Методы экстраполяции

Экстраполяция – это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. Динамический ряд, его сущность. Метод экспоненциального сглаживания.

Рубрика Менеджмент и трудовые отношения
Вид реферат
Язык русский
Дата добавления 09.11.2016
Размер файла 19,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Муниципальное бюджетное образовательное учреждение высшего профессионального образования

Волжский институт экономики педагогики и права

Факультет менеджмента

Кафедра менеджмента

Реферат

по дисциплине "Исследование систем управления"

на тему: "Методы экстраполяции"

Работу выполнила Луговая А.С.

Работу проверила: Баева Л.Р.

Волжский 2016

Экстраполяция - это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. Методы экстраполяции наиболее распространенные в группе формализованных.

Цель методов экстраполяции - показать, к какому состоянию в будущем может прийти объект, если его развитие будет осуществляться с той же скоростью или ускорением, что и в прошлом.

Различают: а) формальная экстраполяция - базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта прогноза. б) прогнозная экстраполяция - фактическое развитие увязывается с гипотезами о динамике исследуемого процесса с учетом изменений влияния разных факторов в перспективе. Методы экстраполяции относятся к формализованным методам. Методы экстраполяции являются наиболее распространенными и проработанными. Основу экстраполяционных методов прогнозирования составляет изучение динамических рядов. Динамический ряд - это множество наблюдений, полученных последовательно во времени.

Методы экстраполяции достаточно широко применяются на практике, так как они просты, дешевы, и не требуют для расчетов большой статистической базы. Использование методов экстраполяции предполагает два допущения: а) основные факторы, тенденции прошлого сохранят свое проявление в будущем; б) исследуемое явление развивается по плавной траектории, которую можно выразить, описать математически. Названные допущения в большинстве случаев характерны для экономических процессов.

Применяются, как правило, следующие методы:

· метод скользящей средней

· метод подбора функции

· метод наименьших квадратов

· метод экспоненциального сглаживания с регулируемым трендом

Метод скользящей средней дает возможность выравнивать динамический ряд на основе его средних характеристик. При экстраполяции с помощью среднего уровня ряда используется принцип, при котором прогнозируемый уровень принимается равным среднему значению уровней ряда в прошлом. экстраполяция прогнозирование динамический

Данный метод дает прогнозную точечную оценку и более эффективно используется при краткосрочном прогнозировании. Преимущество данного метода состоит в том, что он прост в применении и не требует обширной информационной базы.

Метод подбора функций - выбор оптимального вида функции, описывающей эмпирический ряд. Задача выбора функции заключается в подборе по фактическим данным формы зависимости (линии) так, чтобы отклонения данных исходного ряда, от соответствующих расчетных, находящихся на линии, были наименьшими. После этого можно продолжить эту линию и получить прогноз.

Метод экспоненциального сглаживания с регулируемым трендом - позволяет построить такое описание процесса (динамического ряда), при котором более поздним наблюдениям придаются большие "веса" по сравнению с более ранними, причем "веса" наблюдений убывают по экспоненте. В результате создается возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения.

Скорость старения данных характеризует параметр сглаживания а. Он изменяется в пределах 0 < а < 1. Чем больше а, тем больше вклад последних наблюдений в формирование тренда, а влияние начальных условий быстро убывает. В области экономического прогнозирования наиболее употребимы пределы 0,05 < а < 0,3. Значение а в общем случае должно зависеть от срока прогнозирования: чем меньше срок, тем большим должно быть значение параметра.

Метод экспоненциального сглаживания дает возможность выявить тенденцию, сложившуюся к моменту последнего наблюдения, и позволяет оценить параметры модели, описывающей тренд, который сформировался в конце базисного периода. Этот метод адаптируется к меняющимся во времени условиям, а не просто экстраполирует действующие зависимости в будущее.

Метод экспоненциального сглаживания наиболее эффективен при разработке кратко- и среднесрочных прогнозов. Его основные достоинства заключаются в простоте вычисления и учете весов исходной информации, т. е. новые данные или данные за последние периоды имеют больший вес, чем данные более отдаленных периодов.

При использовании для прогнозирования данного метода возникают следующие затруднения: а) выбор значения параметра сглаживания; б) определение начального значения экспоненциально взвешенной средней.

Метод наименьших квадратов основан на выявлении параметров модели, которые минимизируют суммы квадратических отклонений между наблюдаемыми величинами и расчетными. Модель, описывающая тренд, в каждом конкретном случае подбирается в соответствии с рядом статистических критериев. На практике наибольшее распространение получили такие функции, как линейная, квадратическая, экспоненциальная, степенная, показательная.

Метод наименьших квадратов - расчет параметров (а, b) для конкретной функциональной зависимости Параметры модели тренда должны минимизировать отклонения расчетных значений от соответствующих значений исходного ряда. Выбор модели осуществляется с помощью специально разработанных программ. Есть программы, предусматривающие возможность моделирования экономических рядов по 16-ти функциям: линейной (y = а + b * х), гиперболической различных типов (у = а + b / х), экспоненциальной, степенной, логарифмической и др. Каждая из них может иметь свою, специфическую область применения при прогнозировании экономических явлений.

