Влияние радиации на здоровье человека

Глобальная проблема радиоактивного загрязнения окружающей среды. Основные источники радиации. Фоновое облучение, дозы и действие радиации на человека. Последствия получения облучения. Влияние работы на ПК и мобильных средств связи на здоровье человека.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 03.04.2014
Размер файла 52,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

Введение

1. Глобальная проблема радиоактивного загрязнения окружающей среды

2. Источники радиации

3. Фоновое облучение человека. Дозы облучения

4. Действие радиации на человека.

5. Влияние работы на ПК на здоровье человека

6. Влияние мобильных средств связи на здоровье человека

Заключение

Список используемой литературы

Введение

глобальный радиоактивный здоровье человек

Среди вопросов, представляющих научный интерес, немногие приковывают к себе столь постоянное внимание общественности и вызывают так много споров, как вопрос о действии радиации на человека и окружающую среду. В промышленно развитых странах не проходит и недели без какой-нибудь демонстрации общественности по этому поводу. Такая же ситуация довольно скоро может возникнуть и в развивающихся странах, которые создают свою атомную энергетику; есть все основания утверждать, что дебаты по поводу радиации и ее воздействия вряд ли утихнут в ближайшем будущем.

Радиация действительно смертельно опасна. При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты, которые, возможно, проявятся у детей и внуков человека, подвергшегося облучению, или у его более отдаленных потомков.

Сегодня основная масса ученых едина во мнении, что человек и человечество составляют часть живого вещества нашей планеты. Это означает, что люди также подвержены действию космических энергий и солнечной радиации. Так, человеческий организм, так же как организмы других животных, подстраивается под ритмы биогеосферы, прежде всего суточные (циркадные) и сезонные, связанные со сменой времен года.

Вся живая природа чутко реагирует на сезонные изменения окружающей температуры, на интенсивность солнечного излучения - весной покрываются листвой деревья, осенью листва опадает, затухают обменные процессы, многие животные впадают в спячку и т.д. Человек не является исключением. На протяжении года у него меняется интенсивность обмена, состав клеток тканей, причем эти колебания различны в разных климатических поясах. Так, в южных районах (Сочи) содержание гемоглобина и количество эритроцитов, а также максимальное и минимальное давление крови в холодный период возрастают на 20 процентов по сравнению с теплым временем. В условиях Севера наибольший процент гемоглобина найден у большинства обследованных жителей в летние месяцы, а наименьший - зимой и в начале весны.

В последнее время в связи с резким возрастанием загрязнения окружающей природной среды, усиления содержания в атмосфере углекислого газа, повышения радиационного фона значительно возросло число спонтанных, стихийных, вредных мутаций как у животных, так и у человека.

1. Глобальные проблемы человечества: экология и радиация

Проблема радиационного загрязнения стала особенно актуальна

Характерные антропогенные радиационные воздействия на окружающую среду -

загрязнение атмосферы и территорий продуктами ядерных взрывов при испытаниях ядерного оружия в 60-тые годы,

отравление воздушного бассейна выбросами пыли, загрязнение территорий шлаками, содержащими радиоактивные вещества при сжигании ископаемых топлив в котлах электростанций,

загрязнение территорий при авариях на атомных станциях и предприятиях.

Более локальные, но не менее неприятные последствия - гибель озер, рек из-за неочищенных радиоактивных сбросов промышленных предприятий.

Значительную опасность для живых существ, для популяций организмов в экосистемах представляют аварии на предприятиях химической, атомной промышленности, при транспортировании опасных и вредных веществ

Какой же диапазон концентраций вредных веществ надлежит контролировать? Приведем примеры предельно допустимых концентраций вредных веществ, которые будут служить ориентирами в анализе возможностей радиационного мониторинга окружающей среды.

В основном нормативном документе по радиационной безопасности - Нормах радиационной безопасности (НРБ-76/87) даны значения предельно-допустимых концентраций радиоактивных веществ в воде и воздухе для профессиональных работников и ограниченной части населения. Данные по некоторым важным, биологически активным радионуклидам приведены в Таблице 1.

Таблица 1. Значения допустимых концентраций для радионуклидов.

Нуклид, N

Период полураспада, Т1/2 лет

Выход при делении урана, %

Допустимая концентрация, Ku/л

Допустимая концентрация

в воз-хе

в воз-хе

в воз-хе, Бк/м3

в воде, Бк/кг

Тритий-3 (окись)

