Человек и среда обитания. Комфортные условия жизнедеятельности
Природно-экологическая и медико-социальная классификации угасания природы. Источники экологических опасностей: тяжелые металлы, пестициды, диоксины, соединения серы и азота. Физиологическое и гигиеническое значение воды. Почва как фактор среды обитания.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | лекция |
Язык | русский |
Дата добавления | 21.09.2017 |
Размер файла | 78,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www. allbest. ru/
Размещено на http://www. allbest. ru/
ГБОУ ВПО ИвГМАМиздравсоцразвития России
Кафедра экстремальной, военной медицины и безопасности жизнедеятельности
Лекции
по предмету: Безопасность жинедеятельности
на тему: Человек и среда обитания. Комфортные условия жизнедеятельности
Выполнил:
С.А. Степович
Иваново 2012
Содержание
Введение
1. Состояние среды обитания
2. Источники экологической опасности
3. Воздух как фактор среды обитания
4. Вода как фактор среды обитания
5. Физиологическое и гигиеническое значение воды
6. Показатели качества воды
7. Почва как фактор среды обитания
8. Основы физиологии труда и комфортные условия жизнедеятельности
Литература
Введение
Дисциплина БЖ - обязательный общеобразовательный предмет, рассматривающий взаимодействие человека с окружающей средой и действия в случае чрезвычайных ситуаций.
Задача предмета БЖ - обучение теории и практике для:
· создания удобной среды обитания в зонах труда и отдыха людей;
· идентификации отрицательных действий среды обитания естественного и антропогенного происхождения;
· защиты человека и среды обитания от отрицательных воздействий;
· выполнения требований безопасности и экологичности;
· обеспечения устойчивости функционирования объектов и систем (в обычных и внештатных ситуациях);
· прогнозирования развития и оценки событий в чрезвычайных ситуациях;
· принятия решений в ЧС по защите населения и производственного персонала, применения средств поражения, ликвидации последствий.
Аксиома о потенциальной безопасности - основной постулат БЖ: потенциальная опасность является универсальным свойством процесса взаимодействия человека со средой обитания. Эта аксиома предопределяет, что все действия человека и все компоненты среды обитания обладают способностью создавать опасные и вредные факторы. В настоящее время известен большой перечень негативных факторов. К вредным факторам относятся: запылённость и загазованность воздуха, шум, вибрация, электромагнитные поля, ионизирующие излучения, неправильное освещение, тяжёлый физический труд, токсичные вещества и др.; опасные факторы: огонь, ударная волна, электрический ток, отравляющие вещества, острое ионизирующее излучение и др.
Критерием реализации опасности является риск, определяемый вероятностью проявления опасности и вероятностью присутствия человека в зоне действия опасности. Современные технические средства должны иметь вероятность воздействия опасных факторов на человека на уровне 10-6 - 10-8 1/год и менее при всех видах взаимодействия на систему (отказы техники, ошибки оператора, стихийные явления).
Защита населения и территорий в ЧС состоит в рассмотрении структуры единой государственной системы предупреждений и действий в ЧС (РСЧС), основных вопросах концепции гражданской обороны (ГО), ЧС мирного и военного времени, прогнозировании и оценке обстановки при ЧС, защите населения в ЧС, ликвидации последствий ЧС.
Целью изучения курса БЖ является овладение научными основами безопасности организации труда, исключающими травматизм и профзаболевания на предприятиях, а также подготовка для защиты населения и территорий в ЧС.
1. Состояние среды обитания
Сегодня скорость увеличения вредного воздействия средовых факторов и интенсивность их влияния уже выходит за пределы биологической приспособляемости экосистем к изменениям среды обитания и создает прямую угрозу жизни и здоровью населения. В современных условиях нестабильной социально-экономической обстановки эти негативные тенденции проявляются и в нашей стране.
Принципиальный недостаток развиваемых до последнего времени технологий заключается в том, что они приводят к нарушению круговорота веществ в биосфере, при которой природные ресурсы превращаются в загрязнение окружающей среды. Если очистительная способность окружающей природной среды недостаточна для нейтрализации загрязнений, то они неблагоприятно действуют на здоровье людей, технологические процессы в производстве и на возобновимые природные ресурсы.
При этом невозобновляемые ресурсы растрачиваются нерационально и в конечном итоге истощаются.
Используя показатели темпов самовосстановления природных систем (если самовосстановление возможно) и качественно-количественного состояния биомассы и биологической продуктивности экосистем, можно выделить следующие градации:
естественное состояние -- наблюдается лишь фоновое антропогенное воздействие, биомасса максимальна, биологическая продуктивность минимальна;
равновесное состояние -- скорость восстановительных процессов выше или равна темпу нарушений, биологическая продуктивность больше естественной, биомасса начинает снижаться;
кризисное состояние -- антропогенные нарушения превышают по скорости естественно-восстановительные процессы, но сохраняется естественный характер экосистем, биомасса снижена, биологическая продуктивность резко повышена;
критическое состояние -- обратимая замена прежде существовавших экологических систем под антропогенным воздействием на менее продуктивные (частичное опустынивание), биомасса мала и, как правило, снижается;
катастрофическое состояние -- труднообратимый процесс закрепления малопродуктивных экосистем (сильное опустынивание), биомасса и биологическая продуктивность минимальны;
6) состояние коллапса -- необратимая утеря биологической продуктивности, биомасса стремится к нулю.
Помимо природно-экологической классификации угасания природы рассмотрим медико-социальную шкалу, так как мы должны учитывать не только изменения в биосфере, но и то, как эти изменения могут влиять на здоровье человека. Существуют следующие четыре градации, учитывающие только что изложенную классификацию состояний природы.
Благополучная ситуация: устойчивый рост продолжительности жизни, заболеваемость снижается.
Зона напряженной экологической ситуации (экологически проблемная зона): ареал, в пределах которого наблюдается переход состояния природы от кризисного к критическому, и территория, где отдельные показатели здоровья населения (заболеваемость детей, взрослых, количество психологических отклонений и т. п.) достоверно выше нормы, существующей в аналогичных местах страны, не подвергающихся выраженному антропогенному воздействию данного типа, но это не приводит к заметным и статистически достоверным изменениям продолжительности жизни населения и более ранней инвалидности людей, профессионально не связанных с источником воздействия. Учитывать необходимо различные группы населения -- коренного, мигрантов и т. п.