Так, линейная функция применяется для описания процессов, равномерно развивающихся во времени. Параметр b (коэффициент регрессии) показывает скорость изменения прогнозируемого у при изменении х. Гиперболы хорошо описывают процессы, характеризующиеся насыщением, когда существует фактор, сдерживающий рост прогнозируемого показателя.

Модель выбирается, во-первых, визуально, на основе сопоставления вида кривой, ее специфических свойств и качественной характеристики тенденции экономического явления; во-вторых, исходя из значения критерия. В качестве критерия чаще всего используется сумма квадратов отклонений - из совокупности функций выбирается та, которой соответствует ее минимальное значение.

Прогноз предполагает продление тенденции прошлого, выражаемой выбранной функцией, в будущее, т.е. экстраполяцию динамического ряда. Программным путем на ЭВМ определяется значение прогнозируемого показателя. Для этого в формулу, описывающую процесс, подставляется величина периода, на который необходимо получить прогноз.

В связи с тем, что этот метод исходит из инерционности экономических явлений и предпосылок, что общие условия, определяющие развитие в прошлом, не претерпят существенных изменений в будущем, его целесообразно использовать при разработке краткосрочных прогнозов обязательно в сочетании с методами экспертных оценок. Причем динамический ряд может строиться на основании данных не по годам, а по месяцам, кварталам.

Преимущества метода наименьших квадратов заключаются в том, что он прост в применении и реализуется на ЭВМ. К недостаткам метода можно отнести жесткую фиксацию тренда моделью, небольшой период упреждения, сложность подбора уравнения регрессии, который осуществляется с помощью использования типовых компьютерных программ, например Excel.

Список используемой литературы

1. [Электронный ресурс]- http://www.uamconsult.com/book_547/

2. [Электронный ресурс]- http://www.monographies.ru/

3. [Электронный ресурс]- http://www.extrapolation.ru/

4. [Электронный ресурс]- http://www.bibliotekar.ru/

Размещено на Allbest.ru


Подобные документы

  • Изучение методов прогнозирования развития: экстраполяции, балансового, нормативного и программно-целевого метода. Исследование организации работы эксперта, формирования анкет и таблиц экспертных оценок. Анализ математико-статистические моделей прогноза.

    контрольная работа [70,7 K], добавлен 19.06.2011

  • Формирование продуктового портфеля предприятия. Варианты ведения бизнеса. Продуктовая стратегия организации. Прогнозирование изменения объемов реализации услуг предприятия. Метод экспоненциального сглаживания. Целесообразность изменения стратегии.

    курсовая работа [105,8 K], добавлен 17.08.2013

  • Сущность основных понятий в области прогнозирования. Признаки классификации, виды прогнозов и их характеристика. Экстраполятивный и альтернативный подходы. Статистический и экспертный методы, их разновидности. Содержание и этапы разработки плана сбыта.

    реферат [463,4 K], добавлен 25.01.2010

  • Процесс управления предприятием - разработка на основе анализа ситуации управленческих решений. Методы прогнозирования в организации: задачи, целесообразность применения, результаты. Экспертные оценки в принятии плановых решений, экстраполяция трендов.

    курсовая работа [29,2 K], добавлен 02.03.2012

  • Понятие, функции и методы прогнозирования – научно-обоснованного суждения о возможных состояниях объекта в будущем, об альтернативных путях и сроках их достижения. Классификация методов прогнозирования: социосинергетика, "коллективная генерация идей".

    курсовая работа [51,1 K], добавлен 10.03.2011

  • Исследование развертывания функций качества как экспертный метод, определяющий последовательность действий производителя по преобразовании фактических показателей изделия в технические требования к продукции. Обзор современного состояния и будущее РФК.

    контрольная работа [91,5 K], добавлен 04.02.2011

  • Сущность экономического прогнозирования, характеристика основных форм предвидения. Предвидение внутренних и внешних условий деятельности. Виды прогнозов и технология прогнозирования. Методы прогнозирования: экспертные, статистические, комбинированные.

    курсовая работа [479,1 K], добавлен 22.12.2009

  • Сущность эвристики и эвристического метода, сферы и особенности его применения, этапы формирования закономерностей. Характеристика эвристического метода решения задач, этапы его реализации, назначение и основные преимущества, структура и элементы.

    контрольная работа [36,7 K], добавлен 05.03.2010

  • Принципы системно-диагностического анализа регионального развития. Метод экономического районирования. Объекты управленческого влияния региональной администрации. Программно-целевой метод в прогнозном обосновании. Метод типологии и классификации.

    реферат [34,3 K], добавлен 25.07.2009

  • Изучение понятия, роли конфликтов и противоречий в системе государственного управления. Технологии прогнозирования, профилактики, контроля, сглаживания и урегулирования таких конфликтов. Специфика "конфликта интересов" на примере органов внутренних дел.

    дипломная работа [101,6 K], добавлен 30.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.