12,35

-

3*10-10

4*10-6

7,6*103

3*104

Углерод-14

5730

-

1,2*10-10

8,2*10-7

2,4*102

2,2*103

Железо-55

2,7

-

2,9*10-11

7,9*10-7

1,8*102

3,8*103

Кобальт-60

5,27

-

3*10-13

3,5*10-8

1,4*101

3,7*102

Криптон-85

10,3

0,293

3,5*102

2,2*103

Стронций-90

29,12

5,77

4*10-14

4*10-10

5,7

4,5*101

Иод-129

1,57*10+7

-

2,7*10-14

1,9*10-10

3,7

1,1*101

Иод-131

8,04 сут

3,1

1,5*10-13

1*10-9

1,8*101

5,7*101

Цезий-135

2,6*10+6

6,4

1,9*102

6,3*102

Свинец-210

22,3

-

2*10-15

7,7*10-11

1,5*10-1

1,8

Радий-226

1600

-

8,5*10-16

5,4*10-11

8,6*10-3

4,5

Уран-238

4,47*10+9

-

2,2*10-15

5,9*10-10

2,8*101

7,3*10-1

Плутоний-239

2,4*10+4

-

3*10-17

2,2*10-9

9,1*10-3

5

Реальные выбросы и сбросы радиоактивных веществ при нормальной эксплуатации АЭС обычно много ниже допустимых, так что нормы по концентрация радионуклидов в окружающей среде вблизи АЭС безусловно выполняются.

Анализ поступающей информации показывает, что радиационная обстановка на территории России в целом не претерпела существенных изменений и была обусловлена техногенными, аварийными и естественными источниками ионизирующего излучения.

Структура коллективных доз облучения населения России складывается из следующих основных источников:

- природные источники ионизирующего излучения: радон и долгоживущие продукты распада радона - ДПР (вклад в коллективную дозу - 56%), космическое излучение 14% (всего 70%);

- медицинские источники ионизирующего излучения: рентгенодиагностика и радионуклидная диагностика (всего 29%);

- техногенные источники ионизирующего излучения (всего 1%).

Специфика радиационной обстановки на территории России обусловлена либо особенностями региона, либо загрязнением аварийного характера.

2. Источники радиации

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей историй существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Уровень радиации в некоторых местах земного шара, особенно там, где залегают радиоактивные породы, оказывается значительно выше среднего. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолетах - все это увеличивает уровень облучения за счет естественных источников радиации.

Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи и источники земной радиации, главным образом путем внешнего облучения.

Космические лучи

Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов.

Одни участки земной поверхности более подвержены действию лучей, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи). Уровень облучения растет и с высотой, поскольку воздух выполняет роль защитного экрана.

Люди, живущие на уровне моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу около 300 микрозивертов (миллионных долей зиверта) в год; для людей же, живущих выше 2000 м над уровнем моря, это величина в несколько раз больше. Еще более интенсивному, хотя и относительно непродолжительному облучению, подвергаются экипажи и пассажиры самолетов. При подъеме с высоты 4000 м (максимальная высота, на которой расположены человеческие поселения: деревни шерпов на склонах Эвереста) до 12000 м (максимальная высота полета трансконтинентальных авиалайнеров) уровень облучения за счет космических лучей возрастает примерно в 25 раз и продолжает расти при дальнейшем увеличении высоты до 20000 м (максимальная высота полета сверхзвуковых реактивных самолетов) и выше.

Земная радиация

Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 - долгоживущих изотопов, включившихся в состав Земли с самого ее рождения.

Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентраций радионуклидов в том или ином участке земной коры. В местах проживания основной массы населения они примерно одного порядка. Примерно 95% населения живет в местах, где мощность дозы облучения в среднем составляет от 0,3 до 0,6 миллизиверта (тысячных зиверта) в год. Но некоторые группы населения получают значительно большие дозы облучения. В некоторых районах Земли уровни земной радиации намного выше.

По подсчетам НКДАР ООН (Научный Комитет по делам атомной радиации) средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет примерно 350 микрозивертов, т.е. чуть больше средней индивидуальной дозы облучения из-за радиационного фона, создаваемого космическими лучами на уровне моря.

Внутреннее облучение

В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом.

Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации. Все остальное поступает от источников земного происхождения. В среднем человек получает около 180 микрозивертов в год за счет калия-40, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория-232.

Некоторые из них, например нуклиды. свинца-210 и полония-210, поступают в организм с пищей. 0ни концентрируются в рыбе и моллюсках, поэтому люди, потребляющие много рыбы и других даров моря, могут получить относительно высокие дозы облучения.

Радон

Лишь недавно стало известно, что наиболее весомым из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) радон. Он вместе со своими дочерними продуктами радиоактивного распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех естественных источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара. Основную часть дозы обличения от радона человек получает, находясь в закрытом, непроветриваемом помещении. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе.

Радон концентрируется в воздухе внутри помещении лишь тогда, когда они в достаточной мере изолированы от внешней среды. Поступает, просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома. В результате в помещении могут возникать довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов или если при его постройке использовали материалы с повышенной радиоактивностью

Самые распространенные строительные материалы - дерево, кирпич и бетон - выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит и пемза, используемые в качестве строительных материалов.

Среди других промышленных отходов с высокой радиоактивностью, применявшихся в строительстве, следует назвать кирпич из красной глины - отхода производства алюминия, доменный шлак - отход черной металлургии и зольную пыль, образующуюся при сжигании угля.

Концентрация радона в верхних этажах многоэтажных домов, как правило, ниже, чем на первом этаже. Исследования, проведенные в Норвегии, показали, что концентрация радона в деревянных домах даже выше, чем в кирпичных, хотя дерево выделяет совершенно ничтожное количество радона по сравнению с другими материалами. Это объясняется тем, что деревянные дома имеют меньше этажей, чем кирпичные.