Зона экологического бедствия: ареал, в пределах которого наблюдается переход от критического состояния природы к катастрофическому, и территория, в пределах которой в результате антропогенного (реже природного) воздействия невозможно социально-экономически оправданное (традиционное или научно рекомендованное) хозяйство; показатели здоровья населения (детская смертность, заболеваемость детей и взрослых, психические отклонения и т. п.), частота и скорость наступления инвалидности достоверно выше, а продолжительность жизни людей заметно и статистически достоверно ниже, чем на аналогичных территориях, не подвергшихся подобным воздействиям или бывших в том же ареале до констатации рассматриваемых воздействий. Сопряженные изменения в показателях здоровья и смертности населения должны быть выше, чем естественно наблюдаемые колебания в пределах существующей в данной или аналогичном регионе нормы (сейчас или в прошлом).
Зона экологической катастрофы: переход состояния природы от катастрофической фазы к коллапсу, что делает территорию непригодной для жизни человека (например, некоторые районы Приаралья и Сахеля); возникший в результате природных или антропогенных явлений ареал, смертельно опасный для постоянной жизни людей (они могут там находиться лишь короткое время), например зона Чернобыльской катастрофы; ареал разрушительной природной катастрофы, например мощного землетрясения, цунами и т. п.
Еще раз необходимо напомнить о возможности и предпочтительности расчетных показателей, которые позволяют выделить перечисленные зоны.
На основании приведенных критериев оценивается экологическое положение различных территорий и его воздействие в глобальном масштабе.
Экологическое состояние 15% территории России признано неудовлетворительным. В 13 регионах страны сложилась критическая экологическая ситуация. Около 20 млн. россиян проживают в зонах экологических бедствий, а 20% всего населения -- на территориях с неблагоприятной экологической обстановкой.
2. Источники экологических опасностей
Люди, стремясь к максимальному удовлетворению своих потребностей, создают новые вещества, производят огромное количество материалов, технических устройств, предметов бытового назначения. Как правило, эти искусственные предметы, химические вещества, различные отходы обладают особыми свойствами, несовместимыми с экологическими системами и характеристиками самого человека. Они имеют конечный срок полезного использования, не разлагаются или разлагаются очень медленно, загрязняют атмосферу, гидросферу, почву, непосредственно или косвенно оказывают отрицательное влияние на людей.
В настоящее время науке известны более 10 млн. органических соединений. Около 100 тыс. из них используются довольно широко, и более тысячи добавляется к их списку каждый год. На долю 1500 из них приходится 95% мирового производства. Некоторые из них известны как опасные токсиканты, мутагены, онкогены и тератогены. При наложении действие их, как правило, не суммируется, а усиливается. Загрязнение распространяется на многие биологические виды и места обитания, так что становится невозможным проследить многочисленные экологические последствия их использования. Чтобы оценить даже простейшие экологические эффекты, острую токсичность и биоконцентрирование каждого из этих веществ, требуется более 10 тыс. долларов, а стоимость всестороннего исследования увеличивается в десятки и сотни раз.
Вещества и предметы искусственного происхождения, которые вредят естественной среде обитания и человеку, называют ксенобиотиками, то есть чуждыми жизни (от греч. xenos -- чужой и bios -- жизнь).
Долговременная экологическая опасность ксенобиотиков заключается в том, что они из рассеянного состояния концентрируются в биомассе, включая ту, которая служит пищей человеку. Различаются два механизма концентрирования. Первый основан на том, что организмы избирательно поглощают вещества из окружающей их среды, например растения из воздуха и почвенного раствора. Второй механизм основан на концентрировании веществ по пищевым цепям.
Наибольшей опасности подвергаются те популяции, которые «замыкают» пищевую цепь (находятся на вершине экологической пирамиды), так как во многих случаях концентрация ксенобиотика (в расчете на биомассу) увеличивается на порядок с продвижением на одно звено.
Концентрирование ксенобиотиков приводит к вымиранию некоторых популяций, упрощению биоценозов с потерей их устойчивости, а в некоторых случаях представляет прямую опасность для человека. Приходится увеличивать коэффициент безопасности в 104 по отношению к нормам, установленным на основе представления о пассивном разбавлении ксенобиотиков.
В данном разделе в качестве примера рассматриваются лишь некоторые экологически опасные факторы, большинство из которых имеют приоритетное значение по степени опасности для окружающей среды и здоровья человека.
А. ТЯЖЕЛЫЕ МЕТАЛЛЫ
Среди химических веществ, загрязняющих внешнюю среду (воздух, воду, почву), тяжелые металлы и их соединения образуют значительную группу веществ, оказывающих существенное неблагоприятное воздействие на человека. Высокая токсичность, и опасность для здоровья человека тяжелых металлов, возможность их рассеивания в окружающей среде диктуют необходимость контроля и разработки мер защиты от них.
Опасность тяжелых металлов обусловлена их устойчивостью во внешней среде, растворимостью в воде, сорбцией почвой, растениями, что в совокупности приводит к накоплению тяжелых металлов в среде обитания человека.
Тяжелые металлы являются факторами риска сердечно-сосудистых заболеваний наряду с общепризнанными, традиционными факторами (избыточной массой тела, гиподинамией, нервно-эмоциональными нагрузками, курением, злоупотреблением алкоголем и др.).
Согласно прогнозам тяжелые металлы могут стать более опасными загрязнителями, чем отходы АЭС.
К тяжелым металлам относят более 40 химических элементов периодической системы Д. И. Менделеева с атомными массами свыше 50 а.е.м. Иногда тяжелыми металлами называют элементы, которые имеют плотность более 7...8 г/см3 (кроме благородных и редких), а иногда и металлы с плотностью 5 г/см3. Оба определения условны и перечни тяжелых металлов по этим формальным признакам не совпадают. Число наиболее опасных тяжелых металлов, если учитывать их токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения, значительно меньше. Это -- ртуть, свинец, кадмий, кобальт, никель, цинк, олово, сурьма, медь, молибден, ванадий, мышьяк.
Б. ПЕСТИЦИДЫ
Человек создал много химических препаратов, преследуя свои хозяйственные и иные цели. Многочисленную группу ядохимикатов представляют пестициды.
Пестициды (от лат.pestis -- зараза и ...цид, caedere --- убивать), ядохимикаты -- химические препараты для защиты сельскохозяйственных растений от вредителей, болезней и сорняков, а также для уничтожения паразитов сельскохозяйственных животных, вредных грызунов и др. К пестицидам относятся также средства, привлекающие или отпугивающие насекомых, регулирующие рост и развитие растений, применяемые для удаления листьев, цветов, завязей и др.
