Огнетушащие составы
Ознакомление с элементами теории самовозгорания. Определение температуры самонагревания. Исследование отличий самовозгорания от самовоспламенения и зажигания. Рассмотрение и характеристика порошковых огнетушащих составов, как огнетушащих веществ.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.03.2016 |
Размер файла | 33,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий
ФГБОУ ВПО Воронежский институт ГПС МЧС России
Кафедра химии и процессов горения
Контрольная работа
По дисциплине: «Теория горения и взрыва»
Выполнил:
слушатель 312 группы
факультета заочного обучения
майор внутренней службы
Прохорова Татьяна Васильевна
Домашний адрес:
394 008, г. Воронеж, пер. Ольховый,
д. 2ж, кв. 97
Воронеж - 2014
Содержание
Введение
1. Элементы теории самовозгорания. Температура самонагревания. Отличие самовозгорания от самовоспламенения и зажигания
2. Характеристика порошковых огнетушащих составов, как огнетушащих веществ
Заключение
Список литературы
Введение
Система пожарной защиты - комплекс организационных мероприятий и технических средств, направленных на предотвращение воздействия на людей опасных факторов пожара и ограничение материального ущерба от него.
Основой системы пожарной защиты является тушение пожаров, которое сводится к активному воздействию средствами пожаротушения на зону горения в целях нарушения его устойчивости.
В соответствии с основными условиями (составляющими), которые определяют возможность возникновения процесса горения, для его прекращения могут быть использованы следующие способы пожаротушения:
1) быстрое охлаждение очага горения;
2) разбавление реагирующих веществ и материалов до значений, при которых не может происходить горение, флегматизация, т. е. снижение концентрации кислорода путем введения в зону горения негорючих газов (например, азота, углекислого газа, водяного пара) или разбавления горючих веществ негорючими (например, этилового спирта водой);
3) интенсивное торможение (ингибирование) скорости химической реакции горения путем подачи специальных замедлителей реакции (ингибиторов) на поверхность горящих веществ и материалов или в воздух, поступающий в зону горения;
4) изоляция реагирующих веществ от зоны горения созданием изолирующего слоя в горючих материалах в результате нанесения на их поверхность огнетушащих веществ, а также путем разборки горючих материалов или удаления их из зоны пожара;
5) механический срыв пламени сильной струей воды или газа.
В практике пожаротушения широкое применение находят пены. Разли-чают химические и воздушно-механические пены.
Трудность получения химических пен, их дороговизна и токсичность ограничивают их применение. Воздушно-механическая пена получается в результате механического перемешивания водного раствора пенообразователя с воздухом. Пена характеризуется дисперсностью, вязкостью, теплопроводностью, электропроводностью, стойкостью. Отношение объема пены к объему ее жидкой фазы называется кратностью. Наиболее широко применяются пены кратности от 70 до 150.
Основное огнетушащее свойство пен - изолирующая способность.
Из порошковых огнетушащих составов (ПОС) в нашей стране наиболь-шее распространение получили ПОС на основе бикарбоната натрия и фосфа-та аммония. Механизм прекращения горения с помощью ПОС разнообразен. Доминирующий механизм зависит от вида горючего, режима горения, вида ПОС и др. причин.
ПОС прежде всего действует простым физическим разбавлением реа-гентов. При этом нагреваясь ПОС отнимают значительное количество тепла от реагирующих веществ.
Достоинством ПОС является их высокая огнетушащая эффективность, недостатком - склонность к увлажнению при хранении, и сложность подачи в зону горения.
1. Элементы теории самовозгорания. Температура самонагревания. Отличие самовозгорания от самовоспламенения и зажигания
Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов, которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.
Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.
В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха. Горение возможно при наличии вещества, способного гореть, кислорода (воздуха) и источника зажигания. При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях, а источник зажигания имел необходимый запас тепловой энергии.
Известно, что в воздухе содержится около 21% кислорода. Горение большинства веществ становится невозможным, когда содержание кислорода в воздухе понижается до 14-18%, и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается.
Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник зажигания вызывает в ней реакцию горения. Источником зажигания может быть горящее пли накаленное тело, а также электрический разряд, обладающий запасом энергии, достаточным для возникновения горения и др. самовозгорание зажигание огнетушащий
Горючие системы подразделяются на однородные и неоднородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют горением кинетическим. Скорость его определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации. Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным горением, так как его скорость определяется главным образом сравнительно медленно протекающим процессом-диффузией.
Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения. По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси, наоборот, имеют в избытке горючий компонент и в недостатке окислитель.
Возникновение горения связано с обязательным самоускорением реакции в системе. Процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Самоускорение химической реакции при горении подразделяется на три основных вида: тепловой, цепной и комбинированный - цепочечно-тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.
Сгорание различают полное и неполное. При полном сгорании образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды. Неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.
Ориентировочно количество воздуха (м3), необходимое для сгорания 1 кг вещества (или 1 м3 газа),
Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг; древесины воздушно-сухой -14 600 кДж/кг; ацетилена - 54400 кДж/м3; метана - 39400 кДж/м3; окиси углерода - 12600 кДж/м3.
По теплоте сгорания горючего вещества можно определить, какое количество тепла выделяется при его сгорании, температуру горения, давление при взрыве в замкнутом объеме и другие данные.
Температура горения вещества определяется как теоретическая, так и действительная. Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло, выделяющееся при горении, идет на их нагревание.
Действительная температура горения на 30-50% ниже теоретической, так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.
Высокая температура горения способствует распространению пожара, при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется.
При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.
Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.
Возгорание - возникновение горения под воздействием источника зажигания.
Воспламенение - возгорание, сопровождающееся появлением пламени.
Возгораемость - способность возгораться (воспламеняться) под воздействием источника зажигания.
Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.
Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.
Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.
Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).
Горение при этом возникает без внесения источника зажигания - за счет теплового или микробиологического самовозгорания.
Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.
Микробиологическое самовозгорание возникает в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси). Температура самовоспламенения является важной характеристикой горючего вещества.
Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.
Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл. 1.
Таблица 1 Температуры самовоспламенения некоторых жидкостей
Вещество |
Температура самовоспламенения, °С |
|
Фосфор белый |
20 |
|
Сероуглерод |
112 |
|
Целлулоид |
140-180 |
|
Сероводород |
246 |
|
Масла нефтяные |
250-400 |
|
Керосин |
250 |
|
Бензин А-76 |
255 |
|
Мазуты |
380-420 |
|
Каменный уголь |
400 |
|
Ацетилен |
406 |
|
Этиловый спирт |
421 |
|
Древесный уголь |
450 |
|
Нитробензол |
482 |
|
Водород |
530 |
|
Ацетон |
612 |
|
Бензол |
625 |
|
Окись углерода |
644 |
|
Кокс |
700 |
Помимо температуры самовоспламенения, горючие вещества характеризуются периодом индукции или временем запаздывания самовоспламенения. Периодом индукции называют промежуток времени, в течение которого происходит саморазогревание до воспламенения. Период индукции для одного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температуры и давления.
Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом, если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.
Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения. Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов.
Некоторые вещества могут самовозгораться, находясь при обычной температуре. Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф, ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности. Этим обусловлена возможность самовозгорания промасленной ветоши. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла кислородом воздуха сопровождается выделением тепла. В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара.
Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.
На машиностроительных предприятиях применяются многие вещества, способные к самовозгоранию. Самовозгораться при взаимодействии с воздухом могут сульфиды железа, сажа, алюминиевая и цинковая пудра и др. Самовозгораться при взаимодействии с водой могут щелочные металлы, карбиды металлов и др. Карбид кальция (СаС2), реагируя с водой, образует ацетилен (С2Н2).
