 4'-5'. На линии 5'-1' пар конденсируется в конденсаторе и вода насосом вновь подается в котел-утилизатор. Цикл замыкается.

Установки подобных схем находят применение в стационарной энергетике, отдельные образы используются на газопроводах Германии. В 1995 г. была принята в эксплуатацию первая опытно-промышленная парогазовая установка в России на КС "Грязовец" на базе ГТН-25 и паротурбинной установки мощностью 10 МВт. В настоящий момент разрабатывается большой ряд установок парогазового цикла, мощностью от 0,5 до 6 МВт, которые будут применяться на компрессорных станциях для выработки электроэнергии. КПД схем подобных установок может достигать величины 45-50%. В значительной степени это зависит от значения мощности, которая при этом вырабатывается паровой турбиной. Однако к недостаткам этой схемы следует отнести определенное удорожание энергопривода КС, усложнение эксплуатации подобных установок на газопроводах, особенно в суровых природно-климатических условиях, необходимость водоподготовки и т.д. Все это позволяет утверждать, что эти установки не выйдут из стадии использования на КС отдельных опытно-промышленных образцов.

Предпочтение в эксплуатации будет отдаваться главным образом двухвальным установкам простейших схем с регенерацией или без регенерации теплоты отходящих газов.

2.3 Подготовка ГПА к пуску

Подготовка ГПА к пуску является одним из ответственных этапов в ее эксплуатации. Разрешение на подготовку ГПА к пуску сменный персонал КС получает от центральной диспетчерской службы (ЦДС) производственного предприятия, которое обязательно записывается в оперативном журнале сменного диспетчера (инженера).

Перед пуском ГПА на нем необходимо выполнить ряд подготовительных работ. Объем этих работ оговаривается инструкциями по эксплуатации и зависит прежде всего от того, из какого состояния пускается агрегат.

Пуск ГПА может производиться из следующих состояний:

- "горячий резерв";

- "резерв";

- после выполнения ремонта ГПА;

- первый пуск после монтажа.

При нахождении агрегата в состоянии "горячий резерв" на нем не требуется выполнять каких-либо подготовительных работ; на агрегате необходимо только поддерживать предпусковые условия, которые обеспечат его немедленный запуск от кнопки "Пуск".

На агрегате, находящимся в "резерве", пуск можно обеспечить через 1,5-2 ч, в зависимости от типа ГПА после получения указания диспетчера. Это время необходимо для подогрева масла, проверки состояния элементов управления запорной арматуры, подачи напряжения и т.п.

Наибольший объем подготовительных работ на ГПА выполняется перед первым пуском после монтажа, т.е. в процессе пусконаладочных работ.

Рассмотрим объем работ, выполняемых на ГПА после проведения на нем среднего, капитального ремонта или регламента, как наиболее характерного для текущей эксплуатации.

При подготовке ГПА к пуску необходимо:

- провести внешний осмотр оборудования и убедиться в отсутствии посторонних предметов, особо тщательно проверить отсутствие горючих материалов, а также баллонов с кислородом или пропаном;

- выполнить осмотр входного и выходного тракта ГПА (газоходов и воздуховодов), а также воздухозаборной камеры на отсутствие посторонних предметов, надежного крепления фильтров на всасе;

- выполнить контрольный анализ масла и проверить его уровень в маслобаке и гидрозатворе переливного устройства;

- убедиться, что температура масла в маслобаке выше 25 °С, при необходимости обеспечить его подогрев;

- проверить положение опор ГПА, опор и компенсаторов трубопроводов, тяг, связей, фундаментов и дистанционных болтов, шпонок, устройств контроля температурных расширений корпусов ГПА, воздуховодов и газоходов;

- проверить положения запорной арматуры в обвязке ГПА. При этом краны № 5, 3бис, 9, 10 должны быть открыты, а краны № 1, 2, 4, 6, 11, 12, 13, 14, 15 закрыты;

- убедиться в готовности к действию системы загазованности, системы и средств пожаротушения;

- при температуре наружного воздуха от +3 °С до -5 °С необходимо включить систему антиобледенения;

- проверить наличие и оформление всей ремонтной документации;

- убедиться в наличии необходимого давления топливного и пускового газа, в открытии вентилей на подачу импульсного газа к запорной арматуре;

- подать оперативное напряжение на системы управления и силовое напряжение на остальные системы и устройства агрегата.

