Синергетический подход к транспортно-энергетической инфраструктуре
Анализ проблем организации и функционирования транспортно-энергетических инфраструктур, приносящих наибольшие социально-экономические потери, как за рубежом, так и в Россию. Особенности синергетического подхода к транспортно-энергетической инфраструктуре.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | статья |
Язык | русский |
Дата добавления | 08.04.2019 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Синергетический подход к транспортно-энергетической инфраструктуре
Рассматриваются проблемы организации и функционирования транспортно-энергетических инфраструктур, приносящих наибольшие социально-экономические потери, как за рубежом, так и в России. Результаты проведенного системного анализа позволяют авторам утверждать, что, если "продукты научно-технического прогресса" наносят потери природе и индивиду, то за таким продуктом следует искать человека или социальные группы людей (разработчиков, законодателей, руководителей, чиновников и т.д.), заинтересованных в содеянном, или просто виновных - «по недомыслию».
Методология исследования построена на модели выбросов транспорта и теплоэнергетики, корреляция которой очевидна с моделью глобального потепления. Однако, привлекая к интерпретации результатов моделирования термодинамику и молекулярную физику, авторы доказывают, что климатические катаклизмы вызваны не "парниковым эффектом", а ростом объема атмосферы, из-за "сжигания геосферы" (добываемого углеводородного топлива) и рассеивания выбросов в атмосфере. Новизна исследования заключается, во-первых, в разработке "биотуннелей", которые реализуют природоподобные технологии поглощения выбросов и восстановления выжигаемого кислорода, во-вторых, в разработке адаптивных систем управления дорожно-транспортными и энергетическими инфраструктурами по функциям производства энтропии, восстанавливающих три природных цикла круговорота кислорода, воды и углерода, а в-третьих, и это главное - в создании адаптивных систем налогообложения, позволяющих создать предложенные синергетические системы.
В XXI веке обретает актуальность синергетика, которая может устранить, образовавшийся «междисциплинарный и философский вакуум» между настоящим (из-за отсутствия «Диалектики техносферы» и необходимости обновления «Диалектики природы») и будущим («Диалектикой ноосферы») [1].
Признание природоразрушающего характера "рыночной экономики" стало итогом беспрецедентной Конференции ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992), на которой её генеральный секретарь Морис Стронг подчеркнул: "..западная модель развития более не подходит ни для кого. Единственная возможность решения глобальных проблем сегодняшнего дня - это устойчивое развитие" . А незадолго до этого было предложено и понятие: "Устойчивое развитие - это такое развитие, которое удовлетворяет потребности настоящего времени, но не ставит под угрозу способность будущих поколений удовлетворять свои собственные потребности" [2].
Прошло уже почти четверть века после «Рио-де-Жанейровского приговора», однако рыночная экономика продолжает уничтожать природу и население планеты, а статистика продолжает фиксировать нарастание социально-экономических потерь в жизнедеятельности мирового сообщества от «продуктов» научно-технического прогресса (НТП):
- в дорожно-транспортных происшествиях (ДТП) ежегодно погибают свыше 1,0 млн. человек и более 5,0 миллионов - травмируются [3],
- электрический ток поражает и травмирует более 0,01% населения планеты в год, т.е. свыше 700,0 тысяч человек [4,5],
- в пожарах ежегодно погибает около 70,0 тыс. человек и свыше 300,0 тысяч - получают травмы различной степени тяжести [6,7],
- в происшествиях на реках, морях и в океанах, в т.ч. с применением транспортных средств, погибает и пропадает без вести более 50,0 тыс. человек в год [8],
- в ежегодных геофизических катаклизмах (землетрясения, извержения вулканов, грозы, дожди, лавины, оползни, холод, жара,) погибает около 40,0 тыс. человек [9].
Если просуммировать указанный ущерб с 1945 года, то потери мирового сообщества за прошедшие 70 лет в несколько раз превысят ущерб, нанесенный человечеству Второй мировой войной! Следовательно, Третья Мировая Война с «продуктами НТП» уже давно идет [1]!
Все это обусловливает актуальность и порождает необходимость нахождения принципиальных решений, позволяющих, остановить рост указанных ежегодных социально-экономических потерь, и снизить их до уровня, соответствующего увеличению удельного вооружения указанными продуктами НТП объектов и субъектов.