2. Характеристика порошковых огнетушащих составов, как огнетушащих веществ
Под огнетушащими веществами понимаются такие вещества, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, пена, порошки и др.). Огнетушащих веществ в природе много, но не все они принимаются на вооружение пожарных подразделений, а лишь те, которые отвечают определенным требованиям.
Они должны:
-обладать высоким эффектом тушения при сравнительно малом расходе;
-быть доступными, дешёвыми и простыми в применении;
-не оказывать вредного воздействия при их применении на людей и материалы, быть экологически чистыми.
По основному признаку прекращения горения огнетушащие вещества подразделяются на:
-охлаждающего действия (вода, твердый диоксид углерода и др.)
-разбавляющего действия (негорючие газы, водяной пар, тонкораспыленная вода т.п.)
-изолирующего действия (воздушно-механическая пена различной кратности, сыпучие негорючие материалы и пр.)
-ингибирующего действия (бромистый метилен, бромистый этил, тетрафтор-дибромэтан и др.)
Вид и характер выполнения боевых действий в определенной последовательности, направленных на создание условий прекращения горения, называется способом прекращения горения.
Приёмы тушения - это те составные части способа прекращения горения, которые могут изменяться в процессе действия пожарных подразделений при изменении обстановки на пожаре, могут изменяться и способы.
Применение того или иного способа и приёма прекращения горения, огнетушащего вещества зависит от:
- условий и характера развития пожара;
- свойств и состояния горючих материалов;
- трудоемкости и безопасности выполняемой работы личным составом;
- наличие у руководителя тушения пожара сил и средств;
- боеготовности пожарных подразделений и др.
Всё это направлено на наименьшие убытки и затраты.
В последнее время широкое распространение получили огнетушащие порошки общего и специального назначения. Порошки общего назначения используют при тушении пожаров и загораний легковоспламеняющихся и горючих жидкостей, газов, древесины и других материалов на основе углерода. Порошки специального назначения применяют при ликвидации пожаров и загораний щелочных металлов, алюминий и кремнийорганических соединений и других пирофорных веществ.
Промышленность выпускает три вида порошковых огнетушителей: ручные, возимые и стационарные. Ручные огнетушители выпускаются емкостью от 1 до 10 литров. Порошковый огнетушитель состоит из стального корпуса, крышки с запорно-пусковым устройством, рабочего газового баллона.
Принцип работы огнетушителя: при нажатии на пусковой рычаг игольчатый шток прокалывает мембрану рабочего газового баллона. Рабочий газ (углекислота, воздух, азот и т.п.), выходя из баллона, взрыхляет порошок, и под действием давления выбрасывает его через насадок на очаг пожара. В рабочем положении огнетушитель следует держать строго вертикально, не переворачивая его.
Огнетушащее действие порошков заключается, в основном, в изоляции горящей поверхности от воздуха. Необходимое условие прекращения горения поверхности - покрытие ее слоем порошка не менее 2 см. При объемном тушении огнегасительный эффект порошков заключается в их ингибиторном (антикатализаторном) действием, т.е. торможением химических реакций горения газообразными продуктами разложения порошков.
Порошковые огнетушители предназначены для тушения загораний легковоспламеняющихся и горючих жидкостей, лаков, красок, пластмасс, электроустановок, находящихся под напряжением до 1000 вольт.
Огнетушитель может применяться в быту, на предприятиях, на транспорте. Температурный диапазон хранения от -35 до 50 градусов.
Самосрабатывающие порошковые огнетушители. ОСП-1, ОСП-2
Огнетушитель самосрабатывающий порошковый (ОСП) внешне напоминает лампу дневного света и представляет собой герметично запаянный стеклянный цилиндр диаметром 50 мм и длинной 410 мм, заполненный огнетушащим порошком массой 1 кг. Срабатывает он при температуре 100°С.