Дефолианты (от лат. de -- движение вниз и folium -- лист) -- химические вещества (бутифос, бутилкаптакс, тидрел, пуривел, хлорат магния, диоксин и др.), предназначенные для провоцирования искусственного опадания листвы растений (например, для облегчения механизированной уборки хлопка). Без строжайшего соблюдения доз, мер предосторожности дефолианты представляют серьезную опасность для человека и животных.
Зооциды (от греч. zoon -- животные и ...цид) -- химические вещества, предназначенные для уничтожения вредных преимущественно позвоночных животных-грызунов (родентициды), в частности мышей и крыс (ратициды), а также птиц (авициды), сорной рыбы (ихтиоциды) и др.
Арборициды (от лат. arbos -- дерево и ...цид) -- химические вещества, предназначенные для уничтожения нежелательной древесной или кустарниковой растительности.
Акарициды (от греч. akari -- клещ и ...цид) -- химические вещества, предназначенные для уничтожения вредных клещей. Различают 2 группы акарицидов: 1) специфического действия-- уничтожают только клещей и безвредны для других членистоногих (неорон, кельтан, тедион, эфирсуль); 2) неспецифические -- уничтожают не только клещей, но и насекомых (инсектоакарициды).
Инсектициды (от лат. insectum -- насекомые и ...цид) -- пестициды, предназначенные для борьбы с нежелательными (с точки зрения человека) в хозяйствах и природных сообществах насекомыми.
Фунгициды (от лат. fungus -- гриб и ...цид) -- химические вещества, предназначенные для борьбы с грибами -- возбудителями болезней, разрушающих древесные конструкции и повреждающих хранящиеся материальные ценности.
Детергенты (от лат. detergeo -- стираю) -- химические соединения, понижающие поверхностное натяжение воды и используемые в качестве моющего средства или эмульгатора. Детергенты -- широко распространенные и опасные для человека, животных и растений химические загрязнители воды, водоемов, почв.
Применяются различные формы пестицидов: растворы, суспензии, аэрозоли, пены, газы, пары, пыль, порошки, пасты, гранулы, капсулы.
Попадание пестицидов в атмосферу осуществляется непосредственно при их использовании в виде газов, паров, аэрозолей или при распылении любых форм пестицидов с самолета. С воздушными массами они могут переноситься на большие расстояния и вызывать загрязнение окружающей среды там, где пестициды вообще не применялись или использовались в меньших количествах.
Все пестициды являются ядовитыми веществами не только для определенной формы жизни, но и для полезных насекомых и микроорганизмов, животных, птиц и человека. В идеальном случае пестицид, оказав требуемое воздействие на вредителя, должен сразу разрушаться, образуя безвредные продукты разложения. Однако большинство пестицидов представляют собой устойчивые трудноразлагаемые соединения, у которых непосредственно используется 4...5% внесенного количества, а остальная масса рассеивается в агроэкосистеме, попадая в почвы, растения и другие компоненты окружающей среды, что создает сложные экологические проблемы.
При внесении в почву пестициды подвергаются многочисленным влияниям биотического и небиотического характера, которые определяют их дальнейшее поведение, трансформацию и в конечном счете минерализацию. Под устойчивостью пестицида понимают его способность определенное время сохраняться в почвах, измеряемую периодом полураспада, то есть временем, необходимым для разрушения 50% внесенного в почву пестицида. Характер и скорость процессов разложения зависят от химической природы препарата, а также от водно-физических характеристик и химического состояния почвы.
В. ДИОКСИНЫ
В большую группу диоксинов и диоксиноподобных соединений входят как сами полихлорированныедибензога-диоксины (ПХДД) и дибензофураны (ПХДФ), которые по своей химической структуре являются трициклическими ароматическими соединениями, так и полихлорированные бифенилы (ПХБ), поливинилхлорид (ПВХ) и ряд других веществ, содержащих в своей молекуле атомы хлора. Это чужеродные живым организмам соединения, попадающие в окружающую среду с продукцией или отходами многих технологий. Диоксины найдены везде -- в воздухе, почве, донных отложениях, рыбе, молоке (в том числе и грудном), овощах и т. д.
Отличительная черта представителей этой группы соединений -- чрезвычайно высокая устойчивость к химическому и биологическому разложению, они способны сохраняться в окружающей среде в течение десятков лет и переносятся по пищевым цепям. Эти вещества --супертоксиканты, они являются универсальными клеточными ядами, поражающими все живое.
Диоксины не производятся промышленно, но они возникают при производстве других химических веществ в виде примесей, например при синтезе гексахлорфенола, хлорированных фенолов, гербицидов на основе гексахлорбензола и хлордифениловых эфиров. Известна авария вблизи г. Севезо (Италия), где на заводе произошел выброс трихлорфенола, содержащего примерно 2...3 кг ПХДД. Более 2/з этого количества отложилось на площади в 15 га на расстоянии около 500 м от завода. Период полураспада ПХДД в почве составляет примерно 10...12 лет. Источником поступления диоксинов в окружающую среду является и нарушение правил захоронения промышленных отходов, в результате чего также происходит сильное загрязнение почв.
К другим источникам диоксинов относятся: термическое разложение технических продуктов, сжигание осадков сточных вод, муниципальных, медицинских и опасных отходов (например, ПХБ и изделий из ПВХ); металлургическая и металлообрабатывающая промышленность; выхлопные газы автомобилей; целлюлозно-бумажная промышленность; лесные пожары (леса, обработанные хлорфенольными пестицидами); хлорирование питьевой воды и др. Известное еще с начала XX в. заболевание, называемое хлоракне, было квалифицировано в 30-е гг. как профессиональная болезнь рабочих хлорных производств. Хлоракне -- тяжелая форма угрей, уродующих кожу лица. Заболевание может длиться годами и практически не поддается лечению.
Пик выброса диоксинов пришелся на 60-70-е гг. XX в. в результате расширения производства отбеленной бумаги, а также веществ, при синтезе которых использовался хлор.
У человека (как в результате профессиональной деятельности, так и влияния окружающей среды) в целом описано довольно много признаков и симптомов различных заболеваний, которые можно свести к следующим:
кожные проявления -- хлоракне, гиперпигментация и др.;
нарушение работы различных физиологических систем -- расстройство пищеварения (рвота, тошнота, непереносимость алкоголя и жирной пищи), нарушения в сердечно-сосудистой системе, мочевыводящих путях, поджелудочной железе и др.;
неврологические эффекты -- головные боли, невропатия, потеря слуха, обоняния, вкусовых ощущений, нарушение зрения;
психические эффекты -- нарушение сна, депрессия, немотивированные приступы гнева.