Скорость проникновения исходящего из земли радона в помещения фактически определяется толщиной и целостностью (т.е. количеством трещин и микротрещин) межэтажных перекрытий.

Кроме того, эмиссия радона из стен уменьшается в 10 раз при облицовке стен пластиковыми материалами типа полиамида, поливинилхлорида, полиэтилена или после покрытия стен слоем краски на эпоксидной основе или тремя слоями масляной краски. Даже при оклейке стен обоями скорость эмиссии радона уменьшается примерно на 30%.

Еще один, как правило менее важный, источник поступления радона в жилые помещения представляют собой вода и природный газ. Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из некоторых источников, особенно из глубоких колодцев или артезианских скважин, содержит очень много радона.

Однако основная опасность, как это ни удивительно, исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков (кофе, чай). При кипячении же воды или приготовлении горячих блюд радон в значительной степени улетучивается и поэтому поступает в организм в основном с не кипяченой водой. Но даже и в этом случае радон очень быстро выводится из организма.

Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате. При обследовании домов в Финляндии оказалось, что в среднем концентрация радона в ванной комнате примерно в три раза выше, чем на кухне, и приблизительно в 40 раз выше, чем в жилых комнатах.

Другие источники радиации

Уголь, подобно большинству других природных материалов, содержит радионуклиды. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

Из печек и каминов всего мира вылетает в атмосферу зольной пыли, возможно, не меньше, чем из труб электростанций. Кроме того, в отличие от большинства электростанций жилые дома имеют относительно невысокие трубы и расположены обычно в центре населенных пунктов, поэтому гораздо большая часть загрязнений попадает непосредственно на людей.

Еще один источник облучения населения - термальные водоемы. Некоторые страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов;

Фосфаты используются главным образом для производства удобрений. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий там в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.

Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.

Как правило, для техногенных источников радиации упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивными осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками.

Источники, использующиеся в медицине

В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации.

Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Как ни парадоксально, но одним из основных способов борьбы с раком является лучевая терапия.

В принципе, облучение в медицине направлено на исцеление больного. Однако нередко дозы оказываются неоправданно высокими: дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.

В большинстве стран около половины рентгенологических обследований приходится на долю грудной клетки. Однако по мере уменьшения частоты заболеваний туберкулезом целесообразность массовых обследований снижается. Известно также, что иногда облучению подвергается вдвое большая площадь поверхности тела, чем это необходимо. Наконец, установлено, что излишнее радиационное облучение часто бывает обусловлено неудовлетворительным состоянием или эксплуатацией оборудования.

Благодаря техническим усовершенствованиям, по-видимому, можно уменьшить и дозы, получаемые пациентами при рентгенографии зубов. Меньшие дозы должны использоваться и при обследовании молочной железы.

В настоящее время широко применяется компьютерная томография.

3. Фоновое облучение человека

Фоновое облучение человека состоит из облучения естественными и искусственными источниками.

Первый компонент фона в свою очередь имеет две составляющие: естественный фон и техногенный радиационный фон, от естественных радионуклидов. Естественный фон ионизирующего излучения обусловлен космическим излучением и излучением естественно распределенных природных радиоактивных веществ (радиоактивные вещества в горных породах, почвах, атмосфере, а также радионуклиды, инкорпорированные в тканях человека). Естественный фон обуславливается внешним и внутренним облучением; внешним - за счет воздействия на организм излучения от внешних по отношению к нему источников (космическое излучение и естественные радионуклиды в горных породах, почве, атмосфере и др.) и внутренним - за счет воздействия на организм излучений естественных радионуклидов, находящихся в организме (40К и радионуклиды семейства урана и тория, поступающие в организм с воздухом, пищей и водой). Внутреннее облучение создает примерно 40% естественного фона, около 60% приходится на внешнее облучение. Человек всегда подвергался облучению указанными источниками. Доза естественного фона зависит от таких факторов, как высота над уровнем моря, количество и вид радионуклидов в горных породах и почве, количество радионуклидов, которые поступают в организм человека с воздухом, пищей и водой. Например, люди, живущие на уровне моря, получают в среднем эквивалентную дозу от космического излучения около 0,3 мЗв в год или примерно 0,03 мкЗв (микрозиверт) в 1ч. Для людей, живущих на высоте выше 2 км над уровнем моря, это значение в несколько раз больше. Заметим, что 4 км - максимальная высота, на которой еще расположены человеческие поселения на склонах Эвереста. Еще более интенсивному облучению подвергаются экипажи и пассажиры самолетов. При подъеме с 4 км до 12 км (максимальная высота полета трансконтинентальных авиалайнеров) доза комического излучения возрастает примерно в 25 раз. С дальнейшим увеличением высоты над уровнем моря доза космического излучения продолжает увеличиваться и на высоте 20 км (максимальная высота полета сверхзвуковых реактивных самолетов) достигает 13 мкЗв/ч.