Принцип его действия очень прост. Запуск осуществляется автоматически, при воздействии на огнетушитель открытого огня или повышении температуры в защищаемом объеме до 100°С для ОСП-1 и до 200°С для ОСП-2. Тушение происходит без участия человека при импульсивном выбросе порошка из огнетушителя в зону горения. В середине колбы с огнетушащим составом помещена прослойка порошка, который, нагреваясь, выделяет инертный газ. Когда внутреннее давление достигает 10-15 атм., корпус ОСП разрывается и белое облако накрывает очаг.
Самосрабатывающие порошковые огнетушители
Приемлем и другой вариант использования этого огнетушителя, о любой твердый предмет разбивается носик огнетушителя и порошком засыпается очаг пожара Достоинства ОСП простая конструкция и монтаж, возможность размещения в самых труднодоступных местах; не требует дополнительных затрат при эксплуатации; значительный срок службы (не менее 5 лет); возможность использования в любых агрессивных средах при температуре от -50°С до +50°С.
ОСП применяется для защиты складов ГСМ, хранилищ материальных ценностей, помещений с электрическим и электронным оборудованием, кабельных туннелей, гаражей, офисов, коттеджей, летних домиков и других административных и общественных зданий.
Есть у этого огнетушителя один недостаток: мощность его не очень велика, защищаемый им объем до 8 м3. Поэтому для надежной защиты помещений придется использовать как минимум штук пять-шесть ОСП. Размещать же их нужно, согласно инструкции, не ниже 20 см от потолка в местах возможного возгорания.
Более мощный по своим характеристикам отдельный самосрабатывающий порошковый модуль "Буран". Корпус модуля выполнен из двух сферообразных частей, плотно соединенных между собой. Внешне он очень похож на летающую тарелку, весит около 2 килограммов. При нагреве до 90°С срабатывает взрыватель, нижняя полусфера раскрывается в виде лепестка, и происходит выброс огнетушащего порошка.
Модуль предназначен для тушения и локализации пожаров твердых горючих материалов, горючих жидкостей и электрооборудования до 5000В в производственных, складских, бытовых и др. помещениях. Один "Буран" надежно защищает помещение площадью до 7м2 в объеме до 21м3. Устанавливают его на высоту до 6 метров. Чтобы его было удобно крепить, а после срабатывания - заменить, разработчики предусмотрели специальный потолочный крой-штейн крепления. Заменить отработавший "Буран" просто: вынуть фиксирующую шпильку и вставить новый модуль.
Специального технического обслуживания ОСПМ не требуется. Один раз в три месяца внешним осмотром проверяется отсутствие на нижней части корпуса трещин, сквозных отверстий, вмятин, диаметром более 15 мм. При их обнаружении ОСПМ необходимо заменить. Корпус ОСПМ необходимо очищать от пыли и грязи, протирая ее слегка влажной тряпкой.
Для защиты автомобиля можно использовать генератор огнетушащего аэрозоля, пламяингбирующий "Допинг-2". Это небольшой огнетушитель, который легко устанавливается в любом отсеке автомашины. Внешне он мало, чем напоминает обычный огнетушитель. Как показали испытания, по надежности и эффективности во много раз его превосходит. "Допинг-2" - это принципиально новый способ тушения пламяингибирующим аэрозолем, который заполняет защищаемый объем и прекращает процесс горения. Первые 5 секунд аэрозоль истекает интенсивно - происходит тушение пожара, затем 20-25 секунд - более плавно с целью предотвращения возможности повторного загорания.
Ингибирующие свойства выделяемого щит работе аэрозоля позволяют тушить любой пожар в закрытых объемах до 2м3 (объем моторного отсека у "Жигулей" всего 0,8 м3.). При повышении температуры до 160°С огнетушитель срабатывает автоматически, можно привести его в действие и принудительно из кабины водителя. В этом случае на контакты необходимо подать 12-36 В. Для этого в установочном комплекте имеются соединительные провода, кнопка дистанционного включения с предохранительным кольцом, скоба для крепления на корпусе автомобиля и даже специальные наклейки, указывающие место расположения кнопки пуска. При появлении признаков загорания водитель, не выходя из машины, выдергивает защитную чеку выключателя, которая предотвращает случайный запуск огнетушителя, и нажимает клавишу. Тушение гарантировано.