Таблица 1. Содержание диоксинов в поверхностных и питьевых водах
Объект исследования |
Содержание в долях ПДК |
|
Вода р. Шани |
1,7.-21,6 |
|
Вода Учинского водохранилища |
1,5 |
|
Новозападная водопроводная станция Москвы |
0,5 |
|
Восточная водопроводная станция Москвы |
1,1...4,0 |
|
Питьевая вода г. Кондрово |
1,7...3,5 |
|
Питьевая вода г. Чапаевск |
<0,7 |
Г. СОЕДИНЕНИЯ СЕРЫ, ФОСФОРА И АЗОТА
При оценке загрязнения биосферы соединениями фосфора важны техногенные пути их поступления. Значительные количества фосфорных соединений входят в состав моющих средств и с их остатками попадают в сточные воды. Стиральные порошки содержат 10... 12% пирофосфата калия или от 4...5 до 40...50% триполифосфата натрия и некоторые другие фосфорсодержащие компоненты. Фосфор также входит в состав инсектицидов, например хлорофоса. Вместе с промышленными и бытовыми сточными водами соединения фосфора могут поступать в почвы и почвенно-грунтовые воды.
В биосфере азот присутствует в газообразной форме, в виде соединений азотной и азотистой кислот, солей аммония, а также входит в состав разнообразных органических соединений.
Техногенные выбросы азота в воздушную среду в основном включают оксид азота и его диоксид. Оксиды азота активно участвуют в фотохимических реакциях, продуцируя озон и азотную кислоту.
В настоящее время большую проблему представляет нарушение толщины озонового слоя, на уменьшение которого могут оказывать влияние неполные оксиды азота, вступающие в реакцию окисления от N2O до N02 и использующие кислород озонового слоя. Разрушение озонового экрана связывают с оксидом азота, который служит источником образования других оксидов, катализирующих фотохимическую реакцию разложения молекул озона.
О значительном загрязнении соединениями азота свидетельствует повышение уровня концентраций нитратов в природных водах в 2...4 раза и более, а также повышение концентраций аммонийного и нитратного азота до токсичных уровней, что может привести к специфическим заболеваниям типа метгемоглобинемии людей и животных. Как правило, максимальное содержание нитратов обнаруживают в продукции, выращенной на приусадебных участках и арендуемых полях и огородах, где внесение удобрение не контролируется. При взаимодействии нитритов и аминов в живых организмах образуются нит-розамины, являющиеся канцерогенами и способные вызывать нарушения хромосомного аппарата и наследственные уродства.
Фосфор и азот влияют на водные экосистемы. Эвтрофирование, или ненормальное повышение биологической продуктивности водных объектов и почвы, происходит в результате накопления избытка биогенных элементов (веществ).
В большинстве водных экосистем лимитирующим биогенным элементом является фосфор, в меньшей степени азот; в таких экосистемах наблюдается низкая продуктивность и как следствие -- чистая прозрачная вода, обогащенная кислородом. На дне появляется осадок, растительность начинает вторгаться в экосистему с берегов, экосистема «стареет» и «умирает»: водоем мелеет и зарастает.
Признаком «болезни» является развитие синезеленых водорослей или других фотосинтезирующих водорослей, вызывающих «цветение» воды. Вода в пресноводных водоемах становится непригодной не только для питья, но и для промышленных нужд, возникает ряд опасностей и неразрешимых пока проблем.
Вследствие эвтрофирования некоторые наземные экосистемы также перерождаются: из них исчезают виды растений, характерные для условий местопроизрастания.
Д. ФРЕОНЫ
Фреоны (хладоны) -- это группа фторуглеводородов жирного ряда, главным образом метана; газы или летучие жидкости. Благодаря своим термодинамическим свойствам фреоны нашли широкое применение в практике как хладоносители в холодильных машинах.
При контакте с открытым пламенем фреоны разлагаются с образованием токсичных дифтор- и фторхлорфосгена, устойчивы к действию серной кислоты и концентрированных щелочей, не взаимодействуют с большинством металлов. Фреоны нетоксичны для организма, однако их воздействие на окружающую среду может иметь и негативные последствия -- образование озоновой «дыры».
Хладоны обладают привлекательными физико-химическими свойствами, малотоксичны, просты в использовании, не обладают коррозирующим действием, имеют исключительно высокую пламяподавляющую способность.
Хладоны применяют в качестве хладагентов, пропеллентов в аэрозольных упаковках косметических средств, компонентов огнетушащих составов, растворителей и т. д. В промышленных масштабах хладоны стали применять с начала 30-х гг. XX в.
В 1974 г. учеными было высказано предположение о том, что хладоны разрушают озоновый слой, защищающий земные организмы от губительного действия ультрафиолетового излучения солнца. Обоснованность гипотезы (F. S. Bowland, M. J. Molina) была подтверждена прямыми измерениями.
Озоноразрушающее действие хладонов приводит к образованию так называемых озоновых дыр, то есть к снижению концентрации озона, что расценивается как серьезная экологическая опасность. В 1987 г. достигнуто международное соглашение -- Монреальский протокол, обязывающий все страны участницы соглашения с 1994 г. ограничить, а к 2000 г. полностью прекратить производство и применение всех озоноразрушающих материалов. В настоящее время намеченная цель не достигнута. Следует заметить, что опасность образования озоновых дыр оказалась преувеличенной.
3. Воздух как фактор среды обитания
Воздушная среда, в которой осуществляется деятельность человека, характеризуется физическими параметрами, химическим составом, ионным составом и другими показателями.
Физические параметры воздуха: температура, относительная влажность, скорость, барометрическое давление. Первые три параметра определяют процесс терморегуляции организма, то есть поддержание температуры тела в пределах 36...37°С. Терморегуляция обеспечивает равновесие между количеством тепла, непрерывно образующимся в организме в процессе обмена веществ, и излишками тепла, непрерывно отдаваемыми в окружающую среду, то есть поддерживает тепловой баланс организма человека.
Терморегуляция -- физиологический процесс, контролируемый центральной нервной системой. Различают химическую и физическую терморегуляцию.
Основное значение имеет физическая терморегуляция, посредством которой осуществляется отдача тепла организмом в окружающую среду. Этот процесс может идти тремя путями:
в виде инфракрасных лучей, излучаемых поверхностью тела в направлении окружающих предметов с более низкой температурой (радиация); таким путем теряется ~ 45% всей тепловой энергии, вырабатываемой организмом;
нагревом воздуха, омывающего поверхность тела (конвекция), при этом теряется « 30% тепла;
испарением пота, при этом теряется ~ 13% тепла через органы дыхания и около 5% тепла расходуется на нагревание принимаемой пищи, воды и вдыхаемого воздуха.
