Аварии на взрывоопасных объектах

Определение аварийных взрывов и их источников. Характеристика видов горения и распространения детонационной волны взрывчатого вещества. Классификация конденсированных веществ. Характеристика ударной волны ядерного взрыва и его воздействие на людей.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид лекция
Язык русский
Дата добавления 23.10.2013
Размер файла 74,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1

Кафедра защиты в ЧС и гражданской обороны

«Основы гражданской защиты в чрезвычайных ситуациях»

ТЕМА 1. Основные характеристики и классификация чрезвычайных ситуаций

Лекция

по БЖД

АВАРИИ НА ВЗРЫВООПАСНЫХ ОБЪЕКТАХ

Общие сведения о взрыве.

Характеристика процесса взрыва.

Взрыв - быстро протекающий процесс физического или химического превращения веществ, сопровождающийся освобождением большого количества энергии в ограниченном объеме, в результате которого в окружающем пространстве образуется и распространяется ударная волна, способная создать угрозу жизни и здоровью людей, нанести ущерб предприятиям экономики и окружающей среде, стать источником ЧС.

Взрыв представляет собой широкий круг явлений, связанных с очень быстрым выделением значительного количества энергии, сопровождающимся расширением вещества, обладающего избыточной энергией, в среде с меньшим энергетическим потенциалом. Расширение протекает с настолько большой скоростью (сотни и тысячи м/с), что приводит к резкому повышению давления, плотности, температуры и сопровождается значительными звуковыми эффектами. Источником энергии при взрыве могут быть как химические, так и физические процессы.

В подавляющем большинстве взрывов, с которыми приходится сталкиваться на практике, источником выделения энергии являются химические превращения веществ. Это относится как к взрывам, предназначенным для достижения определенных целей (например, в военной области или производственной сфере), так и к взрывам аварийного характера.

Примерами взрывов, энергетического выделение при которых обусловлено физическими процессами, могут служить взрывы сжатых газов или взрывы, связанные с преобразованием перегретых жидкостей, когда энергия, выделяющаяся при взрыве, определяется процессами, связанными с адиабатическим расширением парогазовых сред. При выливании расплавленного металла в воду возможно испарение, протекающее взрывным образом вследствие фрагментации капель расплава, быстрой теплоотдачи и перегрева холодной жидкости. Возникающая при этом физическая детонация сопровождается образованием ударной волны. На практике аварийные взрывы, имеющие физическую природу, встречаются значительно реже, чем взрывы химического происхождения, поэтому далее будут рассматриваться только химические взрывы.

Высвобождение энергии при взрывах в общем случае выражается удельной мощностью, т. е., количеством энергии, выделяемой в единицу времени. При химических взрывах скорость энергетическое выделения определяется скоростью распространения пламени в соответствующей взрывоопасной среде. Для различных твердых и жидких взрывчатых веществ эта скорость может достигать 2-9 тыс. м/с, т. е., в несколько раз превосходить скорость звука в невозмущенной среде.

Возможное суммарное выделение энергии при взрыве называется энергетическим потенциалом взрыва и определяет его масштабы и последствия. Для твердых и жидких конденсированных ВВ этот показатель зависит от удельного энергетического потенциала вещества, находящегося в диапазоне 1,5-7,5 МДж/кг.

Следует отметить, что при определении этого показателя для твердого или жидкого конденсированного взрывчатого вещества, в значение массы входят все его составляющие, т. е., части, играющие роль и горючего, и окислителя (в основном кислорода), и инертной компоненты.

Удельная теплота взрыва парогазовых смесей рассчитывается для их стехиометрического состава либо по горючему веществу, либо по массе смеси. Так например теплота сгорания водорода по горючему веществу составляет 120 мДж/кг (для сравнения соответствующий показатель тротила - 4520 кДж/кг).