"Допинг-2" мгновенно тушит бензин, пластмассу. Этот тип огнетушителя можно использовать и как противоугонное средство.
Все перечисленные средства защиты: ОСП, "Буран", "Дошшг-2" имеют сертификат пожарной безопасности. Единственный недостаток после такого тушения придется засучить рука, чтобы убрать белый налет.
Используемый в этих огнетушителях порошок "Пирант-А" в оборонной промышленности применяется более четверти века и относится согласно ГОСТу к третьему классу опасности, т.е. если его не употреблять в пищу, он безвреден.
Особенности тушения пожаров и возгораний порошковым огнетушителем
Время выброса порошка составляет от 6 до 15 секунд.
При тушении порошковыми огнетушителями загораний огонь ликвидируется как только зона горения будет окружена облаком порошка требуемой концентрации, кроме того, облако порошка обладает экранирующим свойством, что дает возможность подойти к горящему объекту на близкое расстояние.
В самом начале тушения нельзя слишком близко подходить к очагу пожара, так как из-за высокой скорости порошковой струи происходит сильный подсос (эжекция) воздуха, который только раздувает пламя над очагом. Кроме того, при тушении с малого расстояния может произойти разбрасывание или разбрызгивание горящих материалов мощной струей порошка, что приведет не к тушению, а к увеличению площади очага пожара.
Порошковыми огнетушителями не разрешается тушить электрооборудование, находящееся под напряжением выше 1000 В.
Не следует использовать порошковые огнетушители для защиты оборудования, которое может выйти из строя при попадании порошка (некоторые виды электронного оборудования, электрические машины коллекторного типа и т.д.).
Порошковые огнетушители из-за высокой запыленности во время их работы и, как следствие, резко ухудшающейся видимости очага пожара и путей эвакуации, а также раздражающего действия порошка на органы дыхания не рекомендуется применять в помещениях малого объема (менее 40 куб. м).
Недостатки порошковых огнетушителей:
- отсутствие при тушении охлаждающего эффекта, что может привести к повторному самовоспламенению уже потушенного горючего от нагретых поверхностей;
- сложность тушения пожара из-за резкого ухудшения видимости очага и эвакуационных выходов (особенно в помещениях небольшого объема;
- опасность для здоровья людей ввиду образования порошкового облака в процессе тушения;
- нанесение ущерба оборудованию и материалам из-за значительного загрязнения порошком поверхностей;
- возможность отказов в работе вследствие образования пробок из-за способности к комкованию и слеживанию порошков при хранении;
- возможность появления разрядов статического электричества при работе порошковых огнетушителей с насадком, выполненным из полимерных материалов, что сужает область их применения.
??????????
Процесс самовозгорания, приводящий к пожару, возникает в результате действия в качестве источника загорания теплового, микробиологического или химического импульсов на склонные к этому процессу вещества и материалы.
Причиной пожара могут являться процессы самовоспламенения и самовозгорания. Локально возникающий процесс самовозгорания может явиться источником дальнейшего зажигания любых других горючих веществ и материалов, находящихся в опасной близости от него.
Температура самовоспламенения и температура самонагревания характеризуют минимально опасные температуры окружающей среды, при которых сравнительно быстро загораются горючие вещества и материалы любой массы.
Процессы самовоспламенения и самовозгорания протекают только в случае возникновения определенных (критических) условий.
Порошковые огнетушащие составы являются весьма эффективными при автоматическом тушении пожаров. Высокая огнетушащая эффективность порошковых составов объясняется комплексным их воздействием на процесс горения. Облако порошка и продукты его термического распада частично разбавляют концентрацию кислорода в зоне горения. Кроме того, порошок охлаждает продукты горения, поскольку значительная часть тепла расходуется на нагревание и разложение порошка. Продукты термического разложения порошка тормозят реакцию горения. Слой порошка, покрывая горящую поверхность, частично изолирует ее от доступа воздуха, оказывает огнепреграждающее действие и уменьшает передачу тепла от нагретых продуктов горения к зоне реакции. Подобное теплоизолирующее и экранирующее воздействие оказывают и частицы порошка, находящиеся во взвешенном состоянии в нагретых продуктах горения.