транспортный энергетический социальный
Таблица 1. Гибель и травматизм в ДТП в 2015 году
Страна |
Погибли в ДТП |
Пострадали в ДТП |
Население страны |
Процент смертей на 100000 чел. |
Риск погибнуть в ДТП |
|
Аргентина |
4335 |
78331 |
41300000 |
12,4 |
0,9% |
|
Австралия |
1016 |
27834 |
23100000 |
5,2 |
0,4% |
|
Австрия |
541 |
34676 |
8400000 |
6,3 |
0,5% |
|
Бельгия |
651 |
37531 |
11100000 |
6,9 |
0,6% |
|
Камбоджа |
1670 |
13261 |
14700000 |
13,4 |
0,9% |
|
Канада |
1704 |
98092 |
34800000 |
5,8 |
0,5% |
|
Чили |
1682 |
29378 |
17402630 |
11,4 |
0,9% |
|
Колумбия |
5029 |
53446 |
46600000 |
12,7 |
1,0% |
|
Чехия |
630 |
17413 |
10500000 |
7,1 |
0,6% |
|
Дания |
142 |
2653 |
5600000 |
3,0 |
0,2% |
|
Финляндия |
217 |
4862 |
5400000 |
4,7 |
0,4% |
|
Франция |
3102 |
51327 |
63400000 |
5,8 |
0,5% |
|
Германия |
3057 |
254475 |
81800000 |
4,4 |
0,4% |
|
Греция |
836 |
10491 |
10800000 |
9,1 |
0,7% |
|
Венгрия |
514 |
12887 |
10000000 |
6,1 |
0,5 |
|
Исландия |
8 |
623 |
319575 |
2,8 |
0,2 |
|
Ирландия |
138 |
4764 |
4600000 |
3,5 |
0,3 |
|
Израиль |
223 |
10602 |
7700000 |
3,3 |
0,3 |
|
Италия |
3102 |
158585 |
60600000 |
6,0 |
0,5 |
|
Япония |
4448 |
564897 |
126000000 |
4,1 |
0,3 |
|
Корея |
4579 |
189950 |
48900000 |
10,8 |
0,9 |
|
Литва |
256 |
2695 |
2980000 |
10,1 |
0,7 |
|
Люксембург |
29 |
865 |
500000 |
6,5 |
0,5 |
|
Малайзия |
5874 |
14881 |
28800000 |
23,6 |
1,7 |
|
Нидерланды |
552 |
16306 |
16700000 |
3,9 |
0,3 |
|
Новая Зеландия |
262 |
8156 |
4500000 |
6,9 |
0,6 |
|
Норвегия |
123 |
5005 |
5000000 |
2,9 |
0,2 |
|
Польша |
3033 |
31462 |
38500000 |
9,2 |
0,7 |
|
Португалия |
610 |
25366 |
10500000 |
6,8 |
0,6 |
|
Сербия |
584 |
10801 |
7200000 |
9,7 |
0,7 |
|
Словения |
110 |
5726 |
2100000 |
6,3 |
0,5 |
|
Испания |
1616 |
70591 |
46200000 |
4,1 |
0,3 |
|
Швеция |
221 |
13985 |
9600000 |
2,7 |
0,2 |
|
Швейцария |
288 |
15413 |
8000000 |
4,3 |
0,4 |
|
Таиланд |
22336 |
536901 |
65104000 |
38,1 |
2,8 |
|
Великобритания |
1486 |
161370 |
64800000 |
3,5 |
0,4 |
|
США |
31424 |
1995908 |
321517000 |
11,6 |
1,3 |
|
Белоруссия |
460 |
3057 |
9331852 |
13 |
0,1 |
|
Россия |
16638 |
168146 |
146267288 |
5,7 |
0,2 |
Таблица составлена на основании данных, опубликованных 13.11.2015 на сайте www.icebike.org
Ф. Энгельс в предисловии к «Диалектике природы» писал: «..становится неустранимой задача, приведения в правильную связь между собой отдельных областей знания…и здесь может оказать помощь только теоретическое мышление» . При этом под «теоретическим мышлением» Ф.Энгельс подразумевал диалектический метод, предупреждая: «..эмпирическое презрение к диалектике наказывается тем, что некоторые из самых трезвых эмпириков становятся жертвой самого дикого из всех суеверий ..» [10].