Это обстоятельство использовано при создании боеприпасов объемного взрыва. В таких боеприпасах сначала подрывается вспомогательный заряд, разрушая корпус, содержащий горючее. Горючее распыляется в воздухе, образуя в смеси с ним газовое облако, заполняющее негерметизированные полости и укрытия поражаемого помещения. После некоторой задержки, необходимой для формирования облака смеси по возможности близкой к стехиометрическому составу, оно подрывается при помощи детонатора. В результате, например, мощность взрыва боеприпаса, содержащего этиленоксид, в 3-5 раз превосходит мощность взрыва боеприпаса, начиненного тротилом в количестве, равном массе этиленоксида. Увеличение мощности достигается за счет того, что в качестве окислителя при взрыве этиленоксида используется воздух, находящийся на месте взрыва, т. е., не входивший в состав боеприпаса.

Единство процессов горения и взрыва.

В специальной технической литературе установились определенные подходы и терминология при рассмотрении пожаров, взрывов и связанных с ними проблем. В случаях, когда процессы окисления протекают сравнительно медленно, без образования ударной волны явления рассматриваются как горение. Аналогичные процессы во взрывчатых средах протекают значительно быстрее, чем при обычном горении, и определяются как взрыв.

Различают два вида взрывного горения: дефлаграционное и детонационное.

По своей природе они имеют много общего, близки и химические процессы, протекающие при этих явлениях. Основное отличие этих видов горения в природе процессов, определяющих скорость распространения пламени.

Дефлаграционное горение.

В основе механизма распространения дефлаграционного горения лежит теплопередача в соседние с зоной горения участки материала. Скорость распространения процесса зависит от теплоемкости материала, его теплопроводности и некоторых других свойств.

Детонационное горение.

При детонации, как и при дефлаграционном горении, реакция протекает в узкой зоне, перемещающейся по веществу, но механизм ее распространения принципиально другой. Причиной инициализации экзотермических реакций при детонационном горении является скачкообразное изменение параметров состояния вещества, в первую очередь давления, что ведет к повышению температуры вещества до значений, повышающих температуру самовоспламенения. Процессы распространения давления значительно более быстрые по сравнению с процессами нагрева за счет теплопроводности.

Скорость детонации есть скорость распространения детонационной волны во взрывчатом веществе. Скорости распространения детонационной волны достигают 1-5 км/с в газовых смесях и 8-9 км/с в конденсированных ВВ, т. е., значительно превосходят скорости звука в этих средах.

Продукты детонации оказываются под большим давлением, что обуславливает соответствующие последствия взрыва - разлет элементов разрушенных конструкций, звуковой эффект и др. Возникшее в зоне взрыва высокое давление приводит к распространению зоны высокого давления и в окружающей воздушной среде. Распространению зоны высокого давления в окружающей воздушной среде происходит в виде ударной волны. Причем повышение давления в окружающей среде происходит в виде распространяющегося резкого скачка, называемого фронтом ударной волны.

Скачок давления во фронте ударной волны при взрывах газовоздушных смесей на открытом воздухе в неблагоприятных условиях может находиться в диапазоне от 100 кПа до 2 Мпа. При взрывах конденсированных ВВ это давление может достигать значительно более высоких значений, измеряемых даже ГПа.

Непосредственными причинами взрывов химических взрывчатых веществ могут быть любые физические явления, вызывающие нарушение устойчивого состояния вещества. К таким явлениям относятся изменение температуры, химические реакции, резкие внешние воздействия (удар, трение), ударная волна другого взрыва и т. п.

Взрывчатые вещества.

Определение взрывчатых веществ.

Существует много веществ, в которых в том или ином виде запасено большое количество энергии, например в виде внутримолекулярных или межмолекулярных связей. В нормальных условиях эти вещества достаточно устойчивы и могут находиться в твердом, жидком, газообразном или аэрозольном состоянии. Однако, в результате оказания инициирующего воздействия (теплом, трением, ударом или каким- либо другим способом) в них запускаются экзотермические процессы, протекающие с большой скоростью и приводящие к большому выделению энергии. Обычно говорят, что произошло взрывчатое превращение, а сами вещества называют взрывчатыми веществами или кратко ВВ.

Твердые и жидкие ВВ имеющие в своем составе химически нестабильные соединения.

Также восстановители или окислители либо в виде однородного вещества, либо в виде смеси нескольких веществ, называют конденсированными ВВ.

