Радиационные нагрузки на космонавта при внекорабельной деятельности в скафандре "Орлан-М" на низких околоземных орбитах

Влияние упрощений геометрии антропоморфного фантома на дозы в представительных точках тела космонавта. Данные эксперимента по определению массовой толщины элементов скафандра "Орлан-М" методом гамма- и бета-просвечивания, функции экранированности.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид автореферат
Язык русский
Дата добавления 02.05.2018
Размер файла 239,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Автореферат

диссертации на соискание ученой степени кандидата технических наук

Радиационные нагрузки на космонавта при внекорабельной деятельности в скафандре «Орлан-М» на низких околоземных орбитах

Общая характеристика работы

Анализ источников космического излучения (КИ) в околоземном пространстве и многочисленные результаты дозиметрических исследований, выполненных на космических летательных аппаратах, указывают, что пилотируемые космические полеты являются радиационно-опасным видом деятельности человека. В соответствии с рекомендациями Международной комиссии по радиологической защите (МКРЗ) такой вид деятельности требует соответствующих мер по снижению уровня радиационного риска для здоровья и жизни космонавтов.

Актуальность работы

В соответствии с требованиями Методических указаний (МУ 2.6.1.44-03-2004) [1] на всех этапах космического полета необходимо отслеживать дозу на критические органы космонавта, такие как глаз, кожа, кроветворная система, а также определять его эффективную дозу за период профессиональной деятельности. Отдельного рассмотрения требует этап космического полета, связанный с внекорабельной деятельностью (ВКД), при котором, в силу изменившихся условий защищенности, радиационная нагрузка на критические органы тела космонавта возрастает по сравнению с его пребыванием внутри космического аппарата.

Актуальность работы обусловлена активным использованием скафандров типа «Орлан-М» при продолжающейся эксплуатации МКС, а также планируемыми межпланетными и лунными экспедициями, в которых предполагается использование скафандров при монтажных работах на околоземных орбитах. В настоящее время в стадии реализации находится космический эксперимент «Матрешка-Р», в котором осуществлялось экспонирование тканеэквивалентного антропоморфного фантома снаружи станции в условиях, моделирующих работу космонавта в скафандре.

Цель работы состояла в следующем: получение расчетных оценок радиационных нагрузок на космонавта при внекорабельной деятельности в скафандре «Орлан-М» на низких околоземных орбитах, основываясь на результатах наземных экспериментальных исследований по определению толщины защиты, создаваемой скафандром, а также с учетом данных космического эксперимента «Матрешка».

Для достижения этой цели были поставлены и решены следующие задачи:

· рассчитать возможное изменение доз, создаваемых различными источниками космического излучения, в представительных точках антропоморфного фантома в зависимости от степени негомогенности материала фантома;

· оценить влияние упрощений геометрии антропоморфного фантома на дозы в представительных точках тела космонавта (фантомы в виде головы и торса, применяемые в космических исследованиях);

· обработать и проанализировать данные наземного эксперимента по определению массовой толщины элементов скафандра «Орлан-М» методом гамма- и бета - просвечивания;

· основываясь на анализе технической документации и результатах наземных экспериментальных исследований, модифицировать методику расчета функций экранированности представительных точек антропоморфного фантома, находящегося внутри скафандра «Орлан-М»;

· рассчитать дозы и эффективность радиационной защиты для представительных точек антропоморфного фантома в скафандре «Орлан-М» для моделируемых ВКД на низких околоземных орбитах;

· рассчитать функции экранированности и оценить дозы в местах размещения детекторов космического эксперимента «Матрешка» и сопоставить их с данными, полученными в эксперименте, а также с результатами расчета для антропоморфного фантома внутри скафандра «Орлан-М»;

· оценить влияние эффекта западно-восточной асимметрии захваченных протонов высоких энергий на радиационные нагрузки космонавтов при внекорабельной деятельности.

Методы исследования:

· математическое моделирование;

· численные методы математического анализа и математической статистики;

· сравнительный анализ результатов расчетов и экспериментальных данных.

Научная новизна. В диссертационной работе впервые:

· проведена оценка влияния степени негомогенности фантома на дозы, создаваемые различными источниками космического излучения, в представительных точках антропоморфного фантома;

· получены экспериментальные данные по определению толщины защиты скафандра «Орлан-М» методом гамма- и бета - просвечивания;

· получены оценки эффективности защиты для представительных точек антропоморфного фантома в скафандре «Орлан-М» при моделируемых ВКД на низких околоземных орбитах;

· проведено сопоставление доз в представительных точках антропоморфного фантома «Рэндо» космического эксперимента «Матрешка» с дозами в антропоморфном фантоме в скафандре «Орлан-М»;

· при расчете доз в представительных точках антропоморфного фантома в скафандре при внекорабельной деятельности учтено влияние эффекта западно-восточной асимметрии захваченных протонов высоких энергий в области Южно-Атлантической аномалии.