Переохлаждения наблюдается при сочетании низкой температуры,.
Химический состав. Чистый воздух имеет следующий химический состав в процентах по объему: азот -- 78,1; кислород -- 20,94; аргон, неон и другие инертные газы -- 0,94; углекислый газ -- 0,03; прочие газы -- 0,01. В воздухе могут находиться вредные вещества различного происхождения в виде газов, паров, аэрозолей, в том числе радиоактивные.
Вредное вещество -- вещество, которое при контакте с организмом человека в случае нарушения требований безопасности может вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующего поколений. Из данного определения следует, что все химические соединения потенциально являются вредными веществами. Вредные вещества можно классифицировать по следующим признакам.
По характеру воздействия на организм: общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию.
По классам химических соединений: органические, неорганические, элементоорганические.
По степени токсичности: чрезвычайно токсичные, высокотоксичные, сильнотоксичные, умеренно токсичные, малотоксичные, практически нетоксичные.
По степени воздействия на организм: чрезвычайно опасные, высокоопасные, умеренно опасные, малоопасные.
Для предотвращения негативных последствий воздействия загрязняющих веществ на отдельные компоненты природной среды необходимо знать их предельные уровни, при которых возможна нормальная жизнедеятельность и функционирование организма. Основной величиной экологического нормирования содержания вредных химических соединений в компонентах природной среды является предельно допустимая концентрация (ПДК).
ПДК -- это такое содержание вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека и не вызывает неблагоприятных последствий у его потомства. При определении ПДК учитывается не только влияние загрязняющего вещества на здоровье человека, но и его воздействие на животных, растения, микроорганизмы, а также на природные сообщества в целом.
В качестве примера дадим характеристику некоторым загрязняющим веществам.
Пыли. В зависимости от происхождения принято различать органические и неорганические пыли. К органическим относятся растительная и животная пыль, а также пыль некоторых синтетических веществ. К неорганическим относятся металлическая и минеральная (кварц, асбест, цемент и др.) пыли.
Аммиак (NH3) -- бесцветный газ с резким запахом. Хорошо растворим в воде, перевозится и хранится в сжиженном состоянии. Аммиак является горючим газом, горит при наличии постоянного источника огня. Пары аммиака образуют с воздухом взрывоопасные смеси. Емкости с аммиаком могут взрываться при нагревании.
Общетоксические эффекты в основном обусловлены действием аммиака на нервную систему. Последствиями тяжелой интоксикации являются снижение интеллектуального уровня с выпадением памяти, неврологические симптомы: тремор, нарушение равновесия, тики, понижение болевой и тактильной чувствительности, головокружение, нистагм, гиперрефлексия. Последствиями острого отравления могут быть помутнение хрусталика, роговицы, даже ее прободение и потеря зрения, охриплость или полная потеря голоса и различные хронические заболевания (бронхит, эмфизема легких и др.). В случае малых концентраций наблюдается незначительное раздражение глаз и верхних дыхательных путей. При средних концентрациях наблюдается сильное раздражение в глазах и в носу, частое чихание, слюнотечение, небольшая тошнота и головная боль, покраснение лица и потоотделение. При воздействии очень высоких концентраций уже через несколько минут наступают мышечная слабость с повышенной рефлекторной возбудимостью, резко снижается слух.
Для аммиака
ПДКмр = 0,2 мг/м3, ПДКСС = 0,2 мг/м3.
Окись углерода (СО) -- бесцветный газ без запаха и вкуса, плохо растворяется в воде; в сжиженном состоянии бесцветная прозрачная жидкость; негорюч. Пределы воспламеняемости окиси углерода в смеси с воздухом -- 12,5...74,2%, смесь двух объемов с одним объемом кислорода взрывается при наличии открытого пламени.
Окись углерода -- вещество преимущественно общеядовитого действия, является ядом гемоглобина. СО вытесняет кислород из оксигемоглобина, содержание кислорода может снижаться до 8% (аноксемия). Окись углерода способна оказывать непосредственное токсическое действие на клетки, нарушая тканевое дыхание. СО влияет на углеводный и фосфорный обмен. При действии окиси углерода наблюдается тяжесть и ощущение сдавливания головы, сильная боль во лбу и висках, головокружение, шум в ушах, покраснение и жжение кожи лица, дрожь, чувство слабости и страха, жажда, учащение пульса, пульсация височных артерий, тошнота, рвота. В дальнейшем появляется оцепенелость, слабость и безучастность, нарастает сонливость. Температура тела может повышаться до 38...40°С.
Для окиси углерода
ПДКмр = 3 мг/м3, ПДКСС = 1 мг/м3.
Хлор (С12) -- зеленовато-желтый газ с характерным резким удушливым запахом, малорастворим в воде, растворим в четыреххлористом титане и четыреххлористом кремнии. Является сильным окислителем. Хлор тяжелее воздуха, скапливается в подвалах, низинах местности, хранится и перевозится в сжиженном состоянии. Хлор взрывоопасен в смеси с водородом, негорюч, но пожароопасен. Емкости с хлором могут взрываться при нагревании, хлор поддерживает горение многих органических веществ.
Хлор -- вещество преимущественно удушающего действия, раздражает дыхательные пути, может вызвать отек легких. При действии хлора в крови нарушается содержание свободных аминокислот. При незначительных концентрациях хлора наблюдается покраснение конъюнктивы, мягкого нёба и глотки, бронхит, легкая одышка, охриплость, чувство давления в груди. При воздействии малых и средних концентраций хлора наблюдаются загрудинные боли, жжение и резь в глазах, слезотечение, мучительный сухой кашель, увеличивается одышка, пульс учащается, начинается отделение мокроты со слизью и отхаркивание пенистой желтой или красноватой жидкости. Иногда отравление, перенесенное на ногах, через несколько дней заканчивается смертью.
Для хлора среда обитания экологическая опасность
ПДКмр = 0,1 мг/м3, ПДКСС = 0,03 мг/м3.
Для обеспечения охраны воздушной среды установлена еще одна нормативная величина, характеризующая объем вредных веществ, выбрасываемых в атмосферу отдельными источниками загрязнения ---предельно допустимый выброс (ПДВ).
ПДВ -- это объем (количество) загрязняющего вещества, выбрасываемого отдельным источником за единицу времени, превышение которого ведет к превышению ПДК в среде, окружающей источник загрязнения, и, как следствие, к неблагоприятным последствиям в окружающей среде и к риску для здоровья людей.
Воздух характеризуется ионным составом.
Ионизация воздуха -- процесс превращения нейтральных атомов и молекул воздушной среды в электрически заряженные частицы (ионы). Ионы в воздухе могут образовываться вследствие естественной, технологической и искусственной ионизации.