Газообразные энергоносители представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями, либо нестабильные газообразные соединения, склонные к разложению в отсутствие окислителей (например, ацетилен). В этих газообразных веществах при взрывах протекают экзотермические реакции окисления или реакции разложения нестабильных соединений.

Участвующие в химическом взрыве аэродинамической взвеси состоят из мелкодисперсных горючих жидкостей (туманов) или твердых веществ (пыли) в окислительной среде (обычно в воздухе). Источником энергии в этом случае служит тепло их сгорания.

К взрывчатым могут быть отнесены любые вещества, способные к взрывчатому превращению. Однако на практике к ВВ относят специальные группы веществ, которые отвечают определенным требованиям:

1. Достаточно высокое содержание энергии в единице массы и большая мощность развиваемая при взрыве, обусловленная скоростью процесса.

2. Определенные пределы чувствительности к внешнему воздействию, обеспечивающие как достаточную безопасность, так и легкость возбуждения взрыва.

3. Способность в течение длительного периода сохранять свои свойства.

4. Доступность исходных материалов, технологичность и безопасность в производстве.

5. Специальные свойства, зависящие от характера применения (например, не токсичность продуктов взрыва).

Классификация конденсированных взрывчатых веществ.

Конденсированные ВВ принято делить на 4 группы:

- инициирующие - предназначены для возбуждения взрывчатого превращения в ВВ других групп (гремучая ртуть, азид свинца, тетразен);

- бризантные - используемые в разрывных зарядах для боеприпасов, для средств разрушения при добыче полезных ископаемых и др. Преимущественным видом их превращения является детонация. К ним относятся однородные ВВ (тринитротолуол, нитроглицерин, пироксилин и др.) и неоднородные - механические смеси (аммониты, динамиты и др.);

- метательные (чаще всего это пороха, использующиеся в качестве метательных зарядов для огнестрельного оружия); их взрывчатое превращение - взрывное горение;

- пиротехнические составы.

Различают фугасное и бризантное действие ВВ. Мерой фугасного действия служит объем воронки, образованной взрывом 1 кг ВВ.

Под бризантным действием понимают способность ВВ дробить соприкасающуюся среду. Эта способность зависит от детонационного давления и времени его действия.

По своему составу конденсированные ВВ можно подразделить на смеси и однородные (гомогенные или унитарные) вещества.

Рассмотрим некоторые вещества, представляющие собой смеси.

Черный порох представляет собой смесь калиевой селитры (KNO3) с углем. Эти вещества представляют собой порошки, смесь которых крайне опасна и возгорается со взрывом при малейшем воздействии теплом или трением. Для получения требуемой скорости сгорания в смесь добавляется сера. Первым используемым на практике ВВ был черный порох. В настоящее время пороха используют в качестве метательных ВВ.

Ракетные твердые топлива относятся к тому же классу ВВ, что и пороха. Существует большое количество отличающихся по своему составу смесей, используемых в качестве ракетных топлив. Их основными компонентами являются: порошки металлов (Al, Be, B, Mg) или их гидридов (AlH3, LiH, MgH), окислители (например перхлорат аммония - NH3ClO4), нитраты (например нитрат калия - KNO3) и др. составляющие.

Аммониты представляют собой довольно большую группу веществ, широко используемых в промышленности (горнодобывающей, строительной и др. отраслях) и относящихся к классу бризантных ВВ.

Как правило это смеси окислителя (аммониевой селитры - NH3NO3) с органическими веществами (угольная или мучная пыль, торф, опилки) - динамоны, с порошками металлов (например, алюминия) - аммонал, с тротилом - аматол, и др.

Однородные ВВ состоят из одного химического соединения, в состав молекулы которого входят составные части, например, играющие роль и горючего и окислителя. Наибольшее распространение в качестве таких ВВ получили органические нитро соединения. К однородным ВВ относятся:

1) Пироксилин и бездымный порох. Эти вещества относятся к классу метательных ВВ. Пироксилин (азотнокислый эфир целлюлозы или нитрат целлюлозы, получается при нитровании целлюлозы (хлопка) азотной кислотой. Внешне сохраняет вид волокон хлопка с повышенной хрупкостью. В настоящее время используется как сырье для изготовления балластных порохов. Бездымный порох используется в качестве топлива реактивных снарядов для “Катюш” и минометов.