Здесь перечислен основной набор работ, который в обязательном порядке необходимо выполнять при подготовке ГПА к пуску после ремонта. Однако каждый ГПА имеет свои специфические требования, учитывающие его конструктивные и технологические особенности. Так, для ГПА контейнерного и блочного исполнения перед пуском необходимо проверить работу вентиляторов наддува и отсоса пыли, прогреть до температуры +5 °С отсек блока двигателя и т.д.

В любом случае предпусковые работы проводятся по специальной технологической маршрутной карте, которая учитывает все особенности ГПА и его систем на компрессорной станции.

После проведения подготовительных работ в соответствии с инструкциями заводов-изготовителей необходимо путем комплексного опробования или имитации произвести проверку защит и сигнализации ГПА.

2.4 Проверка защиты и сигнализации ГПА

Защита газотурбинного агрегата и нагнетателя от недопустимых режимов работы является одной из основных функций системы автоматического регулирования ГПА. Система зашиты, обеспечивая защиту ГПА во время пуска и остановки, также автоматически выполняет операции, необходимые для восстановления нормального режима в процессе работы. При аварийном режиме она останавливает агрегат и подает аварийный сигнал обслуживающему персоналу. Защитные устройства предотвращают повреждение агрегата и обеспечивают безопасность обслуживающего персонала при возникновении аварийных состояний. Все системы защиты действуют независимо от системы управления с тем, чтобы при возникновении неисправности в системах управления, системы защиты не вышли бы из строя. Во всех случаях быстрое отключение турбины и остановка агрегата при возникновении опасного состояния осуществляется прекращением подачи топливного газа к камере сгорания стопорным клапаном и открытием клапанов для выпуска воздуха из компрессора. Противопомпажная защита воздушного компрессора осуществляется сбросными клапанами, частично сбрасывающими воздух из компрессора.

Система защиты ГТУ предохраняет агрегат в случае отклонения показателей за допустимые пределы: давления масла смазки, осевого сдвига роторов, температуры подшипников, перепада "масло-газ", температуры продуктов сгорания, давления топливного газа, частоты вращения роторов, вибрации подшипников, а также в случаях погасания факела в камере сгорания, нарушения заданной последовательности пусковых операций, задержке агрегата в зоне запрещенной частоты вращения, помпаже нагнетателей. Кроме агрегатных систем автоматического управления и защиты ГТУ, существует комплекс средств контроля и автоматики компрессорного цеха, осуществляющий оперативное управление, защиту и контроль за работой оборудования цеха и объектов КС. В этот комплекс входят такие общестанционные системы защиты:

- защита цеха или укрытия ГПА от загазованности (высокой концентрации газа);

- защита цеха или укрытия ГПА от пожара;

- защита компрессорной станции при аварийных ситуациях (аварийная остановка компрессорной станции ключом КАО);

- защита по давлению на выходе компрессорной станции;

- защита по высокой температуре газа на выходе компрессорной станции;

- защита по высокому уровню жидкости в пылеуловителях, сепараторах и др.

При срабатывании защитного устройства, которое может быть электрическим, гидравлическим или пневматическим, и появлении защитного сигнала, осуществляется экстренная остановка агрегата. Так, применительно к агрегатам типа ГТК-10, экстренную остановку осуществляют органы предельной защиты, которые включают стопорный клапан, два электромагнитных клапана, подключенные к электрической системе защиты, два бойковых автомата безопасности, срабатывающих при достижении предельно допустимых частот вращения валов турбодетандера и турбин низкого давления или от ручного воздействия на кнопку управления. При аварийной ситуации одним из перечисленных устройств из линии предельной защиты выпускается воздух, давление снижается и стопорный клапан перекрывает подачу топливного газа к камере сгорания. Одновременно закрывается и регулирующий клапан. Открываются полностью выпускные воздушные клапаны (ВВК) осевого компрессора и в результате турбина быстро останавливается. Наладка защит ГТУ и нагнетателя проводится в три этапа: перед пуском на остановленной турбине, при пуске, работе без нагрузки и с нагрузкой. Приведем краткое описание основных систем защиты применительно к агрегату ГТК-10-4.