Естественная ионизация происходит в результате воздействия на воздушную среду космических излучений и частиц, выбрасываемых радиоактивными веществами при их распаде. Естественное новообразование происходит повсеместно и постоянно во времени.
Технологическая ионизация происходит при воздействии на воздушную среду радиоактивного, рентгеновского и ультрафиолетового излучения, термоэмиссии, фотоэффекта и других ионизирующих факторов, обусловленных технологическими процессами. Образовавшиеся при этом ионы распространяются в основном в непосредственной близости от технологической установки.
Искусственная ионизация осуществляется специальными устройствами -- ионизаторами. Ионизаторы обеспечивают в ограниченном объеме воздушной среды заданную концентрацию ионов определенной полярности.
Характеристиками ионов являются подвижность и заряд. Подвижность ионов выражается коэффициентом пропорциональности К, (см/с)-(см/В), между скоростью ионов и напряженностью электрического поля, воздействующего на ион. Подвижность ионов зависит от их массы: чем больше масса, тем меньше скорость перемещения иона в электрическом поле.
4. Вода как фактор среды обитания
Когда ученые, исследуя другие планеты, ставят вопрос, есть ли еще где-либо в Солнечной системе жизнь, первое, на что они обращают внимание, -- это вода. Без воды жизнь существовать не может.
На Земле ее очень много, около 70% поверхности планеты покрыто морями и океанами, но эта вода -- соленая. Все основные наземные экосистемы, включая и человеческую, зависят от наличия пресной воды, содержащей менее 0,01% солей. Ее гораздо меньше -- менее 1% всего мирового запаса воды, причем растущее человечество растрачивает и загрязняет это бесценное богатство.
Наша задача -- проанализировать пресноводные ресурсы, чтобы понять, как мы их истощаем и что можно сделать для сохранения и рационального использования воды.
Оценка запасов пресной воды в настоящее время далека от совершенства и по данным различных авторов она расходится иногда до десяти раз. Общий объем пресной воды на планете равен 35,029 млн км3. Однако из этого количества пресных вод, потенциально пригодных к использованию, почти 69% заключено в ледниковых покровах и в горных ледниках, а более 30% -- в водоносных слоях глубоко под землей. На долю пресных вод, содержащихся в руслах рек мира и представляющих для нас наибольший интерес, приходится всего 0,006% от общих запасов пресной воды на Земле.
Вода является важнейшим фактором окружающей среды, который оказывает многообразное воздействие на все процессы жизнедеятельности организма, на работоспособность и заболеваемость человека.
5. Физиологическое и гигиеническое значение воды
Вода принимает активное участие в физиологических процессах организма. Она является универсальным растворителем газообразных, жидких и твердых веществ, а также участвует в процессах окисления, промежуточного обмена, пищеварения. Растворенные в воде минеральные соли оказывают влияние на поддержание важнейших биологических констант организма -- осмотического давления, кислотно-щелочного равновесия. Вода является участником процессов гидролиза жиров, углеводов, гидролитического и окислительного дезаминирования аминокислот и других реакций промежуточного обмена. Вода обеспечивает тургор кожи и тканей организма.
Суточный баланс воды у человека в организме составляет около 2,5 л. Количество потребляемой воды подвержено значительным колебаниям в зависимости от климатических условий, микроклимата и интенсивности выполняемой работы.
Потеря воды в количестве 10% от массы тела приводит к нарушению обмена веществ, потеря 15...20% смертельна при температуре воздуха 30°С, а потеря 25% абсолютно смертельна.
Гигиеническое значение воды велико. Она используется для поддержания в надлежащем санитарном состоянии тела человека, предметов обихода, жилища и пр., оказывает благоприятное влияние на климатические условия, условия отдыха населения, на уровень культуры и быта.
В начале XX в. расход воды в городах Европы составлял от 55 до 135 л на человека в сутки. Для питья, приготовления пищи, умывания и мытья посуды использовалось 20...30 л воды, для сантехнических нужд --- 7...10 л, на каждую ванну -- 350 л, на каждый душ -- 20...30 л, для поливки садов, улиц и дворов -- 1,5 л на каждый квадратный метр, для ручной пожарной трубы -- 300...400 л за минуту действия. Нормой потребления воды в начале XX в. считалось 100 л воды на человека в сутки, но если расход воды не контролировался водомерами, он мог возрасти и до 200 л.
Таблица 2. Показатели удельного водопользования
Вид водопользования |
Удельное водопользование |
л/(сут-чел) |
||
1985 г. |
1990 г. |
1992 г. |
||
Хозяйственно-питьевые нужды населения |
196 |
230 |
253 |
|
Коммунально-бытовые нужды |
96 |
105 |
101 |
|
Нужды промышленности, транспорта, строительства |
146 |
123 |
104 |
|
Общее |
438 |
458 |
458 |
Интересно, что самым низким -- несколько меньше нормы -- было потребление воды в английских городах, самым высоким -- втрое выше нормы -- в американских. Сегодня в России потребление воды достигает 350 л на одного человека в сутки. Это в 2...3 раза больше, чем в европейских странах.
Наиболее изучено влияние на организм человека общей минерализации воды. У населения, постоянно пользующегося минерализованной водой (сухой остаток-- 1,5...3 г/л), отмечена повышенная гидрофильность тканей, задержка организмом выпитой воды, снижение диуреза на 30...60%.
Вода с повышенной минерализацией отрицательно влияет на секреторную деятельность желудка, нарушает водно-солевое равновесие
в организме, хуже утоляет жажду. Могут наблюдаться массовые кишечные расстройства у людей, употребляющих воду из нового источника в период летнего отдыха. Это связано преимущественно с содержанием в питьевой воде сернокислых соединений натрия и магния (иногда даже при невысокой общей минерализации воды).
Длительное потребление маломинерализованной воды (0,8 г/л сухого остатка) нарушает водно-солевое равновесие организма, в основе которого лежит повышение выхода натрия в кровь и перераспределение воды между внеклеточной и внутриклеточной жидкостями. Нижним пределом минерализации крови, при котором поддерживается гомеостаз организма, является сухой остаток 100 г/л, оптимальный уровень минерализации соответствует 200...400 г/л.
До 50-х гг. XX в. содержание нитратов в воде расценивалось лишь как показатель загрязнения водоема хозяйственно-бытовыми сточными водами; в настоящее время учитывается и их токсикологическая опасность. При поступлении нитратов в организм в повышенных количествах развивается нитратная метгемоглобинемия, то есть гемическая гипоксия с соответствующими проявлениями. От количества образовавшегося метгемоглобина зависит тяжесть заболевания.