Энергетическая и транспортная (как и пожарная) инфраструктуры «родились» из десятков областей человеческого знания, которые до настоящего времени не приведены, в правильную связь между собой , именно из-за эмпирического отношения к диалектике, зачто общество и «наказывается ежегодно» указанными потерями.
«Природа не строит ни машин, ни локомотивов, ни . . дорог.. - писал К.Маркс в своих ранних работах и в «Капитале» -..Все это продукты человеческого труда, природный материал, превращенный в органы человеческой воли,... человеческой деятельности в природе. Все это - созданные человеческой рукой органы человеческого мозга, овеществленная сила знания... То, что на стороне человека проявлялось в форме деятельности, теперь на стороне продукта выступает в форме ... бытия» [11].
Эти постулаты XIX века остаются актуальным и в XXI веке, потому, что человек стремится заменить современной техникой те функции, которые ему самому приходится выполнять, либо которые он не может выполнить совсем. Таким образом, человек и техника представляют диалектическое единство противоположностей. Они едины:человек уже не может осуществлять свою жизнедеятельность без техники, которая является его «искусственными органами», а техника не может возникнуть, «жить и действовать» без человека. Но человек и техника не только едины, а и противоположны: идеи и труд человека материализовались в технике и прибрели форму объективной реальности, существующей вне и независимо от сознания людей. В гносеологическом отношении техника противостоит человеку и его сознанию, т.к. порожденная им, она приобретает относительную самостоятельность в своих действиях и движениях, независимость в своем бытии, причем ее независимость по отношению к человеку возрастает вместе с техническим прогрессом. И если мы видим, что «продукт технического прогресса» становится враждебным по отношению к природе и индивиду , т.е. приносит материальные, социальные и экологические потери, то за таким «продуктом» следует искать человека или социальную группу людей(разработчиков, законодателей, чиновников и т.д.), заинтересованных в содеянном, или просто виновных - «по недомыслию» [12]. Статистика пожаров, аварий топливно-энергетических комплексов и продуктопроводов, происшествий и несчастных случаев на предприятиях, транспорте и в быту, свидетельствует о взаимосвязи геофизических, техносферных и социально-психологических процессов жизнедеятельности, т.е. о ноосферном характере этих процессов. Научный задел по решению этих проблем с точки зрения фундаментальной науки принадлежит русским ученым С.А. Подолинскому (1850-1891) и академику В.И. Вернадскому (1863-1945), чьё наследие было развито многими учеными мира в прошлом столетии, и может быть реализовано в ХХI веке [13,14].
Как показали результаты наших исследований, в России (таб.2-4) основной экологический ущерб наносится транспортными инфраструктурами и теплоэнергетикой: 97,24% токсичных выбросов (нормируемых) - 48,18% и 49,06% соответственно, 98,92% СО2, Н2О и др. (не нормируемых) - 49,59% и 49,33% соответственно. При этом, несмотря на международные Конвенции, ни в России, ни за рубежом выбросы углекислого газа и воды не считаются «вредными», поэтому нет официальной методологии их учета, а, следовательно, и адекватных экономических рычагов по снижению вреда от выбросов СО2 и Н2О, но главное - отсутствуют даже оценки «вреда от убыли кислорода» из атмосферы [1,3,15].
Таблица 2. Нормируемые стандартами выбросы (тыс.тонн в год)
Таблица 3. Ненормируемые стандартами выбросы (тыс. тонн в год)
Таблица 4. Сравнительные данные с населением России
транспортный энергетический социальный
Полученные нами данные (таб.4) свидетельствуют о том, что 146 миллиона россиян «потребляют» О2 (30,08%) и «выделяют» СО2 и Н2О (31,45%) менее 1/3 того, что «выжигает» (68,79%) и «выбрасывает» транспортно-энергетическая структура России!
Следовательно, инновационную модернизацию экономики надо начинать с решения проблем организации безопасной жизнедеятельности и её необходимо проводить не в соответствии, а вопреки современным тенденциям научно-технического прогресса, которые, к сожалению, не соответствуют фундаментальным наукам о природе, т.к. выражают развитие прикладных наук и техники, удовлетворяющих, в основном, потребительские парадигмы существующих общественно-экономических формаций [4].