Практическая значимость работы:

· реализована в виде программы модифицированная методика определения функций экранированности точек фантома и системы «фантом в скафандре», задаваемых в виде таблиц;

· обоснована возможность использования гомогенного фантома при расчетных оценках радиационных нагрузок на космонавта;

· получено описание массовых толщин элементов скафандра «Орлан-М», основанное на данных эксперимента по его гамма-просвечиванию;

· определена эффективность защиты скафандра «Орлан-М» для представительных точек антропоморфного фантома в условиях внекорабельной деятельности на орбите МКС в зависимости от таких факторов, как параметры орбиты и фазы цикла солнечной активности.

Положения, выносимые на защиту.

1. Результаты расчетов изменения доз космического излучения в представительных точках антропоморфного фантома в зависимости от степени его негомогенности.

2. Модифицированная методика определения функции экранированности представительных точек антропоморфного фантома для случая его расположения в скафандре, основанная на результатах экспериментальных исследований по гамма-просвечиванию скафандра «Орлан-М».

3. Расчетные оценки радиационных нагрузок на космонавта в скафандре «Орлан-М» и эффективности радиационной защиты скафандра при моделируемых ВКД на низких околоземных орбитах и для космического эксперимента «Матрешка» на внешней поверхности МКС.

4. Результаты анализа влияния пространственной ориентации космонавта на радиационные нагрузки при ВКД в скафандре «Орлан-М» в зоне Южно-атлантической аномалии.

Личный вклад автора заключается в:

· выполнении основного объема теоретических и расчетных исследований, изложенных в диссертационной работе, включая разработку расчетных методик и соответствующего программного обеспечения;

· участии в эксперименте по гамма-просвечиванию скафандра «Орлан-М» в части обработки и анализа экспериментальных данных;

· участии в анализе данных штатного дозиметра космонавта «Пилле-МКС», используемого при внекорабельной деятельности;

· участии в эксперименте «Матрешка-Р» в части анализа доз облучения, полученных в представительных точках антропоморфного фантома, экспонировавшегося на наружной поверхности станции;

· анализе, обработке и оформлении результатов в виде публикаций и научных докладов в период с 2000 по 2009 гг.

Апробация работы

Результаты и положения диссертационной работы опубликованы в 11 печатных работах.

Результаты и положения диссертации докладывались и обсуждались на следующих конференциях:

· Конференция молодых ученых ГНЦ РФ - ИМБП РАН (2002);

· The 2nd International Workshop on Space Radiation Research (IWSSRR-2). March 11-15, 2002, Nara, Japan;

· Четвертый международный аэрокосмический конгресс. 18 - 23 августа 2003 г. Москва;

· Научная сессия МИФИ-2006, Секция Ф-1. АСТРОФИЗИКА И КОСМОФИЗИКА;

· 4-th International Workshop on Space Radiation Research and 17-th Annual NASA Space Radiation Health Investigators' Workshop. Moscow - St. Petersburg, June 5 - 9, 2006;

· 17th IAA Human in Space Symposium. Book of abstracts. June 7-11, 2009. Moscow.

Объем и структура

Диссертация изложена на 159 страницах машинописного текста, включая 37 таблиц и 48 рисунков, состоит из введения, пяти глав, заключения, списка использованных источников из 90 наименований и четырех приложений.

Содержание работы

скафандр радиационный космонавт

Во введении обоснована актуальность проблемы оценки радиационных нагрузок на космонавтов при ВКД в скафандре «Орлан-М» на низких околоземных орбитах, сформулирована цель и задачи исследования, обоснованы новизна и практическая значимость результатов исследований. Излагаются основные положения, выносимые автором на защиту.

В первой главе по литературным данным проведен анализ условий облучения космонавтов в орбитальном полете при ВКД. Рассмотрено применение при космических полетах скафандров «Орлан-М» и НАСА EMU, используемых в настоящее время в условиях орбитального полета на МКС при ВКД, проведено сравнение их основных характеристик. Рассмотрена радиационная обстановка в околоземном космическом пространстве на низких околоземных орбитах, применительно к условиям ВКД. Дан обзор основных характеристик источников космического излучения таких, как галактические космические лучи (ГКЛ), солнечные космические лучи (СКЛ) и радиационные пояса Земли (РПЗ). Для этих источников рассмотрены кривые ослабления доз космического излучения на низких околоземных орбитах, которые позволяют рассчитать дозу в точке внутри фантома: , где H(x) - кривая ослабления дозы радиации, - функция экранированности (ФЭ) точки внутри фантома.