Химический состав природных вод необычайно разнообразен и зависит от характера и состава почв в данной местности. В результате создается неравномерное распределение химических веществ в почве и воде определенных географических районов. В. И. Вернадский и позднее А. П. Виноградов разработали теорию «биогеохимических провинций».
Биогеохимические провинции -- это географические районы, где причинным фактором заболеваний является характерный минеральный состав воды., растительных и животных организмов вследствие недостатка или избытка микроэлементов в почве. Заболевания, возникающие в этих районах, получили название геохимических эндемий, или эндемических заболеваний.
На земном шаре отмечены зоны, где мочекаменная болезнь носит характер эндемии -- это районы Средиземноморья, Индии, Китая, Средней Азии, Закавказья, Закарпатья. Причиной этого является повышенная жесткость воды, обусловленная высоким суммарным содержанием кальция и магния.
Причиной другой эндемической патологии -- флюороза -- является длительное употребление воды, содержащей фтор в концентрации свыше 1,5 мг/л. Флюороз характеризуется своеобразной крапчатостью и буроватой окраской зубной эмали. При длительном (в течение 10-20 лет) потреблении воды с концентрацией фтора 10 мг/л и выше могут наблюдаться изменения со стороны костно-суставного аппарата: остеосклероз, костные отложения на ребрах, деформация скелета. При длительном употреблении воды, бедной солями фтора (0,5 мг/л и меньше), поражение населения кариесом зубов достигает 50% и более. Наименьшее количество фтора выявлено в воде источников Беларуси, Латвии, Грузии.
Давно замечена связь между заболеваемостью населения и водным фактором. Исключительно большое значение имеет водный фактор в распространении острых кишечных инфекций и инвазий. В воде водоисточников могут присутствовать сальмонеллы, шигеллы, лептоспиры, кишечная палочка, вибрионы, микобактерии, энтеровирусы и аденовирусы, а также цисты лямблий, яйца аскариды и власоглава, личинки анкилостомы, возбудители шистосомоза и др.
Таблица 3. Сроки выживания (в днях) микроорганизмов в воде
Микроорганизм |
Вода |
||||
стерилизованная |
водопроводная |
колодезная |
речная |
||
Кишечная палочка |
8-365 |
2-262 |
- |
21-183 |
|
Возбудитель брюшного тифа |
6-365 |
2-93 |
1,5-107 |
4-183 |
|
Возбудитель паратифа Б |
39-167 |
27-97 |
- |
- |
|
Возбудитель дизентерии |
2-72 |
15-27 |
- |
12-92 |
|
Холерный вибрион |
3-392 |
4-28 |
1-92 |
0,5-92 |
|
Лептоспиры |
16 |
- |
7-75 |
до 150 |
|
Возбудитель туляремии |
3-15 |
до 92 |
12-60 |
7-91 |
Основным резервуаром патогенных микроорганизмов, кишечных вирусов и яиц гельминтов в окружающей среде являются фекалии и хозяйственно-бытовые сточные воды, где содержание вирусов может достигать 700 на 100 см3 сточных вод.
Источником заражения поверхностных водоемов могут явиться неочищенные канализационные сточные воды.
Для водных эпидемий считается характерным внезапный подъем заболеваемости, сохранение высокого уровня в течение некоторого времени, ограничение эпидемической вспышки кругом лиц, пользующихся общим источником водоснабжения, и отсутствие заболеваний среди жителей того же населенного места, но пользующихся другим источником водоснабжения.
По данным ВОЗ 80% всех инфекционных болезней в мире связано с неудовлетворительным качеством воды либо нарушением санитарно-гигиенических норм вследствие ее недостатка. Инфекционные заболевания водной этиологии регистрируются преимущественно в развивающихся странах с низким санитарным уровнем жизни. В настоящее время треть населения земного шара -- около 2 млрд человек -- лишена возможности потреблять в достаточном количестве чистую пресную воду. 61% сельских жителей развивающихся стран не могут пользоваться безопасной в эпидемиологическом отношении водой и лишь 13% из них обеспечены канализацией.
В использовании человеком водных ресурсов Земли различают два направления: водопользование и водопотребление.
При водопользовании вода, как правило, не изымается из водных объектов, но качество ее может меняться. К водопользованию относится использование водных ресурсов для гидроэнергетики, судоходства, рыболовства и разведения рыбы, отдыха, туризма и спорта.
При водопотреблении вода изымается из водных объектов и либо включается в состав вырабатываемой продукции (и вместе с потерями на испарение в процессе производства входит в состав безвозвратного водопотребления), либо частично возвращается в водоем, но обычно уже значительно худшего качества.
Принципиальная разница между использованием и потреблением водных ресурсов заключается еще и в том, что в первом случае можно обойтись и без них, например получать энергию за счет других видов природных ресурсов (атомная, солнечная энергия), воду же, расходуемую для питьевых, хозяйственно-бытовых нужд, никаким другим минеральным ресурсом заменить нельзя.
В результате водопотребления образуются сточные воды (рис. 8.6). Сточная вода -- это вода, где загрязнение изменяет первоначальный химический состав воды или ее физические свойства. К сточным относят, кроме бытовых и производственных, также загрязненные атмосферные осадки и воду от поливки улиц. Сточные воды делятся на бытовые, производственные и ливневые. Они отличаются друг от друга происхождением, составом и биологической активностью.
Бытовые сточные воды образуются в результате практической деятельности и жизнедеятельности людей. Концентрацию загрязняющих веществ бытовых сточных вод определяют исходя из удельного водоотведения на одного жителя:
S = i000a/q
где S -- концентрация загрязняющего вещества, мг/л; а --- количество загрязнений, приходящееся на одного жителя, г/сут; q -- норма водоотведения на одного жителя, л/сут.
Состав производственных сточных вод зависит от характера производственного процесса и отличается большим разнообразием.
В зависимости от состава примесей и специфичности их действия на водные объекты сточные воды могут быть разделены на следующие группы:
Воды, содержащие неорганические примеси со специфическими токсичными свойствами. Сюда входят стоки металлургии, гальванических цехов и др. Они могут вызвать изменение рН воды водоемов. Соли тяжелых металлов являются токсичными по отношению к водным организмам.
Воды, в которых неорганические примеси не обладают токсичным действием. К этой группе относятся сточные воды рудообогатительных фабрик, цементных заводов и др. Примеси такого типа находятся во взвешенном состоянии. Для водоема особой опасности эти воды не представляют.