Чуть более 100 лет назад компанией «Форд» были выпущены первые серийные автомобили, а сегодня 520 миллионов автомобилей, произведенных за последние 50 лет, выжигают ежегодно 11,89 миллиардов тонн кислорода, выбрасывая в атмосферу 10,91 миллиардов тонн углекислого газа и 4,46 миллиардов тонн воды, а также более 26,0 тераватт тепла в час, если считать, что 50% тепла от двигателей внутреннего сгорания рассеивается. Практически с такой же скоростью нарастало аналогичное «сжигание геосферы» и выбросы в атмосферу теплоэнергетикой [5].
Рисунок 1. Модель роста автотранспортного парка и его выбросов
Мы построили модель автотранспортных выбросов с момента начала серийного производства автомобилей (рис.1) и получили практически коррелированный результат с моделью П. Джоунса и Томa М.Л. Уигли глобального потепления из-за «парникового эффекта», если добавить к автомобильному транспорту - железнодорожный, водный, воздушный и космический, а затем удвоить результат, учитывая выбросы тепловой энергетики и «сброс тепла» из-за низкого КПД тепловых машин (рис.2)
Рисунок 2. Модель «парникового эффекта»
Только парниковый эффект «оказался не причем», т.к. расчеты показали [1], что прирост массы атмосферы «за счет сгорания геосферы»(топливо транспорта, ГРЭС и ТЭЦ), увеличиваясь ежегодно, составляет в настоящий момент более 15 миллиардов тонн в год: 10,144 миллиардов тонн - транспорт и теплоэнергетика плюс ещё 5,072 миллиарда тонн - дыхание и питание 7-ми миллиардного населения планеты. И если за истекшие 100 лет среднее атмосферное давление (Р ) не изменилось, а масса и, следовательно, объем (V ) постоянно увеличиваются, то в соответствии с уравнением Менделеева-Клайперона (Ван-дер-Ваальса - для реальных газов) должна увеличиваться температура (T ):
или (1)
транспортный энергетический социальный
А дальше, в соответствии с законами термодинамики, атмосфера «приводит себя в равновесное состояние», характеризуемое энтропией - S, т.е. перемещает и перемешивает прибывающие массы выбросоввместо выжигаемого кислорода с помощью ветров, ураганов и бурь, выравнивая их концентрации и плотности, а избыток воды «сбрасывает на Землю» в виде града, снега и дождя. При этом сети дорог и тротуаров, покрытий зданий и сооружений, имеющие значительные коэффициенты черноты, которые строители, в соответствии с «замыслами» архитекторов и дорожно-транспортной науки, делают открытыми, увеличивают турбулентность атмосферы своими конвективными потоками, не хуже, чем это происходит в «долине смерти» на стыке штатов Невада и Калифорния, или в «Аллее торнадо» районов Миссисипи и Огайо, в результате чего - «неожиданные» дожди и ураганы, метели и наводнения, которые наносят обществу огромный социально-экономический ущерб, а воспринимаются - как изменения климата . [1,14-16].
Основная причина происходящего заключается в том, что все существующие в мире стандарты и нормы, ориентированы на рассеивание выбросов (транспорта, предприятий, ГРЭС и ТЭЦ) с помощью устройств выброса отработавших и сопутствующих газов, в т.ч. строительства «дымовых труб» соответствующей высоты. Этонарушает триосновных природных цикла, обеспечивающих жизнедеятельность на нашей планете: суточно-сезонный цикл круговорота кислорода в системе атмосфера-биосфера-гидросфера, сезонно-годовой цикл круговорота воды и семилетний цикл круговорота углерода в системе атмосфера-биосфера-геосфера/гидросфера [1,15].
Следовательно, в связи с тем, что транспорт и теплоэнергетика, «сжигая геосферу» (углеводородное топливо), выбрасывают воду и углерод (окислы углерода) в атмосферу, бороться надо не с выбросами, путем их ограничения и торговли «квотами», как это следует из Киотского Протокола и других политических документов [17],а необходимо создавать технологии «возвращения углерода и воды» в геосферу и «компенсации кислорода», поглощаемого из атмосферы.