Защита по давлению масла смазки

Эта защита останавливает агрегат при падении давления масла в смазочных системах турбины и нагнетателя ниже установленных величин (< 0,2 кг/см). Низкое давление масла смазки может нарушить условия смазки и вызвать разрушение подшипников ГПА. Поэтому необходимо проверить включение защиты по маслу. Измерение давления производится электроконтактными манометрами (ЭКМ). При падении давления смазки подшипников стрелка манометра замыкает контакты, выдавая через реле на главный щит управления (ГЩУ) сигнал "Аварийное давление масла". Одновременно с аварийным сигналом должен включаться резервный масляный насос (РМН), обеспечивая давление в смазочной системе не менее 0,4 кг/см.

Защита по погасанию факела

Система обнаружения пламени выполняет две функции.

Во время нормального запуска агрегата светочувствительные элементы фотореле обнаруживают установление пламени в камере сгорания и разрешают продолжать последовательность запуска агрегата. В противном случае прекращается подача топливного газа и, таким образом, исключается возможность его скопления в турбине, а следовательно, и возможность взрыва. В случае срыва пламени во время работы немедленно прекращается подача топливного газа в камеру сгорания, в результате чего исключается возможность поступления несгоревшего топлива в патрубок турбины, где могло бы произойти вторичное зажигание в результате соприкосновения топливного газа с горячими поверхностями, что опасно как для обслуживающего персонала, так и для самого оборудования.

Эта цепь защиты включается после открытия стопорного и регулирующего клапанов. При проверке защит, после включения электропитания фотореле, должна сработать аварийная защита по импульсу от фотореле. При этом должны сработать электромагнитные клапаны в линии предельной защиты, закрыться стопорный и регулирующий клапаны (СК и РК), включиться аварийный сигнал "Факел погас".

Защита по осевому сдвигу роторов

Эта защита срабатывает, останавливая агрегат, при увеличении давления масла в системе защиты по осевому сдвигу выше установленных величин. При осевом сдвиге возможно задевание вращающихся деталей агрегата за неподвижные и разрушение отдельных узлов агрегата.

Масло (воздух) к реле осевого сдвига (РОС) турбокомпрессора, силовой турбины и нагнетателя поступает через шайбы диаметром 3 мм, а сливается через зазоры между соплами реле и упорными дисками на валах агрегата. Давление масла на ЭКМ должно составлять 1,2-1,8 кг/см (давление воздуха при гидропневматической системе регулирования должно составлять 0,3-0,6 кг/см). Изменение давления масла, которое происходит при осевом сдвиге ротора, фиксируется электроконтактными манометрами системы защиты. Контакты на манометрах (ЭКМ) должны срабатывать при повышении давления масла до 3-3,5 кг/см (или превышении давления по воздуху свыше 1 кг/см), при этом на ГЩУ подается аварийный сигнал "Авария по осевому сдвигу".

Защита по перепаду между маслом уплотнения и газом в полости нагнетателя (защита "масло-газ")

