Автоматизированное проектирование станочной оснастки
Классификация, виды станочных приспособлений. Основные характеристики некоторых существующих CAD/CAM систем. Основные функции САПР и изготовления технологической оснастки. ГеММА 3D при производстве технологической оснастки на оборудовании с ЧПУ.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 21.04.2010 |
Размер файла | 220,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В системе SolidEdge можно отметить две полезные «мелочи»,существенно облегчающие работу конструкторов и проектировщиков: набор интеллектуальных средств и стандарт OLE for D&M.
Заложенный в систему интеллект позволяет SolidEdge не только распознавать и воплощать замыслы пользователя, но и предвосхищать его действия в процессе работы над проектом. Это даёт возможность сократить число шагов и операций, а в конечном счёте и время разработки изделия в целом.
QuickPick - автоматический выбор примитива. Облегчение процесса выбора (указания) геометрических примитивов, необходимых для построения. При перемещении курсора рёбра, поверхности, фаски, скругления и другие элементы выбираются и выделяются автоматически. При работе с затенённым изображением QickPick позволяет выбрать невидимые примитивы, закрытые другими поверхностями, что избавляет от необходимости постоянно вращать модель. Особенно полезны функции QuckPick при неоднозначном выборе, когда в области курсора оказывается сразу несколько примитивов достаточно одного щелчка клавиши мыши, чтобы правильно выбрать нужный элемент. Все это исключает применение весьма час-то используемой в традиционных CAD-системах функции отмена/подтверждение.
SmartSketch - интеллектуальный эскиз. При создании профиля автоматически выделяются ключевые точки эскиза: конец или середина отрезка, точка сопряжения, касания и т. п. Также автоматически определяется и соответствующим образом обозначается взаимное расположение примитивов: вертикальность, перпендикулярность, параллельность и т.п.
FreeSketch - точная геометрия при рисовании «от руки». Преобразование наброска, сделанного от руки, в строгие геометрические примитивы: дуги, окружности, прямые и т.п.
SmartStep - история внесения изменений. Данный инструмент позволяет воспроизвести многошаговый процесс построения элементов модели с помощью линейки из пиктограмм. Выбрав нужную пиктограмму, пользователь получает доступ к соответствующему шагу истории своей работы и может непосредственно в нём внести требуемые изменения.
Одной из интересных особенностей SolidEdge является использование разработанного для Windows стандарта на связь трёхмерных объектов - OLE для дизайна и моделирования (OLE for D&M). Стандарт позволяет в среде Windows обеспечить различным приложениям обмен геометрической информацией о трёхмерных моделях. С помощью обычных команд копирования и вставки, использующих буфер обмена оболочки Windows,можно «перетаскивать» трёхмерные модели из одной программы в другую. Эта возможность полезна, например, при работе с текстовым процессором - созданный тест можно поместить непосредственно в поле спецификации или чертежа, либо наоборот, вставить геометрическую модель, созданную средствами SolidEdge,в тело документа, подготовленного с помощью Word. Такой способ интеграции возможен для всех приложений, поддерживающих стандарт OLE, что позволяет объединять в единое целое необходимые для решения задачи приложения.
В системе предусмотрены серверы данных OLE, которые дают возможность не только просматривать геометрические модели, созданные в других CAD-системах, но и использовать их в сборочных узлах. Одним из «побочных» следствий такой возможности является сохранение инвестиций, вложенных в предыдущие реализации САПР на предприятии заказчика - все накопленные на момент перехода к SolidEdge модели, чертежи, спецификации и сборочные узлы можно безболезненно интегрировать в новую рабочую среду.
С точки зрения традиционных,«тяжёлых» САПР перечисленные особенности SolidEdge, может быть, и не являются «откровением». Но если учесть, что функциональность этой системы доступна при существенно более низкой стоимости и при работе с компьютерной конфигурацией, принадлежащей совсем другой категории аппаратных средств, то видно, что SolidEdge заслуживает самого пристального внимания. В результате широкие слои отечественных пользователей, воспитанных на AutoCAD и часто не имеющих под рукой ничего лучше ПК с Windows или NT, получили доступ к реальным полноценным возможностям современного САПР. Для успешного функционирования SolidEdge достаточно следующей минимальной конфигурации: 80486, память 32 Мбайт, диск 100 Мбайт, монитор 1024*768, ОС Windows 95 или NT.
Открытая архитектура SolidEdge позволяет достаточно быстро интегрировать эту систему в уже функционирующие программно-аппаратные конфигурации, что особенно важно сегодня, когда актуальным является переход к современным САПР не столько от дедовских способов проектирования за кульманом, а скорее уже от чертежно-графических систем класса ПК, для которых уже накоплены к сегодняшнему дню достаточно объёмные архивы электронной конструкторском - проектной документации.