Естественными поглотителями воды и оксидов углерода из выбросов транспортно-энергетических инфраструктур, являются зеленые насаждения, которые не только снабжают жителей регионов и городов кислородом, но и благотворно влияют на микроклимат. Так за один теплый солнечный день 1 га лесных насаждений поглощает из воздуха 220-280 кг СО2 и выделяет 180-200 кг О2. Зеленые насаждения снижают температуру воздуха и скорость ветра, стабилизируют влажность воздуха.
Следовательно, можно локализовать и поглотить «дорожно-транспортно-энергетический вред», а также скомпенсировать выжигаемый кислород, если «оградить» дороги и устройства выбросов, которые необходимо построить вместо труб, специальной посадкой деревьев и кустарников - «биотуннелей», зависящей от интенсивности выбросов, т.е. от «производительности труб» и интенсивности движения транспорта, включая их сезонные изменения. После чего, а лучше одновременно, создать биотехнологические участки и предприятия (например, биогумусные и биотермические), утилизирующие в геосферу продукты опада деревьев и кустарников [1,18,19].
Учитывая требования модели адаптивной макросистемы безопасности дорожного движения, в части обеспечения перехода населением улиц райцентров и городов только по пешеходным переходам, и остановки (стоянки) пассажирского автотранспорта не на дорогах, а только в установленном месте, организуя «профилактику указанных нарушений» с помощью сплошной обсадки кустарниками и деревьями обочины дорог, а комбинацией их «вечнозеленых и сезонных» видов - адаптивность «шумоподавления» и «пылезащиты», получим вариант схемы (рис.3) обсадки участка 2-х полосной дороги в городе [20].
транспортный энергетический социальный
Рисунок 3. Модель биоархитектуры улицы города
транспортный энергетический социальный
Выделение полосы для движения транспортных средств аварийных служб (пожарных, скорой медицинской помощи, милиции и т.д.) обусловлено тем, что исследования времён прибытия и радиусов выезда на пожары в Ростовской области и Краснодарском крае в 1995-2006 г.г. показали, что днем средняя скорость передвижения пожарного автомобиля составляет 31,2 км/ч, в то время как ночью (при отсутствии движения) - 54,6 км/ч. Следовательно, необходимо увеличить скорость следования оперативных автомобилей к месту происшествия, путем изоляции его в «биотуннелях» от общих транспортных потоков, с реализацией алгоритма «Красная волна» при проездах перекрестков, останавливающего движение пешеходов и транспорта на время их проезда. Математически это описывается той же макроскопической моделью Гринберга скорости транспортного потока - v , в зависимости от плотности автомобилей в нём - с , при нулевой плотности потока, которую создает «биотуннель» [1]:
где v с - средняя скорость движения автомобиля в потоке; v о - скорость движения автомобиля при нулевой плотности потока (с =0).
При 4-х и 6-ти полосных участках дорог (а также площадей), имеющей в 2-3 раза больше пропускную способность транспортных средств, вариант схемы обсадки участка дороги тиражируется, в соответствии с количеством полос движения. При этом «биотуннель для проезда оперативного транспорта» может быть один, а полосы движения должны разделяться так, чтобы обеспечить закрытие дорожного полотна от солнечных лучей и осадков кронами деревьев, что снижает термо-фотодеструкцию дорог и увеличивает их долговечность, а также устраняет конвективные потоки от покрытий.
Моделирование показало, что за счет обсадки обочин дорог «вечнозелеными и колючими» кустарниками вероятность ДТП с наездом на пешеходов стремится к нулю (около 30% всех ДТП),а за счет посадки сплошного ряда деревьев и кустарников на «осевой линии», прерывающегося только на перекрестке, общее количество ДТП снижается вдвое, т.к. 50% из них вызваны нарушением правил обгона и выездом на встречную полосу.
Следует отметить, что установленные нормативы ограничений скорости движения транспорта в городах и населенных пунктах (40 км/ч, 60 км/ч и т.д.), как и алгоритмы управления светофорами, независящими от плотности транспортных потоков, не являются научно обоснованными, что в совокупности с отсутствием «обратной связи от транспортных средств», является главной причиной ДТП и образования «пробок» [3].