Рассмотрены используемые в дальнейших расчетах кривые ослабления доз от упомянутых выше источников КИ на высотах орбит МКС 350, 400 и 450 км для эпох минимума и максимума солнечной активности (СА), полученные компиляцией данных из работ отечественных и зарубежных авторов. При промежуточных высотах орбит и для моментов времени между минимумом и максимумом СА используется линейная интерполяция доз.

Приведены нормативные уровни космической радиации на органы кроветворной системы (КТС), хрусталик глаза (ХГ) и кожу (КЖ) в соответствии с [1]. Рассмотрено и обосновано применение тканеэквивалентных материалов в космических исследованиях с использованием фантомов тела человека. Проведен обзор экспериментальных исследований облучения космонавтов в орбитальном полете при ВКД: дозиметр «Пилле» на станции «Мир», штатный дозиметр «Пилле-МКС» на МКС и космический эксперимент (КЭ) «Матрешка-Р» по экспонированию торса антропоморфного фантома в специальном контейнере снаружи МКС.

Как следует из проведенного анализа, до начала работы над диссертацией в литературе отсутствовали данные о ФЭ представительных точек тела человека в скафандре. Также отсутствовали данные о дозах и защищенности этих точек при ВКД на околоземных орбитах. Измерения доз, проведенные в условиях ВКД, носили фрагментарный характер, что не позволяло практически перейти к оценке доз в различных представительных точках тела человека при ВКД.

Во второй главе описана реализованная автором в виде программы методика расчета, позволяющая определять функцию самоэкранированности в любой точке тела человека. В качестве исходных данных используется представление тела человека в виде антропоморфного фантома, принятое в ГОСТ 25645.203-83 [2]. Кроме того, имеется возможность задавать другие исходные данные (фантом с измененными антропометрическими параметрами, фантом с элементами локальной защиты, фантом внутри скафандра). Для математического задания фантома и точек внутри него используется цилиндрическая система координат {z, r, } (см. Рис. 1). В представлении [2] антропоморфный фантом, стоящий в вертикальном положении, представлен в виде плоских горизонтальных срезов для набора высот z. Для каждого среза, находящегося на высоте z, в его плоскости задается расстояние r от оси OZ до границы тела в диапазоне азимутальных углов от 0 до 360 с шагом =10. Согласно описанию, приведенному в [2], интерполяция координат точек поверхности фантома между значениями, указанными для соседних срезов, а также при промежуточных значениях углов , осуществляется по линейному закону. На Рис. 2 показаны в качестве примера горизонтальные сечения фантома на различной высоте z, отсчитываемой от ступней, для области головы, груди, ног и ступней.

Рис. 1. Антропоморфный фантом в цилиндрической системе координат {z, r, }, используемой для расчета функции самоэкранированности

Рис. 2. Сечения фантома на различной высоте Z. А - голова (Z = 1570 мм), Б - грудь (Z = 1300 мм), В-область ног (Z = 500 мм), Г - ступни (Z = 20 мм)

Описан алгоритм расчета ФЭ с использованием метода статистических испытаний и приведены примеры расчета ФЭ и доз в представительных точках антропоморфного фантома для различных источников КИ. Проведено сопоставление результатов расчетов ФЭ с соответствующими результатами работ других отечественных авторов [3, 4], а также с данными американской модели CAM [5]. Получено хорошее согласие с данными из указанных работ. Статистическая погрешность проводимых расчетов функций экранированности не превышает 2%. Точность расчета доз в используемой методике определяется в основном погрешностью задания кривых ослабления доз КИ.

Проведен анализ влияния на самоэкранированность негомогенности фантома в рамках модели случайно-неоднородной среды [6, 7], учитывающей различия в плотности внутренних органов человеческого тела. Толщина защиты x0 случайным образом заменяется на x: x = x0 + , где = N (0,) - случайная величина, распределенная по нормальному закону с математическим ожиданием 0 и стандартным отклонением , что описывается следующими соотношениями [7]:

,,

у = K x0,

где K - параметр негомогенности, т.е. коэффициент, характеризующий степень неоднородности негомогенной среды.

Для демонстрации результатов расчетов доз выбраны следующие представительные точки антропоморфного фантома, заданные в ГОСТ 25645.203-83: КЖ; ХГ; КТС-1 (на груди); КТС-2 (на спине). В дополнение к выбранным рассматривается точка, представляющая критический орган «Гонады» (ГН), а также при исследовании защитных свойств скафандра «Орлан-М» вводятся точки КЖ-2 (расположенная на ноге за защитой мягкими тканями скафандра «Орлан-М»), ХГ-2 (с теми же координатами, что ХГ, но без дополнительной защиты светофильтром). На Рис. 3 приведены результаты расчета ФЭ точек ХГ и ГН. Введение негомогенности в описание фантома приводит к определенному «сглаживанию» ФЭ.