2) Гексоген и тротил относятся к классу бризантных ВВ и используются для начинки боеприпасов.

Газовоздушные смеси.

Газовоздушные смеси (ГВС) образуются на ряде производств в нормальных или аварийных условиях и могут стать источником очень мощных взрывов. Наиболее опасны взрывы смесей с воздухом углеводородных газов (метана, пропана, бутилена, бутана, этилена и др.), а также паров воспламеняющихся жидкостей.

Взрывы ГВС могут происходить во внутренних полостях оборудования и трубопроводов, в помещениях (зданиях) в результате утечки газа, в емкостях для хранения и транспортировки взрывоопасных и пожароопасных веществ (резервуарах, газгольдерах, цистернах, грузовых отсеках танкеров) или на открытом пространстве при разрушении газопроводов, разливе и испарении жидкостей.

Взрывы горючих газов с воздухом с тяжелыми последствиями происходят на шахтах.

Вероятность взрыва ГВС и его опасность определяются:

- пределами взрывной концентрации паров жидкостей и газов (при которых может возникнуть детонация) в процентах к объему ГВС, например:

- пропан 3-7%;

- пропилен 3,5-8,5%;

- этан 4,0-9,2%;

- температурой воспламенения - нижним пределом температуры, при которой возможно их воспламенение от постороннего источника зажигания;

- плотностью паров и газов по отношению к плотности воздуха (ацетон 2, ацетилен 0,9, метан 0,55, бутан 2);

- температурой самовоспламенения (ацетон 610оС, бензин 150оС, этиловый спирт 465оС);

- минимальной энергией зажигания или эквивалентом критической энергии электрической искры, необходимой для инициирования детонации.

Вероятность взрыва ГВС зависит от целого ряда обстоятельств. Статистика показывает, что при авариях с образованием облака ГВС на открытом пространстве, случаи взрыва, случаи возникновения только горения (пожаров) и случаи отсутствия воспламенения равновероятны.

Воспламенение облака ГВС происходит при наличии источника зажигания. Первоначально скорость распространения пламени относительно не велика и составляет для большинства углеводородных газов 0,32-0,40 м/с. При столь малых скоростях горения образования детонационной волны в ВВ не происходит. Однако в реальных условиях на процесс горения оказывают влияние множество факторов, вызывающих турбулизацию фронта пламени и ускорение его распространения.

Применительно к случайным промышленным взрывам при достижении скоростей распространения пламени 100-300 м/с возникает дефлаграционное горение, при котором генерируются взрывные волны с максимальным разрушающим избыточным давлением 20-100 кПа. Продолжительность горения до достижения взрывного режима для газов составляет около 0,1-0,2 с. При дальнейшем ускорении горения дефлаграционые процессы могут перерасти в детонационные, скорость распространения которых значительно превышает скорость звука в воздухе и достигает 1-5 км/с.

Переходу к детонации способствуют различные препятствия на пути распространения пламени (строения, предметы, пересеченная местность).

Детонация ГВС может произойти и без стадии дефлаграционного горения, однако в этом случае необходим соответствующий источник энергетического воздействия - достаточный электрический разряд, взрыв детонатора и др.

При больших объемах горючих газовых смесей, наличии источников, обеспечивающих турбулизацию фронта пламени и отражении детонационной волны от препятствий давление за очень короткий промежуток времени (~1мс) достигает высоких значений (~1,5 МПа).

Пыль и пылевоздушные смеси.

Взрывы пыли (пылевоздушных смесей - аэрозолей) представляют одну из основных опасностей на производстве. Взрывы пыли происходят в ограниченном пространстве - в помещениях зданий, внутри оборудования, в штольнях шахт. Возможны взрывы пыли на мукомольном производстве, на зерновых элеваторах (мучная пыль), при обращении с красителями, серой сахаром, другими пищевыми продуктами, производстве пластмасс, лекарственных препаратов, на установках дробления топлива (угольная пыль), в текстильном производстве.