Изменение человеком окружающей среды и его деятельность могут увеличить дозы «нормального» облучения за счет естественных источников. Примеры такой деятельности - добыча полезных ископаемых, использование строительных материалов минерального происхождения в домостроении и минеральных удобрений, содержащих повышенное количество радионуклидов уранового и ториевого рядов, сжигание ископаемого топлива, в частности угля, приводящие к выбросу естественных радионуклидов (226Ra, 228Ra, 232Th и др.) и т. п. Такой фактор, как проживание в доме, часто приводит к повышению облучения, вызванному накоплением газообразных радионуклидов и их продуктов распада при недостаточной скорости вентиляции. Наибольший вклад в дозу облучения в этом случае дает не имеющий вкуса и запаха тяжелый газ радон 222Rn - дочерний продукт 226Ra, который в свою очередь является членом радиоактивного ряда, образуемого продуктами распада 238U. Примерно в 20 раз меньший вклад в дозу в этом случае дает 220Rn (Tn) - член радиоактивного ряда 232Th. Ниже под радоном будем понимать оба изотопа 222Rn и 220Rn (Tn). Большая часть облучения человека происходит дочерними продуктами распада радона. Основную дозу облучения от радона и продуктов его распада человек получает, находясь в закрытом непроветриваемом помещении. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем в 8 раз выше, чем в наружном воздухе.

Новую составляющую обусловленную естественными источниками за счет деятельности человека и изменения им окружающей среды, называют техногенным радиационным фоном от естественных радионуклидов. Основной вклад в облучение техногенного фона приходится на строительные материалы в домостроении, он обусловливает годовую дозу Не = 1,05 мЗв, то есть примерно равную естественному фону.

Дозы облучения. Безопасные и летальные дозы для людей. Мощность дозы.

В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с проникающим рентгеновским излучением, распространяющимся в воздухе. Поэтому в качестве количественной меры излучения многие годы применяли результат измерения ионизации воздуха вблизи рентгеновских трубок и аппаратов. Единицей таких измерений условились считать количество пар ионов, которые излучение образует в 1 см3 сухого воздуха, находящегося при атмосферном давлении. Позднее было установлено, что такой единице экспозиционной дозы, названной рентгеном, соответствует 2,08*109 пар ионов, т. е. примерно 2 млрд. пар ионов в 1 см3 воздуха.

Экспозиционная доза - количественная характеристика поля ионизирующего излучения, основанная на величине ионизации сухого воздуха при атмосферном давлении. Единицей измерения экспозиционной дозы является рентген (Р).

1Р=2*109 пар ионов/см3 воздуха

Доза 1Р накапливается за 1ч на расстоянии 1м от источника радия массой 1г, т. е. активностью примерно 1Кюри (Ки).

В качестве меры глубинных доз и радиационного воздействия проникающих излучений было предложено определять энергию, поглощенную облучаемым веществом. Поглощенная доза - количество энергии, поглощенной единицей массы облучаемого вещества. Единицей поглощенной дозы является рад.

В системе СИ новой единицей поглощенной дозы является грэй (Гр).

1рад=100эрг/г

1Гр=100рад

Для мягких тканей в поле рентгеновского или гамма-излучения поглощенная доза 1рад примерно соответствует экспозиции 1Р, т. е. 1Р=0,88рад.

Поглощенная доза - характеризует результат взаимодействия поля ионизирующего излучения и среды, на которую оно воздействует, т. е. облучения. Чем больше поглощенная доза, тем больше радиационный эффект.

Действие ионизирующих излучений на живой организм сложнее, чем последствия облучения сравнительно простых неживых веществ. Радиобиологический эффект зависит не только от поглощенной дозы, т. е. энергии, переданной облучаемому веществу, но и от других факторов.

При одной и той же поглощенной дозе радиобиологический эффект тем выше, чем плотнее ионизация, создаваемая излучением. Для количественной оценки такого влияния вводится понятие эквивалентной дозы, которая равна поглощенной дозе, умноженной на коэффициент качества, определяемый отношением поглощенной дозы эталонного измерения к дозе рассматриваемого излучения, вызывающей тот же радиобиологический эффект. Мощность дозы=Р/мин 1Зв=100бэр

Единицей измерения эквивалентной дозы является биологический эквивалент рада - бэр. В системе СИ единица эквивалентной дозы - зиверт (Зв).

Анализ несчастных случаев позволил установить численное значение смертельной дозы гамма-излучения. Она оказалась равной 600±100 Р.

При дозах облучения более 25 бэр никаких изменений в органах и тканях организма человека не наблюдается. Незначительные кратковременные изменения состава крови возникают только при дозе облучения 50 бэр. Дозы облучения, например, единовременно 600 рад для человека, вызывают поражения или даже гибель организма.

Внутреннее облучение - это процесс, при котором источники излучения находятся внутри человеческого организма, попадая туда при вдыхании, заглатывании, а также через повреждения кожного покрова.

Это отличие обусловливает ряд особенностей, которые делают внутреннее облучение во много раз более опасным, чем внешнее, при одних и тех же количествах радионуклидов.