В настоящее время нет достаточно точных данных о том, какой из перечисленных факторов оказывает определяющее влияние. Предположительно делается вывод о наиболее существенном влиянии ингибирующего фактора при тушении пожаров порошковыми составами.
К порошковым составам предъявляются следующие требования: высокие огнетушащие свойства при тушении различных горючих веществ и материалов; хорошая текучесть по трубопроводам; способность создавать плотное облако аэровзвеси; неувлажняемость и неслеживаемость при длительном хранении; термическая стабильность, отсутствие коррозионных и токсичных свойств; общедоступность и дешевизна исходных материалов.
Порошки характеризуются следующими основными показателями: размером частиц, скоростью уноса (скоростью свободного витания) частиц, насыпной плотностью и влажностью.
Для огнетушащих порошков, состоящих из частиц разных диаметров, за оптимальную скорость уноса принята такая скорость выходящего потока газа (азота), при которой из трубки выносится до 70 вес. % порошка.
Промышленностью выпускаются порошковые огнетушащие составы марок ПС, ПСБ и СИ.
Основой порошка марок ПС является кальцинированная сода, а ПСБ -- бикарбонат натрия (до 98%).Для придания порошкам гидрофобных свойств, повышения текучести и предохранения от слеживания и комковатости в порошковый состав добавляются: графит, стеараты железа и алюминия, стеариновая кислота, тальк и др. Порошковые составы марок ПС предназначены преимущественно для тушения калия и натрия (ПС-1, ПС-2), лития и магния (ПС-11, ПС-12 и ПС-13).
Порошковый состав ПСБ представляет собой мелкий сыпучий порошок белого цвета с серым или розовым оттенком (размер частиц 0,01--0,12 мм). Влажность порошка не более 0,5%.
Список литературы
1. Я.Б. Зельдович, Г.И., Г.И. Баренблатт, В.Б. Либрович, Г.М. Махвиладзе. Математическая теория горения и взрыва. М.: Наука, 1980 - 478 с.
2. В.В. Померанцев, К.М. Арефьев, Д.Б. Ахмедов и др. Основы практической теории горения. Л.: Энергоатомиздат, Ленингр. отд-ие, 1986 - 309 с.
3. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. - Новосибирск: Наука, Сиб. Отд-ие, 1992. - 408 с.
4. Концепция развития горения и взрыва как области научно-технического прогресса. Черноголовка: Территория, 2001.
5. Алексеев Б.В., Гришин А.М. Курс лекций по аэротермохимии. Часть 1. Элементы кинетической теории, термодинамики и химической кинетики. Часть 2. Элементы строгой теории коэффициентов переноса, теория переноса энергии излучением и основная система уравнений аэротермохимии. Томск: Изд-во Том. ун-та. 1971.
6. Волокитина А.В., Софронов М.А. Классификация и картографирование растительных горючих материалов. Новосибирск: Изд-во Наука, Сиб. отд-е РАН, 2002 - 306 с
7. Горшков В.И.Самовозгорание веществ и материалов. - М.: ФГУ ВНИИПО МЧС России, 2003. - 446 с.
8. Корольченко А.Я. Пожаровзрывоопасность веществ и материалов и средства их тушения. / А.Я. Корольченко, Д.А. Корольченко. Справочник: в 2-х ч. - М.: Асс. «Пожнаука», 2004. - Ч.I. - 713 с., - Ч.II. - 774 с.
9. Кремпович Г.Н., Прокофьев А.И., Восковский В.М. Специальная химия (сборник задач).- М.: МССШМ МВД СССР, 1988. - 130 с.