Проведенный анализ существующих дорожно-транспортно-энергетических инфраструктур позволил синтезироватьновые принципыих формирования, «отслеживающие» и минимизирующие увеличение энтропии в них (S), через функцию суммарного «производства энтропии» (?S =??iS/?Yj·dYj/dt), которая связана с вероятностью возникновения флуктуаций (по Пригожину), а в нашем случае с вероятностью «вреда» (дорожно-транспортного, энергетического и т.д.), формулой Эйнштейна [21]:
P = B exp(?S /k), где k - постоянная Больцмана, В - функция «вреда». (3)
Указанный принцип «переворачивает с головы на ноги» общепринятые подходы к формированию дорожно-транспортной инфраструктуры, т.к. оказывается, что дорожная структура, включая качество дорожных покрытий, не является главной - в причинах и последствиях дорожно-транспортных потерь (S > min, ? S > 0, P > В).
Феноменологически это означает, что при отсутствии транспорта, дороги - практически безопасны, а дорожно-транспортный вред (ДТВ), помимо погодных условий, зависит [1,20]:
- от количества (?1S /?N j·dN j/dt), скорости (?2S/?V j·dV j/dt), веса (?3S/?P j·dP j/dt) и колесной формулы транспортных средств (?4S/?J j·dJ j/dt),
- от вида и количества расходуемого ими топлива (?5S/?M j·dM j/dt - через условную тонну топлива),
- от количества (?6S/?n j·dn j/dt) и скорости передвижения пешеходов (?7S/?v j·dv j/dt).
При этом соответствие нагрузок на дороги и прилегающие экосистемы, включая затраты на их «биоархитектуру», могут рассчитываться по модели Леонтьева, адаптированной для этих целей (таб.5).
Таблица 5. Модель межотраслевого баланса ДТВ в г. Ростове-на-Дону
Отрицательные параметры баланса (условно чистой и конечной продукции зеленых насаждений - потребления углекислого газа и выделения кислорода) свидетельствуют о том, что существующие 7,1 тыс.га зеленых насаждений Ростова-на-Дону не справляются с поглощением углекислого газа, пыли и воды от дорожно-транспортной инфраструктуры города, а также не компенсируют кислород, расходуемый 321,2 тыс. ед. транспортных средств и 1,1 млн. чел. населения [1,20].
Аналогичные результаты были получены для Санкт-Петербурга, в котором проживает свыше 5,0 млн. человек и передвигается 1,3 млн. автомобилей [22].
Из-за свойства аддитивности энтропии интенсивность ДТВ и вероятность социально-экономических потерьскачкообразно возрастают при нарушении равновесия в дорожно-транспортной инфраструктуре, т.е. при несоответствии кинетических параметров грузопассажирских и транспортно-пешеходных потоков - погодным условиям и допустимым нагрузкам на дороги и прилегающие экосистемы.
С инженерно-технической точки зрения это означает, что безопасность передвижения должна определяться, во-первых, системой управления движением, если ее понимать, как управление соответствием параметровдороги и прилегающей экосистемы - передвигающимся/стоящим автомобилям и пешеходам между собой, во-вторых, текущей опасностью каждого автомобиля, т.е. несоблюдением соответствия установленной скорости передвижения, загрузки, колесной формулы, вида и количества израсходованного топлива - погодным условиям, состоянию автомобиля и водителя, и только, в-третьих, структурой и текущей опасностью дороги, которые зависят от её размеров, эксплуатационной устойчивости (деградации покрытия) и изменений механических параметров из-за климатических факторов, которые учитываются в формуле (3) полиномом В .
С экономической точки зрения это означает, что ни объем двигателя, ни «его лошадиные силы» (что общепринято в России и за рубежом) не определяют ни пользу, ни вред транспорта, и поэтому не могут определять ни транспортный налог, ни дорожный, ни таможенные пошлины и т.д., т.к. вред окружающей среде наносится видом и количеством сгоревшего топлива, весом, колесной формулой и скоростью передвижения транспорта.