Именно возможности 3-хмерного проектирования, присущие больше «тяжёлым» САПР в купе с возможностью работы с данной системой на обычном ПК (прерогатива «лёгких» САПР),а также простота освоения, система подсказок и помощи, совмещение с широко распространённой ОС Microsoft Windows, возможность создания детали в контексте сборки и прочие «полезные мелочи» заставили отдать предпочтение именно этой системе при подготовке к данной работе.
4. Создание стандартных деталей в системе SolidEdge
4.1 ПАЛЕЦ УСТАНОВОЧНЫЙ ЦИЛИНДРИЧЕСКИЙ ПОСТОЯННЫЙ
Чтобы получить данную стандартную деталь в системе SolidEdge, необходимо произвести в нужной последовательности ряд операций. В частности, для установочного цилиндрического постоянного пальца, потребуется:
Выбрать программу Solid Edge Part.
Выбрать пиктограмму (команду) Revolved
Protraison и плоскость, в которой будет находиться ось вращения детали.
С помощью пиктограммы (команды) «линия» Line изобразить контур половины пальца замыкаемый осью вращения (рис.5). При этом в окошке Length будет видна длина вычерчиваемой линии в мм, в том же окошке можно задать точное значение этой линии, а в окошке Angle указывается размер угла в градусах между проектируемой линией и горизонтальной осью Х в данной плоскости.
Относительно же оси Х есть возможность двигать линии, заданные перпендикулярно или с наклоном к ней, то есть параметрически изменять деталь, увеличивая или уменьшая её горизонтально заданные линии. Частично подобную операцию можно проводить и с линиями, заданными параллельно горизонтальной оси.
Задать ось вращения Axis of Revolution. Дать команду Finish для завершения работы в данной плоскости. При этом может появиться окошко с указанием каких-то ошибок, возможно совершённых при задании контура половины пальца. При отсутствии ошибок программа вернётся к трёхмерной работе и самостоятельно разместит в пространстве плоскую деталь.
В окошке Angle зададим угол вращения детали: 360 градусов. Нажав левой клавишей мыши в любом месте экрана, команда на вращение будет выполнена (см. приложения, рис.1).Поскольку в данной детали не требуется дополнительных операций типа получения фасок, вырезания отверстий и т.д. то кнопкой Finish подтвердим завершение работы. Сохранить её можно как внутри SolidEdge, так и вне её, например, как картинку с расширением jpg. Запись происходит по той же схеме, как и аналогичная команда в ОС Windows. Так же, с помощью пиктограмм, расположенных в верхней строке, можно производить с деталью ряд простых эволюций: увеличение изображения Fit или части изображения Zoom Area, уменьшение его же Zoom Out,перемещение чертежа с помощью мыши Pan, вращение относительно трёх осей Rotate или по конкретным точкам условного куба Common Views. А при выборе Shade,деталь станет «твёрдой» (приложения, рис.2).
Рис. 5
4.2 ПРИХВАТ ПЕРЕДВИЖНОЙ ФАСОННЫЙ
Вариант исполнения 1:
Прихват 7011-0576 ГОСТ 14732-69.
Запускаем программу Solid Edge Part.
Выбираем пиктограмму Sketch и плоскость, в которой задаём нижнюю часть прихвата (приложения, рис.3). Нажимаем кнопку Finish.
3) С помощью пиктограмм Protrusion и Selekt from Sketch делаем эту часть прихвата объёмной, задав толщину в окошке Distance. Затем «вырезаем» в объёмной детали отверстия под крепление приспособления с помощью Cutout, Selekt from Sketh и Distance (приложения, рис.4).
4) Повторяем пункты 2 и 3 для задания верхней части прихвата (приложения, рис.5).
Задаём радиусы скругления через Round, величина скругления задаётся в окошке Radius (приложения, рис.6). Shade и Finish.
7) «Твёрдая» деталь приложения, рис.7.
5. Заключение
Использование систем автоматизированного проектирования для создания станочной оснастки является необходимым шагом на пути технического прогресса. Использование CAD/CAM систем для решения конструкторских, технологических, и других задач хоть и требует материального (для покупки и установки программного пакета, например) и временного вложений (на освоение программы),но хорошо окупает себя, так как во много раз снижает временные затраты на проектирование и подготовку производства нового изделия, документирование и при решении многих других задача также облегчает работу с библиотеками (банками данных) уже существующих приспособлений; спецификациями и т.д.
Используя САПР SolidEdge, изобразили для примера две стандартные детали (установочный палец и прихват передвижной), что дало возможность оценить некоторые возможности данной САПР и некоторые стандартные ходы, используемые иногда и в других системах.