Понятие промышленные пыли включает в себя тонкие дисперсии с размерами частиц менее 800 мкм. Взрывы, в основном, происходят по дефлаграционному механизму. Переход к детонации возможен в вытянутых помещениях за счет процесса горения в облаке пылевоздушной смеси (ПВС), например, в штольнях шахт, на конвейерных линиях зернохранилищ.

Взрыв ПлВС возможен только при наличии концентрации пыли в воздухе не ниже определенного предела, измеряемого в г/м. куб: алюминий 58, уголь и сахар 35, резина 25, полиуретан 30 и т. д. По степени взрывоопасности все промышленные пыли делятся на 4 класса:

1 класс - наиболее взрывоопасные пыли с НКПР равным 15 г/м. куб., и ниже (сера 2,3 и нафталин 2,5). НКПР - нижний концентрационный предел распространения пламени;

2 класс - взрывоопасные пыли с НКПР от 16 до 65 г/м. куб.;

3 класс - наиболее пожароопасные пыли - с температурой воспламенения до 250оС;

4 класс - пожароопасные пыли - с температурой воспламенения > 250оС.

Температура самовоспламенения пыли равна в среднем 500оС. Пыль, находящаяся в слоях воспламеняется при более низкой температуре, чем облако пыли - разница достигает 200оС, причем, чем толще слой пыли, тем ниже температура ее самовоспламенения. Пыль в слоях не взрывается. Однако, если в слое пыли возникнет горение (тление), то конвективные потоки горячих газов поднимают пыль в воздух, образуется пылевоздушная смесь, которая может взрываться. Максимальное давление взрыва ПВС лежит в пределах от 700 до 500 кПа (5-7 атм). Опасность взрыва ПВС возрастает с уменьшением размеров частиц пыли.

Ударная волна и характеризующие ее параметры.

Определяющим параметром при характеристике взрыва является образующаяся и распространяющаяся в окружающем пространстве воздушная ударная волна.

Рассмотрим облако взрывоопасной смеси в окружающем воздушном пространстве. До момента возгорания давление в объеме облака равно атмосферному. При сгорании (взрыве) облака в его объеме давление возрастает, преграды с окружающей средой нет, и область высокого давления увеличивается в объеме, а давление внутри нее уменьшается (рис. 1). Распространение области сжатия воздуха происходит со сверхзвуковой скоростью и получило название воздушной ударной волны - ВУВ. Поверхность, которая отделяет сжатый воздух от невозмущенного, называется фронтом ударной волны.

При прохождении фронта ударной волны через воздух в очень узкой зоне скачком возрастают давление, температура и плотность, а воздух за фронтом начинает двигаться в сторону области пониженного давления. Скорость движения воздуха меньше скорости движения фронта ВУВ. После того как фронт ударной волны проходит данную точку пространства, давление в ней постепенно снижается до атмосферного. В дальнейшем давление продолжает уменьшаться и становится ниже атмосферного, а воздух начинает двигаться в обратную сторону. Постепенно давление выравнивается с атмосферным и действие воздушной ударной волны в данной точке прекращается (рис. 2). Время, в течение которого давление превышает атмосферное, называется фазой сжатия, а время действия пониженного давления - фазой разрежения. Основные разрушения происходят в фазе сжатия, поэтому действие фазы разрежения обычно не учитывается.

Ударная волна имеет два основных отличия от звуковой волны:

- параметры среды в ней (давление, температура, плотность) изменяются практически скачком;

- скорость ее распространения превышает скорость звука в невозмущенной среде.

Рис. 1. - Давление во фронте воздушной ударной волны как функция расстояния от места взрыва:

Рис. 2. - Изменение давления в некоторой точке пространства при прохождении через нее ударной волны:

Рассмотрим параметры ВУВ.

До прихода волны давление в точке определялось атмосферным давлением P0. В момент прихода фронта волны давление возрастает на величину, равную Pф. После скачка давление начинает падать и через промежуток времени 0+ достигает величины P0. Дальнейшее снижение давления приводит к образованию в рассматриваемой точке разрежения с амплитудой P-, после чего рост давления возобновляется и оно снова достигает величины P0. Период 0+ называется фазой сжатия.