Оценены дозы в выбранных представительных точках антропоморфного фантома для различных и видов КИ в минимуме и максимуме СА. Показано, что при изменении от 0 до 20% суммарная доза ГКЛ и РПЗ меняется не более, чем на 12%. Для протонов СКЛ доза меняется не более, чем на 14%.

Рис. 3. Функции самоэкранированности некоторых представительных точек антропоморфного фантома при различных значениях параметра негомогенности

Показано, что переход от использования в качестве модели тела человека антропоморфного фантома из ГОСТ 25645.203-83 к упрощенному фантому в виде головы и торса человека для большинства представительных точек, исключая «Гонады», является приемлемым, поскольку изменение расчетной дозы всех видов космического излучения при таком переходе для этих точек не превышает 2%, т.е. является несущественным.

В третьей главе представлена модифицированная методика определения ФЭ представительных точек антропоморфного фантома для случая его расположения в скафандре. Ранее существовала методика расчета ФЭ для точки внутри космического аппарата (КА), заданного в виде набора поверхностей 2-го порядка [8]. Эта методика применялась также к антропоморфному фантому. Суть модификации состоит в следующем:

1. Задание фантома в виде таблиц (ГОСТ 25645.203-83), описывающих его горизонтальные срезы.

2. Задание системы «Фантом в скафандре» в виде аналогичных таблиц, где описание скафандра основано на результатах экспериментальных исследований по гамма - просвечиванию скафандра «Орлан-М».

Данные по радиационно-защитным свойствам скафандра «Орлан-М» основаны на анализе доступной технической документации, а также на результатах определения его массовой толщины защиты в экспериментальных исследованиях методом гамма- и бета - просвечивания. Схемы экспериментов представлены на Рис. 4 и Рис. 5. На Рис. 6 в произвольном масштабе представлены горизонтальные срезы антропоморфного фантома, помещенного в скафандр. Абсолютная погрешность толщины защиты вещества скафандра в методе гамма - просвечивания оценивается ~0.2 г./см2. В эксперименте по бета - просвечиванию мягких тканей скафандра «Орлан-М» определена их средняя массовая толщина: 0.21 ± 0.01 г./см2 тканеэквивалентного вещества [9]. В Табл. 1. даны минимальные толщины тканеэквивалентной защиты отдельных элементов скафандра «Орлан-М» (Xmin) и минимальные энергии электронов (Ee min) и протонов (Ep min), способных проникать через эти элементы.

Рис. 4. Схема эксперимента по гамма-просвечиванию: h1(источник: Cs137, E= 0,66 МэВ) = 86 см; 131 см; 150 см; 171 см; h2(детектор) = 20 - 200 см. R = 188 см; = 10 - 200

Рис. 5. Схема эксперимента по бета - просвечиванию: Источник Sr90+Y90; ФЭУ - фотоэлектронный умножитель, ПУ - предусилитель, УС - усилитель, АМА - амплитудный анализатор

скафандр радиационный космонавт

Мощность дозы электронов и протонов РПЗ и частиц ГКЛ на представительные точки тела космонавта в скафандре «Орлан-М» на орбите МКС

Мощность дозы, мЗв/сут

РПЗ

ГКЛ

РПЗ + ГКЛ

Мин. СА

Макс. СА

Мин. СА

Макс. СА

Мин. СА

Макс. СА

p

e

p

e

Высота орбиты 350 км

Кожа

2.34•10-1

4.46•10-3

8.25•10-2

1.07•10-2

3.80•10-1

2.45•10-1

6.18•10-1

3.38•10-1

Кожа-2

6.63•10-1

1.44

1.69•10-1

3.57

5.81•10-1

3.83•10-1

2.68

4.13

ХГ

3.79•10-1

1.90•10-1

1.16•10-1

4.56•10-1

4.75•10-1

3.16•10-1

1.04

8.88•10-1

ХГ-2

4.34•10-1

4.96•10-1

1.27•10-1

1.22

4.85•10-1

3.22•10-1

1.42

1.67

КТС-1

1.24•10-1

2.21•10-3

5.37•10-2

7.92•10-3

2.58•10-1

1.77•10-1

3.83•10-1

2.38•10-1

КТС-2

1.09•10-1

2.21•10-3

5.00•10-2

7.92•10-3

2.37•10-1

1.68•10-1

3.48•10-1

2.26•10-1

Гонады

1.91•10-1

3.25•10-3

7.14•10-2

9.00•10-3

3.29•10-1

2.18•10-1

5.24•10-1

2.98•10-1

Доза протонов СКЛ с различной характеристической жесткостью спектра на представительные точки тела космонавта в скафандре «Орлан-М» на орбите МКС