6. Литература.
1. Артамонов Е.И. «Комплекс программных средств CAD/CAM Графика-81» // «Автоматизация проектирования», №1 , 1997 г. (http://www.uns.ru/ap/)
2. «Базис 3.5: конструктор всегда прав» // «Русские инженеры» (http://www.ruseng.ru/).
3. Бокшиц Э.Б., Ракович А.Г. «САПР фрезерных приспособлений» // «Автоматизация и современные технологии», №1,1992 г.
4. Бристоль Б.Н. «Конструирование приспособлений для металлорежущих станков», Москва-Киев: МАШГИЗ, 1959 г.
5. Вермель В.Д., Зарубин С.Г. «Использование системы ГеММА 3D при производстве технологической оснастки на оборудовании с ЧПУ» // «А.П.» , №3, 1998 г.
6. Гельмерих Р., Швиндт П. «Введение в автоматизированное проектирование», М: Маш-е, 1990 г.
7. «Инвариантные компоненты систем автоматизированного проектирования приспособлений», под редакцией А.Г. Раковича, Минск: Наука и Техника, 1980.
8. Костромин К. «SolidEdge Intergraph - система твёрдотельного моделирования» // «А.П.», №2,1997.
9. Малюх В.Н.«CAD - вариант b» // «А.П.»,№1,1997.
10. «Продукты Adem CAD/CAM» // «А.П.» №2, 1999 г.
11. Система технологической подготовки производства, Альбом №6, Детали и узлы оснастки для механической обработки деталей: Н-ск, 1989 г.
12. «Станочные приспособления, справочник», под редакцией Вардашкина Б.Н., Данилевского В.В.,
М: Маш-е, 1984 г., т.2.
13. Схирладзе А.Г., Матвеев А.И., Новиков Ю.В., Рогозин Г.И. «Станочные приспособления, альбом» МГТУ (СТАНКИН), ТГТУ, 1999 г.
Подобные документы
Расчет и разработка конструкции технологической оснастки для изготовления изделия "Гофра". Расчет гнездности оснастки. Конструирование формообразующих полостей. Расчет усадки и исполнительных размеров формообразующих деталей. Тепловой расчет оснастки.
курсовая работа [1,9 M], добавлен 23.08.2014Оценка технологичности изделия. Обзор методов изготовления деталей. Операции технологического маршрута. Обоснование сортамента заготовки и метода ее изготовления. Расчет режимов резания при токарной обработке. Разработка технологической оснастки.
курсовая работа [812,5 K], добавлен 12.01.2016Характеристика оборудования для изготовления резиновых изделий. Расчет гнездности оснастки, исполнительных размеров формообразующих деталей, параметров шины, установленного ресурса оснастки. Материалы деталей, их свойства, технология переработки.
курсовая работа [649,7 K], добавлен 30.10.2011Развитие производства в отрасли машиностроения. Создание материально-технической базы и необходимость повышения производительности труда. Изготовление технологической оснастки в машиностроении. Классификация и применение станочных приспособлений.
реферат [21,4 K], добавлен 24.01.2010Расчет заготовки, припусков, режимов резания. Нормирование операций и технико-экономических показателей. Подбор оборудования, инструмента, оснастки с учетом типа производства. Расчет режущего и мерительного инструмента, технологической оснастки.
курсовая работа [679,8 K], добавлен 09.01.2015Ввод в эксплуатацию корпуса режущего инструмента и приспособлений. Проектирование технологической оснастки. Штампы горячей объемной и холодной листовой штамповки. Условия эксплуатации и требования, предъявляемые к материалу для изготовления пуансона.
отчет по практике [111,9 K], добавлен 11.06.2013Значение инструментального хозяйства. Классификация технологической оснастки, применяемой на предприятии, планирование потребности в ней. Организация производства инструмента, заточки, восстановления и ремонта оснастки. Движение инструмента на заводе.
реферат [34,5 K], добавлен 03.03.2010Совокупность средств технологического оснащения производства и исполнителей для выполнения заданных процессов или операций. Компоненты технологической системы: станки, заготовки, приспособления, их классификация по степени механизации и автоматизации.
презентация [6,9 M], добавлен 29.11.2016Внедрение механизации технологических процессов в машиностроении. Определение типа производства и его основных характеристик. Изготовление исходной заготовки и технологической оснастки: расчет и конструирование приспособлений, проектирование инструмента.
курсовая работа [164,4 K], добавлен 29.12.2010Краткая характеристика детали. Определение размеров заготовки. Выбор технологического маршрута изготовления валика, оборудования и технологической оснастки. Выбор режимов резания и нормирование токарной операции. Проектирование конструкции приспособления.
курсовая работа [1,2 M], добавлен 16.01.2015