По мере удаления от места взрыва происходит постепенное “затухание” ударной волны. При этом уменьшаются амплитуды Pф и P-, уменьшаются крутизна скачка и крутизна спада давления, увеличиваются интервалы 0+ и 0-, уменьшается скорость распространения ударной волны и она постепенно трансформируется в звуковую. Скорость “затухания” ударной волны зависит от состояния среды, в которой эта волна распространяется, и от расстояния до места взрыва.

Поражающее действие ВУВ определяется следующими параметрами.

Первым параметром, определяющим поражающее действие ВУВ, является избыточное давление Pф.

Рассмотрим, во-первых, величину Pф. Энергетическое содержание ВВ, в частности ГВС, одинаково независимо от режима горения, однако скорость взрывчатых превращений разная при дефлаграции и при детонации, поэтому при детонации объем горящей ГВС не успевает увеличиться и давление возрастает до значительно больших значений, чем при дефлаграции.

Рис. 3. - Формы фронта ВУВ при дефлаграционном и детонационном взрывах:

Скачок давления в месте взрыва (а, следовательно, и во фронте ВУВ) при детонационных взрывах ГВС на открытом воздухе может достигать 2 Мпа. При взрывах конденсированных ВВ это давление может достигать значительно более высоких значений, измеряемых даже Гпа.

Во-вторых, разница в скорости процессов приводит к тому, что продолжительность нарастания давления (наклон фронта) разная. При детонации продолжительность нарастания давления ~ 10-3 c для воздушных смесей и ~ 10-5 для конденсированных ВВ, а при дефлаграции ~ 0,1-0,2 с.

Формы фронта ВУВ при разных режимах взрывного горения показаны на рис. 3.

Вторым параметром ВУВ, определяющим ее поражающее действие, является импульс давления i. Импульс характеризует суммарное воздействие избыточного давления за время 0+. Он числено равен площади под кривой избыточного давления на рис. 2.

Поражающее действие ВУВ характеризуется также давлением скоростного напора Pск воздуха. Скоростной напор возникает вследствие того, что частички воздуха во всех точках фронта ударной волны совершают резкое смещение по направлению от центра взрыва, а затем в обратную сторону. Тело, находящееся на пути смещения частиц воздуха, испытывает силовое воздействие.

Скоростной напор вызывает отбрасывание предметов, оказавшихся на пути распространения ударной волны, т. е., оказывает на них метательное воздействие.

В результате метательного воздействия незакрепленные предметы, а также люди могут быть отброшены на расстояние в несколько метров и, вследствие этого, получить повреждения и травмы по своей тяжести соизмеримые с последствиями воздействия избыточного давления ВУВ. Скоростной напор ВУВ приводит к разрушению (слому) сооружений, имеющих значительную протяженность по сравнению с поперечным сечением (столбы электропередач, заводские трубы, опоры и т. п.)

Перечисленные параметры ударной волны (давление, импульс, скоростной напор) являются основными, но не единственными параметрами, определяющими ее поражающее действие. Так при встрече ударной волны с препятствием, например со стеной здания, давление вблизи от отражающей поверхности препятствия возрастает в несколько раз. Степень роста амплитуды зависит от угла наклона отражающей поверхности к направлению распространения ударной волны и от состояния среды у отражающей поверхности, от других величин.

Основными параметрами воздушной ударной волны будем считать:

- избыточное давление во фронте волны, Рф;

- время действия давления (фазы сжатия);

- скорость распространения ударной волны, v;

- давление скоростного напора Рск.

Ударная волна ядерного взрыва.

Основные параметры, характеризующие ударную волну ЯВ, для заряда мощностью 30кт приведены в таблице.

В зависимости от высоты ЯВ распространение воздушной ударной волны имеет свои особенности.

При наземном взрыве воздушная ударная волна имеет форму полусферы с центром в точке взрыва ядерного боеприпаса. Значения Pф в этом случае будут примерно удваиваться по сравнению с воздушным взрывом.

При воздушном взрыве ударная волна, достигая поверхности земли, отражается от нее. Форма фронта отраженной волны близка к полусфере с центром в точке встречи ударной волны с поверхностью земли.

На близких расстояниях от проекции эпицентра на поверхность земли угол наклона падающей волны мал и точки, из которых исходят отраженные волны, перемещаются вдоль поверхности земли. Эта зона называется зоной регулярного отражения и ее радиус на поверхности земли Rэ примерно соответствует высоте воздушного взрыва H, т. е., Rэ=H.