Воды, содержащие нетоксичные органические вещества. Сюда входят сточные воды предприятий пищевой промышленности. При попадании их в водоем возрастает окисляемость, биологическое потребление кислорода (ВПК), снижается концентрация растворенного кислорода.
Воды, содержащие органические вещества со специфическими токсичными свойствами. К этой группе относятся сточные воды предприятий органического синтеза, нефтеперерабатывающих предприятий и др.
Набор веществ, попадающих в поверхностные воды со сточными водами различных регионов, весьма разнообразен и зависит от многих факторов: типа промышленности, ее производительности, качества и количества очистных сооружений, климатических условий.
Таблица 4. Приоритетные загрязнители по отраслям промышленности
Отрасль |
Преобладающий вид загрязнений |
|
Целлюлозно-бумажная, деревообрабатывающая, лесная |
Серная кислота, лигнин, смолистые и жирные вещества, другие органические вещества |
|
Нефтеперерабатывающая |
Нефтепродукты, ПАВ, фенол, аммонийные соли, серная кислота |
|
Машиностроительная, металлообрабатывающая |
Соединения металлов, взвешенные вещества, фтор, роданиды, цианиды, аммонийные соли, флотореа-генты |
|
Химическая, нефтехимическая |
Фенол, нефтепродукты, ПАВ, полициклические, ароматические соединения, углеводороды, неорганические соединения |
|
Горнодобывающая, угольная |
Флотореагенты, неорганические соединения, фенол, взвешенные вещества |
|
Легкая, текстильная, пищевая |
ПАВ, нефтепродукты, органические красители, другие органические вещества |
Таблица 5. Концентрация загрязняющих веществ в поверхностных водах с некоторых характерных территорий, мг/л
Характерные территории |
Концентрация взвешенных веществ в водах |
Концентрация эфи-рорастворимых веществ в водах |
|||||
дождевых |
талых |
моечных |
дождевых |
талых |
моечных |
||
Жилые кварталы и микрорайоны |
250 |
3500 |
200 |
35 |
40 |
75 |
|
Территории промышленных предприятий и сооружений с повышенной загрязненностью, расположенные в населенном пункте |
2500 |
4500 |
2000 |
250 |
70 |
150 |
|
Площади и улицы, с которых уборка осуществляется машинами с пневматическим забором мусора в кузов |
200 |
2500 |
20 |
30 |
45 |
75 |
|
Автомагистрали с интенсивным движением грузового транспорта |
1300 |
2700 |
1300 |
60 |
65 |
100 |
Степень загрязнения дождевых вод зависит от многих факторов, в том числе от общей санитарной обстановки населенного пункта. Принятая технология сухой обработки улиц не обеспечивает полного удаления загрязнений. Мусор с проезжей части дорог содержит значительное количество органики, биогенов, нефтепродуктов, солей тяжелых металлов.
Качество и состав поверхностного стока городской территории зависят от целого ряда трудно учитываемых и трудно прогнозируемых факторов. Большое разнообразие местных условий делает практически невозможным получение усредненных показателей качества поверхностного стока в целом (табл. 8.7). Как видно из таблицы, в системе дождевой канализации должна быть обеспечена очистка наиболее загрязненной части поверхностного стока, образующегося в период выпадения дождей, таяния снега и мойки дорожных покрытий. Очистке подлежит не менее 70% годового стока для селитебных территорий и площадок предприятий.
6. Показатели качества воды
Взвешенные вещества содержатся в природных и сточных водах, они могут быть минерального и органического происхождения. Эти вещества характеризуют наличие в воде частиц песка, глины, ила, планктона и др. В зависимости от размеров отдельных частиц и их плотности взвешенные вещества могут выпадать в виде осадка, всплывать на поверхность воды или оставаться во взвешенном состоянии. Количество примесей определяют гравиметрическим методом.
Подобные документы
Человек как элемент среды обитания. Основные принципы существования и развития всего живого. Понятие среды обитания. Изучение состояния среды обитания и процессов взаимодействия живых существ с ней. Экология. Среда обитания человека. Техносфера.
реферат [26,8 K], добавлен 20.10.2008Среда обитания и жизнедеятельности человека. Факторы, воздействующие на человека в процессе его жизнедеятельности. Техногенные опасности в зоне действия технических систем. Классификация основных форм деятельности человека. Допустимые условия труда.
реферат [18,3 K], добавлен 23.02.2009Анализ проблем безопасности жизнедеятельности как науки, его основание на раскрытии особенностей безопасного взаимодействия человека (группы людей) со средой обитания. Характеристика компонентов среды обитания (социальный, техногенный, природный).
реферат [128,0 K], добавлен 17.12.2013Допустимое воздействие вредных факторов на человека и среду обитания. Токсикологическая классификация вредных веществ. Действие ионизирующих излучений на организм человека. Основные виды, источники и уровни негативных факторов производственной среды.
контрольная работа [47,3 K], добавлен 01.03.2015Предмет и объект изучения медико-биологических основ безопасности жизнедеятельности. Сущность и структурно-функциональная организация анализаторов. Характеристика трех основных отделов анализаторов: периферический, проводниковый и центральный (корковый).
презентация [215,5 K], добавлен 27.06.2013История возникновения научной и учебной дисциплины. Признаки опасности. Принципы БЖД. Виды негативных воздействий в системе "Человек - Среда обитания". Понятие "риск". Определение риска. Методы выявления производственных опасностей.
реферат [56,1 K], добавлен 09.06.2002Цели, задачи, объект и предметы изучения науки БЖД. Опасности и их источники, количественная характеристика, концепция приемлемого риска. Безопасности, её системы, принципы и методы обеспечения. Человек как элемент системы "человек - среда обитания".
контрольная работа [32,3 K], добавлен 06.01.2011Воздействие человека на среду вызывает ответные противодействия всех ее компонентов. Понятие среды обитания, ее эволюция и взаимодействие с человеком. Теплообмен человека с окружающей средой и влияние на него микроклимата. Тепловое самочувствие.
реферат [24,7 K], добавлен 26.05.2008Законодательные и правовые основы управления безопасностью жизнедеятельности. Обеспечение заданного уровня безопасности системы "человек-среда обитания". Прогнозирование условий жизнедеятельности. Планирование мероприятий для достижения целей управления.
контрольная работа [296,3 K], добавлен 20.08.2015Рассмотрение понятия "человеческий фактор" в системе "человек-сфера обитания". Структура воздействия "человеческих факторов" при авариях и катастрофах. Принятие решений по управлению рисками. Обеспечение безопасности с учетом человеческих факторов.
презентация [2,1 M], добавлен 17.05.2016