Патологическое действие облучения на организм в значительной мере зависит от места локализации радиоактивного вещества. Главная опасность радия заключается в том, что он откладывается в костях. Альфа-частицы повреждают как кость, так и особенно чувствительные к излучению клетки кроветворных тканей, вызывая тяжелые заболевания крови и образование злокачественных опухолей. Пыль, содержащая радиоактивные частицы, приводила к образованию радиоактивных отложений в легких и способствовала развитию рака.

Из всех путей поступления радионуклидов в организм наиболее опасно вдыхание загрязненного воздуха. Радиоактивное вещество, поступающее таким путем в организм человека, исключительно быстро усваивается. Пылевые частицы, на которых сорбированы радионуклиды, при вдыхании воздуха проходят через верхние дыхательные пути и частично оседают в полости рта и носоглотке. Отсюда они поступают в пищеварительный тракт. Остальные частицы вместе с воздухом попадают в легкие, где задерживаются легочными тканями.

Естественный радиационный фон Земли необходим для развития жизни, для роста организмов.

4. Действие радиации на человека

Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут “запустить” не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания проявляются спустя много лет после облучения, как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

В то время как идентификация быстро проявляющихся (“острых”) последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты, требуется еще доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень. Однако, даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность, или риск, наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

Источником радиации могут также являться и различные природные ресурсы, идущих на производство строительных материалов. В строительных материалах, из которых возведены как старые, так и современные дома (бетон, арматура, красный кирпич и т.д.), могут находиться активные ионы, испускающие радиацию. Не менее опасным для здоровья человека является также радиоактивный газ - радон, концентрация которого высока в подвалах зданий. И обыкновенный радиационный контроль, осуществляемый простыми дозиметрами, может порой не выявить или точно не определить всю степень радиационного заражения. Ионизирующее излучение, или радиация, способна изменять основу всех клеток в организме человека - ДНК.

В итоге происходит нарушение роста и деления клеток и смерть, или же, наоборот - неконтролируемое деление - то есть рак. Таким образом, радиология на основании тысяч исследований, пришла к выводу об абсолютной опасности повышенных доз радиации на человека, то есть превышающих фоновый уровень радиации.

При больших дозах радиация может разрушать клетки, повреждать ткани и явиться причиной гибели организма. При малых дозах возможны еще не полностью установленные механизмы, приводящие к онкологическим или генетическим последствиям.

Взаимодействие излучения с тканями организма инициирует целый ряд физических, химических и биологических процессов. Время протекания этих процессов варьируется в очень широком диапазоне значений - от триллионных долей секунды (процессы ионизации атомов) до десятков лет (различные патологические изменения в клетках организма, например, онкологического характера).

К настоящему времени получены фундаментальные данные о влиянии радиации на разных уровнях биологической организации, от молекулярного до организма в целом. Вместе с тем, решение некоторых вопросов как теоретического, так и практического характера до сих пор затруднено неполнотой сведений о конкретных закономерностях формирования радиационных эффектов.

В радиационной медицине все эффекты, обусловленные излучением, обычно подразделяют на два принципиально различных класса:

- детерминированные эффекты характеризуются пороговым значением радиационного воздействия, ниже которого они не наблюдаются;

- стохастические (или вероятностные) эффекты, которые имеют длительный латентный период и проявляются спустя годы после облучения или в последующих поколениях.

Существенно, что стохастические эффекты носят неспецифический характер, то есть они практически неотличимы от аналогичных эффектов, инициированных факторами нетрадиционной природы.

В отношении последствий облучения в малых дозах все еще существуют значительные неопределенности, связанные с тем, что последствия, если таковые имеются вообще, необходимо выделить на преобладающем фоне естественных нарушений. Возможным последствием облучения большого числа людей малыми дозами может быть индицирование нескольких онкологических заболеваний спустя годы и даже десятки лет после облучения помимо тысяч аналогичных заболеваний, которые возникают естественным путем. Часто забывают, что онкологические заболевания главным образом являются характерными для людей преклонного возраста. Кроме этого, мы постоянно подвергаемся воздействию огромного количества нерадиационных факторов повседневной жизни, часть из которых может вызвать рак.

Радиация способна ионизировать атомы, из которых состоят биологические ткани. Это приводит к образованию в облучаемом организме вредных химических соединений, нарушающих обмен веществ - биологи называют их «свободными радикалами». Они образуются в организме даже под воздействием естественного радиационного фона - в небольшом количестве. В этом случае иммунные силы здорового человека легко ликвидируют все внутренние поражения, вызванные действием этих соединений. Можно провести аналогию с обычными ранениями: мелкие царапины заживают быстро и безо всяких последствий, а большие рапы - долго и трудно. Крупное ранение может принести к гибели пострадавшего.

При получении организмом дозы выше предельно допустимой величины количество свободных радикалов в биологических тканях возрастает. Иммунные силы организма еще способны излечивать эти внутренние «раны» - до определенного предела. У каждого человека этот предел свой - зависит от возраста, пола, перенесенных ранее заболеваний, качества питания, наличия вредных привычек (алкоголизм, табакокурение) и т.д. В среднем ЭЭД, при которой у большинства облученных возникает лучевая болезнь - 1 Зв (100 бэр). Особо следует отметить, что острая лучевая болезнь возникает тогда, когда человек получает эту дозу в течение короткого времени - не более четырех суток подряд.