Доза протонов СКЛ, мЗв*см2

Характеристическая жесткость спектра протонов СКЛ, МВ

50

80

120

200

Кожа

9.37•10-9

1.37•10-8

1.76•10-8

2.33•10-8

Кожа-2

1.24•10-7

7.37•10-8

5.61•10-8

4.57•10-8

ХГ

4.28•10-8

3.52•10-8

3.22•10-8

3.29•10-8

ХГ-2

6.43•10-8

4.50•10-8

3.76•10-8

3.57•10-8

КТС-1

1.60•10-9

4.08•10-9

8.08•10-9

1.58•10-8

КТС-2

9.07•10-10

2.88•10-9

6.79•10-9

1.48•10-8

Гонады

6.31•10-9

9.88•10-9

1.36•10-8

2.02•10-8

Эффективности защитных свойств скафандра «Орлан-М» на орбите МКС

(H(Фантом) - H (Фантом + «Орлан-М»))/H(Фантом), где H - эквивалентная доза за ВКД

РПЗ

ГКЛ

РПЗ + ГКЛ

Мин. СА

Макс. СА

Мин. СА

Макс. СА

Мин. СА

Макс. СА

p

e

p

e

Высота орбиты 350 км

Кожа

0.95

>0.99

0.83

>0.99

0.28

0.29

>0.99

>0.99

Кожа-2

0.87

>0.99

0.69

>0.99

0.06

0.06

>0.99

>0.99

ХГ

0.40

0.88

0.26

0.89

0.11

0.11

0.62

0.80

ХГ-2

0.31

0.69

0.19

0.70

0.09

0.09

0.49

0.63

КТС-1

0.28

0.07

0.22

0.01

0.20

0.20

0.23

0.20

КТС-2

0.41

0.01

0.32

<0.01

0.31

0.28

0.34

0.28

Гонады

0.17

0.49

0.12

0.32

0.11

0.11

0.14

0.12

Эффективности защитных свойств скафандра «Орлан-М» при различной характеристической жесткости энергетического спектра протонов СКЛ

(H(Фантом) - H (Фантом + «Орлан-М»))/H(Фантом), где H - эквивалентная доза за ВКД

Характеристическая жесткость спектра протонов СКЛ, МВ

50

80

120

200

Кожа

0.99

0.94

0.84

0.63

Кожа-2

0.84

0.70

0.55

0.37

ХГ

0.64

0.48

0.35

0.21

ХГ-2

0.44

0.32

0.23

0.15

КТС-1

0.59

0.44

0.32

0.19

КТС-2

0.76

0.63

0.47

0.28

Гонады

0.39

0.28

0.21

0.12

Для уточнения радиационно-защитных свойств скафандра «Орлан-М» сделаны аналогичные оценки для ВКД первого типа (прохождение витков при ВКД через ЮАА, приводящее к получению максимальной дозы от РПЗ) и ВКД второго типа (ни один из витков при ВКД не проходит через область ЮАА), при максимальной продолжительности ВКД 7 часов [10].

В четвертой главе проведено сопоставление расчетных оценок доз в представительных точках антропоморфного фантома в скафандре «Орлан-М», а также доз в местах расположения детекторов с результатами КЭ «Матрешка» по экспонированию фантома «Рэндо» в специальном контейнере на внешней поверхности МКС [11]. Различие между расчетными и экспериментальными данными составляет 10 - 30%, что свидетельствует об оправданности разработанного подхода к определению ФЭ в представительных точках антропоморфного фантома КЭ «Матрешка» и используемых кривых ослабления доз источников КИ.

Проведено сопоставление условий экспонирования фантома КЭ «Матрешка» с учетом контейнера с условиями радиационного воздействия на космонавта при ВКД в скафандре «Орлан-М» (масса контейнера составляет 4.07 кг, масса скафандра «Орлан-М» - 110 кг).

Рассчитаны дозы в представительных точках фантома КЭ «Матрешка». Расчет проводился для круговой орбиты высотой 350 км и наклонением 51.60 и фаз минимума и максимума СА. Сопоставление полученных значений доз показывает, что отношение дозы в антропоморфном фантоме в скафандре «Орлан-М» к дозе в условиях КЭ «Матрешка» меняется от 0.1 до 1.8 в зависимости от выбранной представительной точки и фазы цикла СА. Полученные соотношения необходимо учитывать при интерпретации данных, полученных в КЭ «Матрешка», применительно к условиям ВКД в скафандре «Орлан-М».