Таблица - Параметры ударной волны ЯВ мощностью 30 кт:

Параметры

Расстояние от центра взрыва (км)

0,5

0,75

1,0 1,5 2,0

2,5

Избыточное давление во фронте, кПа

Скорость фронта, м/с

Скорость воздуха во фронте, м/с

135

494

310

75

432

189

48

402

124

17

357

31

На расстояниях Rэ>H в результате того, что отраженная волна движется в воздухе уже прогретом падающей волной, она имеет большую скорость и постепенно "набегает" на падающую волну, образуя головную ударную волну. Сложение волн усиливает избыточное давление во фронте головной волны. Коэффициент усиления составляет от 1,6 до 3 крат и зависит от состояния приземного слоя воздуха. Наибольшее повышение давления наблюдается при взрывах зимой, когда приземный слой воздуха почти не прогревается световым излучением.

При прогреве приземного слоя воздуха, например за счет его запыления, скачок давления во фронте головной волны уменьшается, но увеличивается время фазы сжатия и скоростной напор движущихся частиц воздуха. Это приводит к усилению метательного действия ударной волны.

На распространение ударной волны при ЯВ могут оказать существенное влияние: рельеф местности, характер застройки, лесные массивы, метеорологические условия. На расстояниях близких к месту взрыва амплитудные значения PФ очень велики и к тому моменту, когда они снижаются до значений, указанных в таблице, т. е., до значений, представляющих практический интерес с точки зрения анализа степени разрушающего воздействия ударной волны ЯВ, зависимость P(t) успевает видоизмениться.

Эти изменения состоят в увеличении, снижении скорости роста давления во фронте ударной волны и более плавному падению давления за фронтом волны. В связи с этими изменениями приведенным в таблице значениям PФ для ЯВ соответствует больший удельный импульс, чем для аналогичных значений давления при взрыве конденсированного ВВ. Поэтому ударную волну ЯВ иногда называют “длинной волной”.

Поражающее действие взрыва.

Поражающими факторами при взрывах являются:

- прямое воздействие фронта ударной волны;

- так называемые вторичные поражающие факторы, определяемые воздействием обломков разрушающихся зданий и сооружений, осколков породы или оболочки заряда и т. д.;

- сейсмическое воздействие подземных взрывов.

Воздействие поражающих факторов взрыва на здания и сооружения.

Воздействие ударной волны взрыва может привести к различным степеням разрушения (повреждения) зданий и сооружений. Эти степени условно подразделяют на слабые, средние, сильные и полные.

Слабые разрушения не выводят объект из строя, его эксплуатация может продолжаться. Повреждения или серьезные деформации получают отдельные легкие элементы конструкций (окна, двери, крыша и т. п.). Устранение слабых разрушений возможно в процессе текущего ремонта.

Средние разрушения соответствуют разрушению второстепенных конструкций и деформации (прогибу) основных ограждающих и несущих конструкций. Средние разрушения устранимы, но требуют прекращения эксплуатации объекта и проведения его капитального ремонта.

Сильные разрушения приводят к частичному разрушению стен колонн и перекрытий, а также к полному разрушению легких конструктивных элементов. Сильно разрушенные здания не восстановимы. При таком разрушении объект в какой-то мере сохраняет свои контуры. Некоторые его элементы могут быть использованы, например для ремонта других сооружений.

Полное разрушение сопряжено не только с прекращением возможности восстановления объекта, но и с резким изменением внешних очертаний объекта, с невозможностью использования его и его элементов в какой-либо мере.

Воздействие поражающих факторов взрыва на людей.

Воздействие избыточного давления ударной волны на человека воспринимается как резкий удар, а скоростного напора - в виде толчка (отбрасывания) по направлению распространения ударной волны. При этом происходят разрывы крове и газонаполненных органов, возникают травмы конечностей, ушибы, вывихи. По степени тяжести различают крайне тяжелые, тяжелые, средние и легкие поражения людей.