Лучевая болезнь может развиваться как при внешнем, так и при внутреннем облучении. Особенность многих радионуклидов в том, что они способны длительное время удерживаться в различных органах человека, непрерывно облучая их. Для каждого из этих радионуклидов существует свой, так называемый критический орган: например, йод-131 накапливается в щитовидной железе, цезий-137 - в мышцах, стронпий-90 - в костях. У пострадавшего человека может и не развиться лучевая болезнь, но вполне вероятно разрушение или перерождение тканей того органа, в котором сконцентрировались радионуклиды.

В настоящее время тысячи людей живут в районах, загрязненных радионуклидами - таких территорий много на просторах бывшего Советского Союза. Эти люди потребляют продукты питания, в которых содержание радионуклидов часто превышает предельно допустимые уровни.

Поскольку иммунные силы организма уже ослаблены повышенным внешним облучением, они не могут как следует противостоять процессу накопления радионуклидов в различных органах. Особую опасность это представляет для растущего детского организма.

Длительный отдых в «чистой» местности и употребление незаряженных радионуклидами продуктов питания способны восстановить и укрепить иммунные силы человека. Некоторые вещества (витамины А, С, Е, танины, пектины и т.д.) могут приостановить накопление радионуклидов в организме.

Общие нарушения в организме под действием радиации приводит к изменению обмена веществ, которые влекут за собой патологические изменения головного мозга.

Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения.

Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку:

объем легочной вентиляции очень большой;

значения коэффициента усвоения в легких более высоки.

Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха через верхние дыхательные пути частично оседают в полости рта и носоглотке. Отсюда пыль поступает в пищеварительный тракт. Остальные частицы поступают в легкие. Степень задержки аэрозолей в легких зависит от дисперсионности. В легких задерживается около 20% всех частиц; при уменьшении размеров аэрозолей величина задержки увеличивается до 70%.

При всасывании радиоактивных веществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта в кровь. В зависимости от природы изотопа коэффициент изменяется в широких пределах: от сотых долей процента (для циркония, ниобия), до несколь-ких десятков процентов (водород, щелочноземельные элементы). Резорбция через неповрежденную кожу в 200-300 раз меньше, чем через желудочно-кишечный тракт, и, как правило, не играет существенной роли.

При попадании радиоактивных веществ в организм любым путем они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

Концентрации в крови долгоживущих изотопов в дальнейшем могут удерживаться практически на одном уровне в течение длительного времени вследствие обратного вымывания отложившихся веществ.

В заключение хотелось бы отметить, что, несмотря на то, что проникающая радиация в больших количествах приводит к необратимым последствиям, сегодня ученые говорят, что малые ее дозы полезны для здоровья и их следует рекомендовать для применения в медицине.

В течение многих десятилетий было известно, что длительное облучение радиацией приводит к развитию раковых опухолей, однако многие ученые утверждают, что ионизирующее излучение в определенных дозах может быть полезно для здоровья.

Согласно данным, низкие дозы радиации снижают частоту инфекционных заболеваний, уменьшают число случаев рака у молодых людей и существенно увеличивают среднюю продолжительность жизни. Радиация также увеличивает активность иммунной системы, что снижает количество инфекционных заболеваний и способствует заживлению ран.

Ученые отмечают, что человек в процессе эволюции приспособился к определенному уровню радиации, как и к другим особенностям окружающей среды, и ее нехватка может негативно влиять на здоровье, так же, как дефицит некоторых веществ, например, витаминов и микроэлементов.

Сегодня ионизирующее облучение используется для лечения определенных форм рака, однако использование источников радиации для лечения других заболеваний не признается официальной медициной.

5. Влияние работы на ПК на здоровье человека

Проблема влияния компьютера на здоровье человека разрабатывается в различных направлениях. Наиболее многочисленными и, очевидно, наиболее близкими к истине являются сторонники утверждения, что существует так называемая компьютерная болезнь. Их аргументы весомы и обоснованны.

Среди пользователей ПК выявлен новый тип заболевания -- синдром компьютерного стресса (СКС), который проявляется головной болью, воспалением слизистой оболочки глаз, повышенной раздражительностью, вялостью и депрессией.

Симптомы заболевания разнообразны и многочисленны. Они сгруппированы по принципу воздействия на ту или иную часть организма.

1) Общее недомогание: сонливость, утомляемость, не проходящая усталость (даже после отдыха); головные боли после работы; глазные боли; головные боли в области надбровий и лба, в затылочной, боковых и теменной частях головы; боли в нижней части спины, в области бедер, в ногах; чувство покалывания, онемения, боли в руках, запястьях и кистях; напряженность мышц верхней части туловища (шея, спина, плечи, руки).

2) Заболевания глаз: быстрая утомляемость, чувство острой боли, жжение, зуд, слезливость; частое моргание, ощущение натертости.