В пятой главе проведен анализ влияния пространственной ориентации космонавта на радиационные нагрузки при ВКД в зоне ЮАА.

Как следует из анализа представленных зависимостей, защита скафандра анизотропна в направлении вперед-назад: задняя часть тела космонавта защищена скафандром существенно лучше по сравнению с передней. Приведены средние защиты переднего и заднего полупространства скафандра «Орлан-М» для выбранных представительных точек.

Дано аналитическое описание анизотропии потоков протонов в области ЮАА и проведены численные оценки этого эффекта, см. Табл.

Отношение флюенса захваченных протонов с запада (jWest(E)) к флюенсу с востока (jEast(E)) в области ЮАА на высоте 350 км

Энергия протона, МэВ

jWest(E) / jEast(E)

Минимум СА

Максимум СА

25

2.7

2.1

50

4.0

2.9

100

7.2

4.4

200

17

8.0

500

1.1102

28

1000

1.2103

1.2102

Для оценки радиационных нагрузок на различные участки тела космонавта рассматривались два предельных случая ориентации тела космонавта при ВКД: лицом на запад и лицом на восток. Для расчетов использовались ФЭ, определенные для переднего и заднего полупространства скафандра, а также спектры захваченных протонов, приходящих с запада и с востока. При расчете эффект дополнительного экранирования телом станции не учитывался.

Для большинства представительных точек при ориентации «лицом на запад» доза выше, чем в аналогичных условиях при ориентации «лицом на восток». Приведенные выше расчетные оценки H(Запад)/H(Восток) для набора представительных точек в фазе минимума и максимума СА позволяют оценивать эффективность рекомендаций по ориентации тела космонавта при ВКД в области ЮАА. Следует отметить, что отношение H(Запад)/H(Восток) в минимуме СА в ~1.5 раза больше, чем в максимуме СА, что существенно для предложенного метода снижения дозовых нагрузок при ВКД, поскольку доза от захваченных протонов высоких энергий в ЮАА в минимуме СА в ~2 раза больше, чем в максимуме СА. Учет западно-восточной асимметрии для «Гонад» важен для оценки эффективной дозы на тело космонавта, поскольку весовой фактор этого органа максимален (0.2).

Выводы

1. Радиационные нагрузки на космонавта при ВКД в скафандре «Орлан-М» на низких околоземных орбитах таковы, что в отсутствие радиационных возмущений (магнитные бури и / или солнечные протонные события) не нарушаются требования по радиационной безопасности космонавта в космическом полете (МУ 2.6.1. 44-03-2004).

2. Для получения расчетных оценок эквивалентной дозы от различных источников космической радиации можно использовать гомогенный антропоморфный фантом. Учет негомогенности фантома приводит к несущественному (5 - 10%) завышению доз в теле человека.

3. Переход от использования в качестве модели тела человека антропоморфного фантома из ГОСТ 25645.203-83 к упрощенному фантому в виде головы и торса для большинства представительных точек, исключая «Гонады», является приемлемым, поскольку изменение расчетной эквивалентной дозы от всех видов космического излучения при таком переходе не превышает 2%.

4. При моделируемых ВКД на низких околоземных орбитах в радиационно-невозмущенные периоды вклад электронов РПЗ в суммарную дозу существен только для облучения хрусталика глаза (35 - 75%) и кожи (50 - 85%) и возрастает при переходе от минимума солнечной активности к максимуму. Во всех остальных случаях преобладает вклад протонов РПЗ и частиц ГКЛ.

5. Как следует из проведенных расчетов радиационно-защитных свойств скафандра, в любой период цикла солнечной активности эффективность защиты скафандра составляет: для электронов РПЗ >0.99 для кожи, 0.69 - 0.89 для хрусталика глаза, 0.32 - 0.49 для гонад, <0.07 для кроветворной системы; для протонов РПЗ 0.69 - 0.95 для кожи, 0.19 - 0.41 для хрусталика глаза и кроветворной системы, 0.12 - 0.17 для гонад; для частиц ГКЛ 0.06 - 0.29 для кожи, ~0.1 для хрусталика глаза и гонад, 0.20 - 0.31 для кроветворной системы.

6. В случае солнечного протонного события эффективность защиты скафандра зависит от характеристической жесткости R0 энергетического спектра протонов СКЛ и уменьшается от 0.84 при R0 = 50 МВ до 0.37 при R0 = 200 для точки «КЖ-2» и от 0.59•при R0 = 50 МВ до 0.19 при R0 = 200 для точки «КТС-1».

7. Наблюдается удовлетворительное согласие (в пределах 10 - 30%) расчетных оценок доз с данными КЭ «Матрешка», что свидетельствует об оправданности применения модифицированной методики к определению функций экранированности в представительных точках антропоморфного фантома КЭ «Матрешка» и используемых кривых ослабления доз источников КИ.