Для предотвращения протечек газа по валу из нагнетателя в машинный зал применяется система уплотнения нагнетателя. С этой целью к торцевому уплотнению, совмещенному с опорным вкладышем подшипника нагнетателя, подается масло с давлением на 1,0-1,5 кг/см больше давления газа в нагнетателе. Для поддержания постоянной разности давления между маслом и газом применен регулятор перепада давления (РПД). Защита по перепаду давления "масло-газ" осуществляется с помощью дифференциального реле давления типа РДД-1М, осуществляющего электрическую блокировку и автоматическое переключение с рабочего винтового масляного насоса уплотнения (ВМНУ) на резервный при снижении перепада давления, а также остановку агрегата с отключением нагнетателя от газопровода при полном исчезновении перепада. Таким образом, при проверке защиты по перепаду "масло-газ" проверяют резервирование насосов (т.е. включение резервного насоса при отключении работающего ВМНУ). При отключении электродвигателей обоих ВМНУ, после установленной выдержки времени, должна срабатывать защита по уменьшению перепада давления в уплотнении. При этом должен закрыться кран № 4 и включиться сигнал на ГЩУ "Аварийный перепад "масло-газ". При проверке работы РПД следят, чтобы давление масла все время было выше давления газа на 1,0-1,5 кг/см. Необходимо проверить также, что при выключенном ВМНУ кран № 4 нельзя открыть ключом управления. Сигнал об открытии крана № 4 включает защиту по перепаду. При проверке защиты и сигнализации ГПА необходимо произвести опрессовку масляной системы уплотнения нагнетателя. Предохранительный клапан в клапанной коробке ВМНУ ограничивает максимально допустимое давление на уровне 8,0 МПа при максимальном рабочем давлении насоса 6,4 МПа. При максимальном рабочем давлении ВМНУ 7,5 МПа, предохранительный клапан настраивают на максимальное давление 8,8 МПа.

Кроме этого, необходимо проверить защиту по низкому давлению уровня масла в аккумуляторе, системы уплотнения "масло-газ", а также работу кранов обвязки нагнетателя. Убедиться, что при перепаде давления на кране № 1 больше 0,2-0,3 МПа краны № 1 и 2 нельзя открыть ключом управления.

Защита от превышения температуры газа

Эта защита является одной из основных систем защит газовой турбины.

При нормальных условиях эксплуатации температура газа обычно поддерживается регулированием расхода топлива. Однако при неисправностях в системе регулирования, помпажах осевого компрессора или нагнетателя количество подаваемого топлива, а значит, и температура газа могут превысить установленные нормы. Это может привести к выгоранию лопаток проточной части, разрушению лопаточного аппарата и другим тяжелым последствиям. В начале система защиты от превышения температуры газа включает предупредительный звуковой и световой сигналы, что указывает на необходимость разгрузки турбины, предотвращая тем самым ее отключение. Если же температура газа будет продолжать повышаться, то система защиты останавливает агрегат. Система защиты спроектирована таким образом, что является независимой от системы регулирования температуры газа. Температуру газов измеряют термопарами, устанавливаемыми за ТНД или перед ТВД. В качестве вторичных приборов в цепи защиты по температуре газа используют потенциометр КСП и автомат температурной защиты АТЗ.

Защита по превышению частоты вращения роторов ТВД, ТНД и турбодетандера

Система защиты от превышения частоты вращения предназначена для защиты газовой турбины от возможных повреждений, вызываемых превышением максимальной частоты вращения валов ТНД, ТВД и турбодетандера. При повышении частоты вращения может произойти отрыв лопаток, разрушение замков и дисков, могут появиться осевые сдвиги и разрушения подшипников, корпусных деталей ГТУ и т.д.

Чтобы предотвратить превышение частоты вращения роторов ГТУ свыше допустимых значений, применяют разного рода автоматы безопасности. Легко разгоняемый ротор ТНД имеет два автомата безопасности: центробежный (механический, бойкового типа) и гидродинамический. Бойковый автомат имеет и ротор турбодетандера. Защита от превышения частоты вращения ротора ТВД осуществляется по давлению масла за главным масляным насосом. Настройку автоматов безопасности для ГПА типа ГТК-10-4 производят при следующих частотах вращения:

Наименование защитного устройства

Частота вращения вала при срабатывании защиты, об/мин

Бойковый автомат на валу ТНД

5350+80

Гидродинамический автомат вала ТНД

5250+80

Бойковый автомат на валу турбодетандера

9800±700

Защита по температуре подшипников

Система защиты по температуре подшипников выдает предупреждающий и аварийный сигналы при возрастании температуры выше допустимой, что может привести к разрушению подшипников, выплавлению баббита вкладышей, осевым сдвигам, повышенной вибрации и т.п.