3) Нарушения визуального восприятия: неясность зрения на дальнем расстоянии сразу после работы за компьютером («пелена перед глазами»); неясность зрения на близком расстоянии (изображение на экране плохо фокусируется); неясность зрения усиливается в течение дня; двоение в глазах; очки становятся «слабыми» (необходимость смены очков); головные боли; медленная рефокусировка; косоглазие.

4) Ухудшение сосредоточенности и работоспособности (очень часто оказывается следствием визуальных нарушений): невозможность сконцентрироваться в течение длительного времени; раздражительность во время и после работы; потеря рабочей точки на экране, пропуски строк, слов, ввод повторных строк; ошибки при заполнении колонок («непопадание»), перестановка слов или цифр местами.

Причинами разнообразных симптомов СКС, по мнению медиков, являются:

· сверхнапряженная работа глаз и неправильное положение тела;

· ношение несоответствующих очков или контактных линз;

· неправильная организация рабочего места;

· суммирование физических, умственных и визуальных нагрузок;

· низкий уровень визуальной подготовленности для работы с компьютером.

Кроме того, крайне важно ответить следующий факт.

Компьютеры находят все более широкое применение в управлении производственными процессами, так как позволяют обеспечить детальный контроль за выполнением технологических предписаний, а также большую гибкость в представлении графической и текстовой информации о состоянии процесса на экране монитора. Оператору вменяется в обязанность в соответствии с выводимой на экран информацией принять адекватное решение.

Оператор имеет лишь ограниченные возможности обработки информации, и он разрабатывает определенные стратегии при решении различных задач. Если ему предоставляется полная свобода поведения, он выбирает оптимальную, с точки зрения умственной нагрузки, стратегию. Как правило, при медленной динамике он осуществляет параллельное управление несколькими процессами, при быстрой динамике -- сосредоточивает свое внимание на наиболее важном процессе, пока не будет достигнут требуемый режим. В последнем случае он работает последовательно. С увеличением скорости процесс управления переходит из параллельной формы в последовательную.

Ресурсы операторов в большинстве случаев не обеспечивают высокий уровень параллельной стратегии управления, так как при большом количестве и высокой скорости контролируемых процессов ему отводится слишком маленький промежуток времени для принятия адекватного решения. Растет психологическая напряженность, увеличивается вероятность принятия неверного решения. В этих условиях управляющему при помощи компьютера различными процессами приходится практически постоянно находиться в состоянии дискомфорта или стресса, что сказывается на функции нервной системы и может привести к различным психическим заболеваниям, нервным срывам, депрессии.

Этот аспект влияния вычислительной техники на состояние человека в условиях постоянно ускоряющегося прогресса технологий, использующих автоматические процессы, приобретает все более существенное значение.

Негативное воздействие компьютера на человека является комплексным.

Как показали результаты многочисленных научных работ с использованием новейшей измерительной техники зарубежного и отечественного производства, компьютер (особенно его дисплей, или монитор, сконструированный на основе ЭЛТ (электронно-лучевой трубки)) является источником:

· электростатического поля;

· электромагнитных излучений в низкочастотном, сверхнизкочастотном и высокочастотном диапазонах (2 Гц -- 400 кГц);

· излучения оптического диапазона (ультрафиолетового, инфракрасного и видимого света), рентгеновского излучения.

Электромагнитные поля около компьютера (особенно низкочастотные) оказывают определенное воздействие на человека.

Ученые установили, что излучение низкой частоты в первую очередь негативно влияет на центральную нервную систему, вызывая головные боли/ головокружение, тошноту, депрессию, бессонницу, отсутствие аппетита, стресс. Причем нервная система реагирует даже на короткие по продолжительности воздействия относительно слабых полей: изменяется гормональное состояние организма, нарушаются биотоки мозга. Особенно страдают от этого процессы обучения и запоминания.

Низкочастотное электромагнитное поле может явиться причиной кожных заболеваний (угревая сыпь, экзема, розовый лишай и др.), болезней сердечно-сосудистой системы и желудочно-кишечного тракта; оно воздействует на белые кровяные тельца, что приводит к возникновению опухолей, в том числе и злокачественных.

Особое внимание исследователи уделяют влиянию электромагнитных полей на женщин в период беременности. Статистика свидетельствует, что работа за компьютером нарушает нормальное течение беременности, повышает вероятность выкидыша и часто является причиной появления на свет детей с врожденными пороками, из них наиболее существенными бывают дефекты развития головного мозга. Поэтому необходимо, чтобы беременные или имеющие намерение забеременеть женщины просили руководство о переводе их на работу, не связанную с использованием компьютеров.

Электростатическое поле большой напряженности способно изменять и прерывать клеточное развитие, а также в отдельных случаях вызывать катаракту.

Неправильное расположение мониторов по высоте: слишком низкое, под неправильным углом -- является основной причиной появления сутулости; слишком высокое положение дисплея приводит к длительному напряжению шейного отдела позвоночника, которое, в конце концов, может привести к развитию остеохондроза. В то же самое время позвоночник играет ключевую роль в здоровье человека. Ненормальное состояние позвоночника (неправильная осанка, различного рода искривления, смещение или деформация межпозвоночных дисков) может стать причиной заболевания.