8. В соответствии с полученными расчетными оценками отношение дозы в антропоморфном фантоме в скафандре «Орлан-М» к соответствующим дозам в условиях КЭ «Матрешка» меняется от 0.1 до 1.8 в зависимости от выбранной представительной точки и фазы цикла СА. Полученные соотношения необходимо учитывать при интерпретации данных КЭ «Матрешка» применительно к условиям ВКД, осуществляемых в скафандре «Орлан-М».

9. При пересечении ЮАА за счет выбора оптимальной ориентации космонавта по отношению к сторонам света в ряде случаев может быть достигнуто снижение дозы на большинство критических органов ~ 1.5 в максимуме СА и ~ 2 - 2.5 в минимуме СА.

Полученные оценки радиационных нагрузок на космонавтов в скафандре «Орлан-М» могут быть использованы при выработке оптимального с точки зрения радиационной безопасности варианта проведения ВКД, в том числе при возмущенной радиационной обстановке, связанной с солнечными протонными событиями. Для уменьшения радиационных нагрузок на космонавта при ВКД необходимо учитывать следующие возможности:

1. Выбор времени начала ВКД так, чтобы траектория станции не пересекала область ЮАА. В этом случае в зависимости от защищенности органа может быть достигнуто снижение дозы на 10% - 40% в максимуме СА и на 35% - 50% в минимуме СА. Однако в этом случае траектория станции попадает в области возможного проникновения частиц СПС (над северной Канадой и южной Австралией).

2. В случае ожидаемого появления СПС при необходимости проведения ВКД время его начала выбирается так, чтобы исключить прохождение траектории ОПС через области возможного проникновения частиц СПС. В этом случае траектория станции с неизбежностью пересекает область ЮАА, что приводит к увеличению дозы, отмеченному в п. 1, однако предотвращается более существенное (десятки - сотни раз) увеличение дозы от мощного СПС.

3. В большинстве случаев время ВКД специально выбирается так, что траектория станции пересекает область ЮАА, поскольку при этом обеспечивается прохождение станции над европейской частью России, что предоставляет возможность осуществлять связь с экипажем при ВКД. При прохождении ЮАА уменьшение дозы может быть достигнуто путем ориентации тела космонавта по отношению к сторонам света, т.е. когда космонавт ориентирован лицом на восток или закрыт телом станции с наиболее опасного западного направления.

Публикации по теме диссертации

1. Petrov V., Kartashov D., Kireeva S., Shurshakov V., Semkova J. and Todorova G. Effective dose estimation in space flight using a spherical phantom. The 2nd International Workshop on Space Radiation Research (IWSSRR-2). March 11-15, 2002, Nara, Japan. p. 55 - 56.

2. T. Berger, M. Hajek, W. Schцner, M. Fugger, N. Vana, Y. Akatov, Arkhangelsky, V.A. Shurshakov and D. Kartashov. Application of the High-temperature Ratio Method for Evaluation of the Depth Distribution of Dose Equivalent in a Water-filled Phantom On Board Space Station Mir. Radiat. Prot. Dosim. 100 (1-4), pp 503-506 (2002).

3. Карташов Д.А., Коломенский А.В., Петров В.М., Шафиркин А.В., Шуршаков В.А. Оценка дозовых нагрузок на критические органы космонавта при внекорабельной деятельности в спокойных и радиационно-возмущенных радиационных условиях. Четвертый международный аэрокосмический конгресс. Москва. 18 - 23 августа 2003 г. С. 414 - 415;

4. Карташов Д.А., Коломенский А.В., Шуршаков В.А. «Методика расчета самоэкранированности критических органов тела человека в антропоморфном фантоме». Авиакосмическая и экологическая медицина. 2004 №2, стр. 52-56.

5. Шуршаков В.А., Карташов Д.А., Коломенский А.В., Петров В.М., Редько В.И., Абрамов И.П., Леткова Л.И., Тихомиров Е.П. Радиационно-защитные свойства скафандра «Орлан-М» применительно к условиям внекорабельной деятельности на орбите МКС. Авиакосмическая и экологическая медицина, 2006, Т. 41. №4, с. 56 - 61.

6. Карташов Д.А., Шуршаков В.А. Методика определения эффективной дозы облучения космонавтов в орбитальном полете при внекорабельной деятельности. Научная сессия МИФИ-2006, Секция Ф-1. АСТРОФИЗИКА И КОСМОФИЗИКА. Сборник научных трудов, стр. 78-79. М.: МИФИ 2006.