Защита по температуре подшипников осуществляется с помощью малогабаритных платиновых термометров сопротивления (ТСП), установленных во вкладышах опорных подшипников и колодках упорных подшипников. Термометры сопротивления подключены к электронному мосту, который осуществляет измерение и регистрацию температуры подшипников, а также выдает предупреждающий (при 75 °С) и аварийный (при 80 °С) сигналы на ГЩУ.

Система защиты от вибрации

Защита агрегата от вибрации осуществляется с помощью датчиков, размещаемых на корпусах подшипников ГПА. При этом вибрация измеряется в трех направлениях: вертикальном, поперечном и осевом. Сигнал поступает от пьезодатчика. Повышенная вибрация может привести к нарушению условий смазки и разрушению подшипников, задеваниям вращающихся деталей в прочной части и другим аварийным ситуациям.

Имеется два уровня вибрации. При достижении первого уровня включается предупредительная сигнализация (сигнализация срабатывает при значении виброскорости = 7,1 мм/с). При достижении второго уровня, когда вибрация становится более 11,2 мм/с, срабатывает аварийная сигнализация и происходит остановка агрегата.

Кроме перечисленных выше основных систем защиты применяются и другие:

- по минимальному и максимальному уровню масла в маслобаке агрегата;

- защита по аварийной остановке от кнопки АО;

- защита по давлению топливного газа;

- защита по предотвращению работы вала турбокомпрессора в диапазоне резонансных частот вращения 2500-4300 об/мин (более 5 мин);

- защита нагнетателя от помпажа;

- защита по разряжению на всасе осевого компрессора.

Проверку защиты в обязательном порядке и в соответствии с Правилами технической эксплуатации проводят при подготовке ГПА к пуску. Проверку проводит комиссия в составе сменного инженера, инженера службы КИПиА, машиниста ТКЦ, работники КИПиА с оформлением специального протокола приемки-сдачи защиты.

2.5 Пуск ГПА и его загрузка

Пуск ГПА является самым ответственным этапом в организации эксплуатации компрессорной станции. Это связано с тем, что при пуске ГПА одновременно включается в работу очень большое количество систем как самого агрегата, так и вспомогательных систем КС, от подготовки и правильной настройки которых зависит, насколько надежно этот пуск осуществляется. В процессе трогания роторов ГТУ начинают расти динамические нагрузки, возникают термические напряжения в узлах и деталях от прогрева ГТУ. Рост теплового состояния ведет к изменению линейных размеров лопаток, дисков, изменению зазоров в проточной части, тепловому расширению трубопроводов. При трогании ротора в первый момент не обеспечивается устойчивый гидравлический клин в смазочной системе. Идет процесс перехода роторов с рабочих колодок на установочные. Компрессор ГПА близок к работе в зоне помпажа. Через нагнетатель осуществляется большой расход газа при низкой степени сжатия, что ведет к большим скоростям, особенно трубопроводов рециркуляции, что вызывает их вибрацию. В процессе запуска до выхода на режим "малого газа" валопроводы некоторых типов ГПА проходят через обороты, совпадающие с частотой собственных колебаний, т.е. через резонансные обороты.

На начальном этапе пуска вследствие неустановившегося режима или нарушений в работе системы регулирования может происходить и заброс температуры. Из сказанного можно сделать вывод, что процесс запуска характеризуется очень большим количеством и сочетанием неустановившихся режимов работы, а также периодического их изменения.

Правильные действия персонала при пуске агрегата - один из главных показателей уровня эксплуатации компрессорной станции. Нарушение технологии ремонта, нарушение регулировок узлов и деталей, любое неправильное действие в процессе пуска, сбои в работе защиты скажутся на пуске и обязательно приведут к нарушению алгоритма пуска и его сбою, а порою, при грубых нарушениях, и к аварийному ремонту ГТУ. Любые сбои на этапе запуска могут оказать существенное влияние и на эксплуатационные показатели в процессе работы машины. Время пуска зависит от типа ГПА. Для стационарных ГПА оно составляет 20-30 мин, для ГПА с авиационным приводом 5-10 мин. Для стационарных оно больше по причине необходимости обеспечения равномерного прогрева корпусных узлов и деталей ГТУ. Эти узлы и детали имеют большую массу, поэтому для обеспечения их равномерного прогрева и одинакового расширения необходимо больше времени.