Интенсивная работа с клавиатурой вызывает болевые ощущения в локтевых суставах, предплечьях, запястьях, в кистях и пальцах рук.

Интенсивное и продолжительное использование клавиатуры при работе на компьютере может стать источником тяжелых профессиональных заболеваний рук. Комплекс этих заболеваний, получивших общее название «травмы повторяющихся нагрузок» (ТПН), включает такие болезни, как тендинит, травматический эпикондилит, болезнь Де Кервена, тендосиновит, синдром канала запястья. Работа с клавиатурой является причиной 12% профессиональных заболеваний, вызванных повторяющимися движениями.

Заболевания, связанные с ТПН, охватывают также болезни нервов, мышц и сухожилий рук. Наиболее часто страдают кисть, запястье и предплечье, хотя бывает, что болезнь затрагивает плечевую и шейную области. У операторов компьютеров заболевание обычно наступает в результате непрерывной работы на неудобно или неправильно расположенной клавиатуре.

Тендинит -- воспаление сухожилий. Заболевание распространяется на кисть, запястье, плечо.

Травматический эпикондилит (теннисный локоть) -- воспаление сухожилий, соединяющих мышцы предплечья и локтевой сустав.

Болезнь Де Кервена -- разновидность тендинита, при которой страдают сухожилия, связанные с большим пальцем кисти руки.

Тендосиновит -- воспаление синовиальной оболочки сухожильного основания кисти и запястья.

Туннельный синдром запястного канала -- ущемление медиального нерва руки в результате опухания сухожилия или синовиальной оболочки. Это заболевание требует длительного восстановительного периода, который, значительно превышает по времени период восстановления после перелома или ампутации.

Работа с дисплеем предполагает прежде всего визуальное восприятие отображенной на экране монитора информации, поэтому значительной нагрузке подвергается зрительный аппарат работающих с ПК.

Блики относятся к факторам, которые очень сильно мешают воспринимать информацию с экрана монитора. Они заставляют неосознанно менять положение головы и корпуса, напрягать зрение, чтобы прочесть нужную информацию на экране. При этом глаза испытывают дополнительное напряжение, происходит увеличение нагрузки на шею, спину, плечи и руки, что приводит к быстрой утомляемости всего организма.


Подобные документы

  • Определение понятия радиации. Соматические и генетические эффекты воздействия радиации на человека. Предельно допустимые дозы общего облучения. Защита живых организмов от радиационных излучений временем, расстоянием и при помощи специальных экранов.

    презентация [131,4 K], добавлен 14.04.2014

  • Радиоактивное излучение, его виды. Воздействие радиации на ткани живого организма. Предельно допустимые дозы облучения. Естественные источники радиации. Внутреннее облучение от радионуклидов земного происхождения. Воздействие радиации на человека.

    реферат [39,2 K], добавлен 23.09.2013

  • Источники радиации, используемые в медицине. Современные дозы внутреннего облучения от цезия-137 жителей Минского региона. Характер радиационных изменений центральной нервной системы. Радиочувствительность и лучевые реакции отдельных органов и тканей.

    курсовая работа [511,6 K], добавлен 24.11.2015

  • Радиация: дозы, единицы измерения. Ряд особенностей, характерных для биологического действия радиоактивных излучений. Виды эффектов радиации, большие и малые дозы. Мероприятия по защита от воздействия ионизирующих излучений и внешнего облучения.

    реферат [34,3 K], добавлен 23.05.2013

  • Эффекты воздействия радиации на человека. Радиационные последствия облучения. Общие клинические проявления лучевой болезни. Клональное злокачественное (неопластическое) заболевание кроветворной системы, причины его возникновения. Симптомы лейкимии.

    презентация [2,7 M], добавлен 17.05.2015

  • Естественные источники радиации. Космические лучи. Земная радиация. Внутреннее облучение. Радон. Источники, использующиеся в медицине. Ядерные взрывы. Атомная энергетика. Профессиональное облучение. Действие радиации на человека.

    лекция [42,2 K], добавлен 19.03.2007

  • Альфа, бета и гамма излучение. Радиочувствительность различных органов и тканей. Воздействие различных доз облучения на организм. Прямое и косвенное действие радиации. Генетические, соматические детерминированные и стохастические эффекты радиации.

    презентация [576,8 K], добавлен 02.04.2012

  • Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Основные источники ионизирующего излучения. Воздействие радиации на человека - биологические аспекты радиационной безопасности. Радиационный мониторинг.

    реферат [315,9 K], добавлен 22.05.2008

  • Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.

    презентация [981,6 K], добавлен 18.02.2015

  • Краткая историческая справка открытия радиации. Ионизация вещества альфа-частицей. Естественные источники радиации. Космические лучи, внутреннее облучение. Негативное воздействие радона на организм человека. Использование радиоактивности в мирных целях.

    реферат [230,5 K], добавлен 25.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.