Крайне тяжелые поражения у людей возникают при избыточном давлении во фронте более 100 кПа. Эти поражения, как правило, заканчиваются смертельным исходом. Они сопровождаются разрывами внутренних органов и сосудов, наполненных кровью (или другими жидкостями), или газом.

Тяжелые поражения человек получает при 60-100 кПа. К тяжелым поражениям относят сильные контузии, потерю сознания, внутренние кровотечения, кровотечение из ушей и носа.

Средние поражения наступают при 40-60 кПа. К ним относят контузию головного мозга, множественные вывихи, потерю слуха.

Легкие поражения, не требующие госпитализации, наступают при 20-40 кПа. К ним относят скоропроходящую головную боль, головокружение.

Воздействие скоростного напора (метательное действие взрыва) приводит к отбрасыванию людей на расстояния в несколько метров, что вызывает травмы по своим последствиям соизмеримые с воздействием давления. аварийный взрыв детонационный

Помимо непосредственного поражения от воздействия ударной волны человек может пострадать от вторичных факторов взрыва (обломков разрушаемых зданий, осколков стекол и т. п.). Максимальному расстоянию такого поражения примерно соответствует 20 кПа.

Размещено на Allbest.ru


Подобные документы

  • Ударная волна – скачок уплотнения, распространяющаяся со сверхзвуковой скоростью область, в которой происходит резкое увеличение плотности, давления и скорости вещества: структура, воздействие на людей, здания, сооружения; средства и способы защиты.

    реферат [77,8 K], добавлен 15.03.2011

  • Оценка устойчивости работы объекта экономики в условиях заражения атмосферы химически опасным веществом. Расчет ударной волны ядерного взрыва. Оценка устойчивости объектов к воздействию ударной волны, возникающей при взрывах газовоздушных смесей.

    контрольная работа [789,4 K], добавлен 29.12.2014

  • Поражающие факторы наземного ядерного взрыва и их воздействие на человека. Расчет поражающего действия ударной воздушной волны. Оценка химической обстановки на объекте экономики при разрушении емкости со СДЯВ. Оказание помощи при отравлении аммиаком.

    контрольная работа [40,8 K], добавлен 25.05.2013

  • Определение радиуса взрывоопасной зоны при аварийной разгерметизации стандартной цистерны со сжиженным пропаном. Расчет величины избыточного давления во фронте ударной волны при взрыве облака топливно-воздушных смесей при аварии цистерны с пропаном.

    контрольная работа [67,8 K], добавлен 19.05.2015

  • Происхождение и классификация взрывчатых веществ. Основные свойства взрывчатых веществ. Особенности факторов поражения и зоны действия взрыва. Последствия воздействие взрыва на человека. Техника предотвращения взрывов. Действия населения при взрывах.

    реферат [23,6 K], добавлен 22.02.2008

  • Из истории создания ядерного оружия. Современная политика США в области ядерного вооружения. Характеристика ядерных взрывов и их поражающих факторов. Виды ядерных взрывов. Поражающие факторы ядерного взрыва. Хиросима и Нагасаки.

    реферат [148,5 K], добавлен 23.01.2006

  • Определение избыточного давления, ожидаемого в районе при взрыве емкости. Тяжесть поражения людей при взрыве газовоздушной смеси. Зона детонационной волны. Энергия взрыва баллона. Скоростной напор воздуха. Коэффициент пересчета уровня радиации.

    контрольная работа [198,7 K], добавлен 14.02.2012

  • Определение дозы излучения, которую получают рабочие на экскаваторах. Допустимая продолжительность спасательных и других неотложных работ. Определение размеров и площади зоны химического заражения. Радиус действия детонационной волны и продуктов взрыва.

    контрольная работа [105,0 K], добавлен 15.06.2013

  • Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросом СДЯВ. Последствия аварий на химически опасных объектах. Профилактика возможных аварии на ХОО.

    лекция [33,1 K], добавлен 16.03.2007

  • Что такое сильнодействующие ядовитые вещества (СДЯВ). Определение опасных химических веществ, зоны химического поражения, токсодозы. Химически опасные объекты Беларуси. Классификация химических средств по степени токсичности. Аварии с выбросом СДЯВ.

    реферат [19,9 K], добавлен 12.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.