Пуск ГПА осуществляется с помощью пусковых устройств. В качестве основных устройств применяются турбодетандеры, работающие в основном на перепаде давления природного газа, который предварительно очищается и редуцируется до необходимого давления. Турбодетандеры установлены на всех стационарных и некоторых авиационных ГПА. Иногда в качестве рабочего тела применяется сжатый воздух. Схема обвязки пускового устройства и топливного газа показана на Рис. 2.7. Кроме турбодетандера, широкое применение нашли электростартеры, которые применяются на судовых ГПА. Ряд агрегатов оборудован системой гидравлического запуска. Мощность пусковых устройств составляет 0,3-3 % мощности ГПА в зависимости от типа ГПА - авиационных или стационарных.


Подобные документы

  • Понятие и классификация газоперекачивающих агрегатов. Технологическая схема компрессорных станций с центробежными нагнетателями. Подготовка к пуску и пуск ГПА, их обслуживание во время работы. Надежность и диагностика газоперекачивающих агрегатов.

    курсовая работа [466,2 K], добавлен 17.06.2013

  • Общая характеристика работы компрессорной станции. Данные о топографии и расположении объекта. Описание работы газоперекачивающих агрегатов компрессорных цехов. Гидравлический расчет газопровода, системы очистки газа; обслуживание и ремонт роторов.

    дипломная работа [486,1 K], добавлен 19.07.2015

  • Определение исходных расчетных данных компрессорной станции (расчётной температуры газа, вязкости и плотности газа, газовой постоянной, расчётной производительности). Подбор основного оборудования компрессорного цеха, разработка технологической схемы.

    курсовая работа [273,2 K], добавлен 26.02.2012

  • Проектирование магистральных газонефтепроводов, выбор трассы магистрального трубопровода. Технологические схемы компрессорных станций с центробежными неполнонапорными нагнетателями. Совместная работа насосных станций и линейной части нефтепровода.

    курсовая работа [261,2 K], добавлен 17.05.2016

  • Характеристика критериев надежности газоперекачивающих агрегатов с газотурбинным приводом. Классификация отказов оборудования, диагностика деталей, омываемых маслом. Изучение методов исследования текущего технического состояния ГПА в период эксплуатации.

    диссертация [2,3 M], добавлен 10.06.2012

  • Краткая информация о компрессорной станции "Юбилейная". Описание технологической схемы цеха до реконструкции. Установка очистки и охлаждения газа. Технические характеристики подогревателя. Теплозвуковая и противокоррозионная изоляция трубопроводов.

    дипломная работа [4,6 M], добавлен 16.06.2015

  • Выбор трассы магистрального газопровода. Определение количества газоперекачивающихся агрегатов и компрессорных станций и их расстановка по трассе. Расчет давления на входе в компрессорную станцию. Затраты на электроэнергию и топливный газ, расчет прибыли.

    курсовая работа [1,1 M], добавлен 17.01.2012

  • Газотурбинная установка ГТН-25, краткая техническая характеристика устройства ГТУ и нагнетателя. Последовательность пуска агрегата ГТК-25 ИР. Система технического обслуживания и ремонта, организация ремонтов. Расчет свойств транспортируемого газа.

    курсовая работа [97,0 K], добавлен 02.02.2012

  • Расчет оборудования для очистки газа от механических примесей. Марка и число газоперекачивающих агрегатов, установленных на компрессорных станциях. Основные производственные опасности и вредности на газопроводе. Мероприятия по технике безопасности.

    дипломная работа [2,6 M], добавлен 08.12.2010

  • Определение оптимальных параметров магистрального газопровода: выбор типа газоперекачивающих агрегатов, нагнетателей; расчет количества компрессорных станций, их расстановка по трассе, режим работы; гидравлический и тепловой расчет линейных участков.

    курсовая работа [398,9 K], добавлен 27.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.