С правовой точки зрения это означает, что все параметры для определения функции производства энтропии при передвижения, включая «дефектность дорожного покрытия и человеческого фактора» (путем хроно-био-диагностики водителя), необходимо «снимать» пассивной локацией «радиоидентификаторов» (радиоканала и бортового компьютера с комплектом датчиков и устройств «БАКСАН»: Блочной Адаптивной Коммуникационной Системой Автотранспортной Навигации), установленных на каждом транспортном средстве, которые передают данные в центр управления движением в реальном масштабе времени, для принятия оперативных мер, как только автотранспортное средство «нарушило» указанные соответствия, фиксируемые в системе «радиознаками» и «радиосветофорами». Следовательно, общепринятый сегодня в мире принцип «принадлежности средств системы управления только дороге» является тупиковым, и должен быть изменен на принцип «принадлежности и автомобилю средств системы, управляющей транспортно-пассажирскими потоками» [1,23].
Синергетическое решение указанных инженерно-экономико-правовых проблем привели к созданию модели системы адаптивногодорожно-транспортно-экологического налогообложения (САДТЭН), которую следует ввести, и которая должна быть системой «местного налогообложения» (вместо всех дорожно-транспортных, включая «автогражданку»), т.к. зависит и рассчитывается для конкретной дорожно-транспортной инфраструктуры района (города) по «сезонной производительности» экосистем, численности населения и транспорта, а также динамики их передвижения, и распределяется на мероприятия (работы) по повышению безопасности этой конкретной инфраструктуры, где «налогооблагаемая база» передвигается [20,24].
При этом максимум самоорганизации САДТЭН (минимум функции производства энтропии в дорожно-транспортной инфраструктуре) был достигнут тогда, когда удалось формализовать модель адаптивной маршрутизации движения городского пассажирского транспорта в соответствии с плотностью пассажиров на остановках. Это стало возможным, благодаря наличию в каждом транспортном средстве датчиков «загрузки салона» («БАКСАН») и контроля его координат («КАПКАН»), т.к. в этом случае получалась упрощенная модель расчета с конечным числом уравнений и переменных, когда бимодальные распределения плотности пассажиров в течение суток на остановках, в соответствии с теорией массового обслуживания, были аппроксимированы 2-мя распределениями Эрланга (до полудня, и после полудня) и решались в реальном масштабе времени совместно с Эрланговскими уравнениями плотности транспортных средств на маршрутах [19,20].
Таким образом, помимо вероятностно-физической реализации идеальной Линдаловской модели налогообложения и, превращения в макросистеме «КАСКАД» городского пассажирского транспорта в публичное благо, т.е. введения САДТЭН и проезда без оплаты для всех граждан, синергетическая организация (реорганизация) дорожно-транспортной инфраструктуры городов и населенных пунктов позволила прийти к следующим, фундаментальным, с точки зрения общественно-экономических формаций, выводам, которые следует принять и начать реализовывать указанными выше инновациями [1,3,19-25]:
1. Дорожно-транспортные инфраструктуры не могут быть объектом рыночных отношений, т.к. целевая функция рынка это максимизация прибыли, в связи с чем, его самоорганизация на два порядка хуже, чем это требуется для безопасности дорожного движения, и на четыре порядка хуже, чем у адаптивных систем управления движением, целевой функцией которых является минимизация энтропии передвижения.
2. Дорожно-транспортные инфраструктуры должны представлять собой «публичное благо» (дороги, переходы, системы управления движением и т.д.) и обеспечение их оптимального функционирования, включая все виды ответственности и компенсации потерь, - обязанность государства, которое «формирует законы и придумывает правила» передвижения в них, независимо от типа общественно-экономической формации.
3. Исполнительные органы государственной власти, в условиях рыночных отношений, могут быть «заказчиками» у любых юридических и физических лиц, которые хотят и могут создавать «коллективные и частные блага» в этой области (государственные и частные: изготовители транспортных средств, производители транспортных, дорожных, торговых, сервисных услуг и т.д.), в рамках указанного «публичного блага», но должны полностью отвечать за потери в созданной «под их руководством» дорожно-транспортной инфраструктуре, а не перекладывать ответственность на страховые компании и участников передвижения.
Библиография
транспортный энергетический социальный
1.Белозеров В.В. Синергетика безопасной жизнедеятельности. Ростов-н/Д: ЮФУ, 2015. 420 с.