7. Kartashov D.A., Kolomensky A.V., Shurshakov V.A., Apathy I., Deme S. Radiation Doses in Critical Organs during Extra Vehicular Activity in an Orbital Space Flight. 4-th International Workshop on Space Radiation Research and 17-th Annual NASA Space Radiation Health Investigators' Workshop. Moscow - St. Petersburg, June 5 - 9, 2006, p. 57.

8. Карташов Д.А., Коломенский А.В., Шуршаков В.А. Эффективность радиационной защиты космонавта скафандром «Орлан-М» при внекорабельной деятельности. Системы жизнеобеспечения как средство освоения человеком дальнего космоса. Международная конференция 24 - 27 сентября 2008 г. Москва. С. 44.

9. Petrov V.M., Kartashov D.A., Kolomensky A.V., Shurshakov V.A. Comparison of space radiation doses inside the Matroshka-torso phantom installed outside the ISS with doses in a human body in Orlan-M spacesuit during EVA. 17th IAA Human in Space Symposium. Book of abstracts. June 7-11, 2009. Moscow. P. 119.

10. В.А. Шуршаков, Д.А. Карташов, А.В. Коломенский. Оптимизация радиационных нагрузок при внекорабельной деятельности за счет эффекта западно-восточной асимметрии потоков захваченных протонов. Космические исследования, 2009 (в печати).

11. Д.А. Карташов, В.М. Петров, А.В. Коломенский, Ю.А. Акатов, В.А. Шуршаков. Сопоставление доз космической радиации в антропоморфном фантоме, установленном снаружи МКС, с дозами космонавтов при ВКД в скафандре «Орлан-М». Авиакосмическая и экологическая медицина, 2009 (в печати).

Размещено на Allbest.ru


Подобные документы

  • Радиационные неразрушающие методы контроля, основанные на свойстве ионизирующих излучений неодинаково проникать сквозь материал различной толщины. Геометрия широкого пучка и типичные траектории частиц. Принципиальная схема сцинтилляционного детектора.

    презентация [628,8 K], добавлен 25.07.2015

  • Источники ионизирующих излучений. Предельно допустимые дозы облучения. Классификация биологических защит. Представление спектрального состава гамма-излучения в ядерном реакторе. Основные стадии проектирования радиационной защиты от гамма-излучения.

    презентация [812,1 K], добавлен 17.05.2014

  • Альфа, бета и гамма излучение. Радиочувствительность различных органов и тканей. Воздействие различных доз облучения на организм. Прямое и косвенное действие радиации. Генетические, соматические детерминированные и стохастические эффекты радиации.

    презентация [576,8 K], добавлен 02.04.2012

  • Властивості альфа-, бета-частинок, гамма-променів та нейтронів. Природні джерела радіоактивного випромінювання. Вплив опромінення на репродуктивну функцію людини і тривалість її життя. Особливості захисту населення при радіоактивному забрудненні.

    курсовая работа [49,7 K], добавлен 25.10.2010

  • История открытия радиации, ее основные виды и единицы измерения. Главные типы условий, в которых происходят радиационные катастрофы. Предприятия по производству и переработке ядерного топлива. Радиационные катастрофы в промышленности и медицине.

    презентация [1,7 M], добавлен 12.12.2014

  • Радиация или ионизирующее излучение: природа, виды, источники, последствия воздействия на человека; заболевания, вызванные облучением. Наиболее крупные радиационные аварии в мире: причины, методы и способы ликвидации, жертвы; воспоминания очевидцев.

    доклад [23,9 K], добавлен 23.04.2011

  • Физические основы процесса радиоактивности, особенности гамма-излучения. Исторические факты об открытии радиоактивности, ее сфера применения и опасность воздействия на все живое. Симптомы и стадии заболевания, которое вызвано радиоактивным излучением.

    контрольная работа [71,2 K], добавлен 22.11.2010

  • Радиация: дозы, единицы измерения. Ряд особенностей, характерных для биологического действия радиоактивных излучений. Виды эффектов радиации, большие и малые дозы. Мероприятия по защита от воздействия ионизирующих излучений и внешнего облучения.

    реферат [34,3 K], добавлен 23.05.2013

  • Санитарно-гигиеническое обследование земельного участка и здания учебного заведения, классной комнаты и мебели. Гигиеническая оценка питания учащихся. Физическое развитие учащихся. Влияние физической нагрузки на величину кровяного давления и пульс.

    практическая работа [41,1 K], добавлен 09.05.2012

  • Методы оценки степени опасности от околоземных объектов в зависимости от их размеров, минимальных расстояний сближения с Землей и вероятности столкновения с ней. Классификация опасностей столкновения Земли с астероидами и кометами (Туринская шкала).

    презентация [2,8 M], добавлен 21.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.