10. Марков В.Ф., Маскаев Л.Н., Миронов М.П., Пазникова С.Н. Физико-химические основы развития и тушения пожаров: Учебное пособие для курсантов, студентов слушателей образовательных учреждений МЧС России /Под ред.В.Ф. Маркова. Екатеринбург: УрО РАН. 2009. - 274 с.
11. Таубкин С.И. Пожар и взрыв, особенности их экспертизы. - М.:ВНИИПО МВД России. 1999. - 600 с.
12. Шрайбер Г. М., Порет П., Огнетушащие средства, пер. с нем., М., 1975; Баратов А. Н., Иванов Е. Н., Пожаротушение на предприятиях химической и нефтеперерабатывающей промышленности, 2 изд., М., 1979; Средства и способы пожаротушения, М., ВНИИПО, 1981; Баратов А. Н., Вогман Л. П., Огнетушащие порошковые составы, М., 1982; Пожаротушение. Сб. науч. работ, М., 1986.
Размещено на Allbest.ru
Подобные документы
Рассмотрение особенностей развития пожаров, начинающихся со стадии тлеющего горения. Основные признаки возникновения огня от маломощного источника зажигания. Изучение версии о возникновении пожара в результате протекания процессов самовозгорания.
презентация [104,4 K], добавлен 26.09.2014Оперативно-тактическая характеристика высотных зданий. Порядок подачи огнетушащих веществ для работы на этажах, определение потери напора в горизонтальных и вертикальных рукавных линиях. Схемы развертывания сил и средств в зданиях повышенной этажности.
презентация [71,1 M], добавлен 06.05.2015Характеристика воздушно-механической пены, галоидированных углеводородов, огнетушащих порошков. Классификация пожаров и рекомендуемые огнетушащие средства. Химические, воздушно-пенные, углекислотные, углекислотно-брометиловые и аэрозольные огнетушители.
лабораторная работа [637,0 K], добавлен 19.03.2016Ознакомление с общей характеристикой алифатических и ароматических углеводородов. Определение пожароопасности растворителей. Рассмотрение и анализ новых методов тушения пожаров, возникающих при воспламенении веществ. Расчет температуры самовоспламенения.
дипломная работа [1,0 M], добавлен 20.06.2017Условия и причины возникновения несчастных случаев и профессиональных заболеваний. Исследование действия тока на организм человека. Основы взрывобезопасности производств и процессов. Понятие самовозгорания веществ и цели системы предотвращения пожара.
курс лекций [49,0 K], добавлен 06.07.2011Классификация пожаров и способы их тушения. Анализ существующих на данный момент огнетушащих веществ, их характеристики и способы применения в ходе ликвидации пожаров. Огнетушащий эффект пены. Устройство, назначение и принцип работы пенных огнетушителей.
реферат [326,6 K], добавлен 06.04.2015Характеристика, область применения, механизм прекращения горения и интенсивность подачи огнетушащих средств ингибирующего действия (химического торможения реакции горения). Расчет необходимого количества автоцистерн для подвоза воды на тушение пожара.
контрольная работа [108,6 K], добавлен 19.09.2012Определение и сущность процесса горения. Виды иточников зажигания, классификация веществ по горючести. Фазы горения твердых, жидких и газообразных веществ. Условия огнетушения, огнетушащие вещества и материалы. Их целевое назначение и классификация.
контрольная работа [15,6 K], добавлен 13.12.2009Пожар, его развитие и прекращение горения. Опасные факторы и формы площади пожара. Условия прекращения горения. Огнетушащие средства и интенсивность их подачи. Расход огнетушащих средств и время тушения пожара. Планирование действий по тушению пожаров.
курсовая работа [611,8 K], добавлен 19.02.2011Исследование особенностей наружных и внутренних пожаров в зданиях. Анализ путей и скорости распространения пламени. Изучение основных причин возникновения пожаров. Типы огнетушащих веществ и материалов. Характер распространения лесных и торфяных пожаров.
контрольная работа [25,8 K], добавлен 14.12.2014