2.Итоги Конференции Рио-де-Жанейро 1992 года - http://russian.irib.ir/component/k2/item/201131
3.Белозеров В.В. Синергетика государственной деятельности в области безопасности дорожного движения // «Предупреждение преступлений и административных правонарушений в сфере обеспечения безопасности дорожного движения»: мат-лы Всерос. науч.-практ. конф., Краснодар, 16-17.09.2011/ Краснодар: КрУ МВД РФ, 2011. С. 22-33.
4.Городон Г.Ю., Вайнштейн Л.И. Энерготравматизм и его предупреждение М.: Энергоатомиздат, 1986. 256 с.
5.Электротравматизм в России - http://ohranatruda.ru/ot_biblio/articles/2168
6.Пожарная безопасность и современные направления ее совершенствования / Е.А. Серебренников, А.П. Чуприян, Н.П. Копылов и др.; Под ред. Ю.Л. Воробьева. М.: ВНИИПО, 2004. 187 с.
7.Богуславский Е.И., Белозеров В.В., Богуславский Н.Е. Прогнозирование, оценка и анализ пожарной безопасности / Уч. пос., рек. УМО Минобразования РФ для строительных ВУЗов. Ростов-н/Д: РГСУ, 2004. 151 с.
Размещено на Allbest.ru
Подобные документы
Понятие аварии и катастрофы, их отличия. Характеристика аварий на автомобильном, железнодорожном, авиационном и водном транспорте. Самый безопасный вид транспорта. Рассмотрение основных способов повышения личной транспортно-дорожной безопасности.
реферат [35,4 K], добавлен 22.01.2014Обеспечение информационной, биофизической, энергетической, пространственно-антропометрической и технико-эстетической совместимостей в системе "человек-машина". Расследование и учет несчастных случаев. Естественные и искусственные источники инфразвука.
контрольная работа [45,7 K], добавлен 21.10.2014Предмет и задачи эргономики; адаптация условий труда к человеку, обеспечение наилучшего соответствия возможностей и потребностей работника с информационной, биофизической, пространственно-антропометрической, энергетической и технико-эстетической средой.
курс лекций [157,2 K], добавлен 12.11.2012Состав энергетических напитков и их влияние на организм. Экспериментальное исследование негативного влияния энергетических напитков на семена тыквы, на белок и скорлупу куриного яйца. Степень информированности учащихся о вреде употребления напитков.
практическая работа [1,2 M], добавлен 24.07.2014Сущность техногенных аварий. Анализ количества чрезвычайных происшествий и аварий на коммунально-энергетических системах жизнеобеспечения в Республике Хакасия. Динамика аварий на коммунально-энергетических системах в городских муниципальных образованиях.
курсовая работа [708,1 K], добавлен 09.07.2011Источники шума в помещениях с ЭВМ. Допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука на рабочих местах. Требования к параметрам микроклимата. Предельно допустимые уровни энергетической нагрузки электромагнитного поля.
контрольная работа [260,9 K], добавлен 21.07.2011Описание и анализ норм радиационной безопасности и допустимых уровней облучения, которые, согласно рекомендациям МКРЗ, устанавливают, исходя из концепции беспорогового действия радиации. Особенности и правила функционирования санитарно-защитной зоны.
реферат [27,4 K], добавлен 20.06.2011Главные причины аварии на Фукусиме-1. Отказ Европы от ядерной энергетики. Safety, security, человеческий фактор. Этапы жизненного цикла атомно-энергетической станции и соблюдение культуры безопасности на этих этапах. Контроль над отработанным топливом.
курсовая работа [1,8 M], добавлен 21.11.2014Общественные дискуссии о системе охрана труда. Действующая в Великобритании система уведомлений для обязательного исполнения. Социально-экономические последствия влияния неблагоприятных условий труда. Опыт Финляндии в организации системы охраны труда.
курсовая работа [38,2 K], добавлен 11.03.2011Предупреждение и ликвидация последствий чрезвычайных ситуаций как одна из актуальных проблем современности. Анализ деятельности ЗАО "Термофор", особенности определение устойчивости производственных комплексов предприятия к воздействию светового излучения.
курсовая работа [447,5 K], добавлен 07.05.2016