Основные источники и виды риска, подлежащие оценке. Количественные меры техногенных воздействий
Безопасность и устойчивость развития общества. Последствия техногенного воздействия. Классификация внешних воздействующих факторов. Проблема промышленной безопасности. Частота возникновения чрезвычайных ситуаций в России. Темпы развития техники.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 24.12.2012 |
Размер файла | 992,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Оглавление
Введение
1. Понятие риска
2. Понятие техногенного воздействия
2.1 Последствия техногенного воздействия.
2.2 Классификация внешних воздействующих факторов.
3.Количественные меры техногенного воздействия
Список литературы:
Введение
Безопасность и устойчивость развития общества - два взаимосвязанных понятия, имеющих определяющее значение при выборе ориентиров и путей достижения высокого материального и духовного уровней жизни людей.
Общее определение термина “безопасность” дано в Законе Российской Федерации “О безопасности”, принятом 25 марта 1992г.: “Под безопасностью Российской Федерации понимается качественное состояние общества и государства, при котором обеспечивается защита каждого человека, проживающего на территории Российской Федерации, его прав и гражданских свобод, а также надежность существования и устойчивость развития Республики, защита ее ценностей, материальных и духовных источников жизнедеятельности, конституционного строя и государственного суверенитета, независимости и территориальной целостности от внутренних и внешних врагов”.
Если подходить к проблеме промышленной безопасности именно с позиций настоящего определения, то становится очевидным, что она не ограничивается и не исчерпывается вопросами только научно-технического характера - проблема имеет огромное социально-политическое значение в области обеспечения национальной безопасности России. Государство не может и не должно ежегодно нести колоссальные потери в виде человеческих жизней, существенного морального, материального и экологического ущерба. В настоящее время частота возникновения чрезвычайных ситуаций в России с гибелью людей существенно (на порядок и более) превышает показатели развитых стран. Особенно это характерно для “мелких” происшествий на производстве, не ведущих к тяжелым последствиям - это достаточно распространенные события на отечественных предприятиях. Обычно они не привлекают к себе большого внимания общественности и специалистов аналогичных производств. Но каково приходится семьям, потерявшим кормильцев? Дети лишаются родителей, а государство - трудоспособных граждан.
Всего в Российской Федерации сейчас 5,9 млн. инвалидов, что составляет три процента населения. Это означает: почти каждый тридцатый - инвалид. Воображение рисует жутковатые сравнения: почти вся Белоруссия или население Литвы и Латвии вместе взятых. Рост числа инвалидов сопровождается встречным сокращением населения страны. Если эти две встречные линии продолжат сближение, то могут достигнуть критической точки, где станет вопрос о существовании Великой державы. Основные виды заболеваний, вследствие которых устанавливается инвалидность, - туберкулез легких, психические, сердечно-сосудистые заболевания, болезни системы кровообращения, органов дыхания, что отрицательно сказывается на общей демографической ситуации в Российской Федерации. Академик Абалкин Л.И. в одной из своих работ отмечает тот факт, что уже несколько лет идет процесс депопуляции населения России. Его сокращение не перекрывается даже притоком эмигрантов. Снижается средняя продолжительность жизни. По меркам развитых стран, пороговым значением считается сегодня продолжительность жизни 70 лет. Если существующий уровень опускается ниже, это свидетельствует, что генофонд общества находится под угрозой. В настоящее время средняя продолжительность жизни находится на уровне 65 лет. Особенно тревожно выглядят официальные расчеты Госкомстата относительно продолжительности жизни мужчин. Согласно официальным данным, половина юношей, которым сегодня исполнилось 16 лет, не доживет до 60. Под угрозой и здоровье населения страны. Ослаблена иммунная защита, растет число инфекционных заболеваний, рождается все больше неполноценных детей. Последствия этих изменений, даже если принять срочно самые серьезные меры, могут ощущаться на протяжении двух ближайших поколений Российских граждан.
В целом сложившееся положение оказывает определенное морально-психологическое воздействие не только на занятых на производстве, но и на широкие круги населения, особенно в случае крупных аварий с человеческими жертвами. Все это усиливает социальную, а в ряде случаев и политическую напряженность во многих регионах России, что также не способствует повышению безопасности общества, его устойчивому развитию. Вот почему следует считать проблему промышленной и экологической безопасности социально-политической проблемой, требующей своего положительного разрешения.
Увеличение числа и масштабов последствий техногенных аварий и катастроф обусловлено не только ростом сложности производства с применением новых технологий, требующих высоких концентраций энергии, опасных для жизни человека веществ и оказывающих заметное воздействие на компоненты окружающей среды, но и крупными структурными изменениями в экономике страны, приведшими к сбою в сфере финансирования, высоким и прогрессирующим уровнем износа и старения основных фондов (например, в ряде производств химической, нефтехимической и нефтеперерабатывающей промышленности износ составил 80 - 100%), падением технологической и производственной дисциплины и снижением квалификации персонала, переносов сроков ремонта и замены оборудования, упрощением регламентного обслуживания.
Уровень знаний в вопросах безопасности жизнедеятельности в техносфере отстал от уровня сложности и темпов развития техники, технологий, технических систем.
Не следует строить иллюзий о безопасности предприятия даже в том случае, если на нем не происходит чрезвычайных ситуаций с разрушениями и гибелью персонала - отказ системы очистки отходящего газа из-за ненадежности техники будет нести огромную опасность для людей и окружающей среды.
В настоящее время в России осуществляется переход от регистрации свершившегося факта к осознанию необходимости использования инженерных методов предварительного анализа и исследования технических систем и объектов повышенного риска с целью предупреждения аварий. Ясно, что в изменившихся условиях подход к решению проблем безопасности производств, экологических проблем, основанный на концепции “реагировать и выправлять”, вынужден уступить место новому, где главенствующий принцип “предвидеть и предупреждать”. Встала задача прогнозирования техногенной деятельности - чтобы предотвратить тот ее предельный негативный масштаб, превышение которого оборачивается трагедией, катастрофами и экологическим ущербом. Уместно здесь отметить, что по подсчетам специалистов, сегодня на территории России размещены свыше 4,5 тыс. потенциально опасных объектов, в т.ч. до 800 - радиационно и примерно 1500 химически и биологически опасных сооружений и производств, которые относятся к объектам повышенного риска.
Вот почему методы исследования возможных отказов должны стать хорошим подспорьем для специалистов по инженерной защите окружающей среды или по безопасности жизнедеятельности, а поиск возможных отказов и анализ последствий должен стать распространенной, обычной процедурой при оценке сложных, дорогостоящих и высокорисковых предприятий, технологий и установок.
1. Понятие риска
Специалисты различных отраслей промышленности в своих сообщениях и докладах постоянно оперируют не только определением "опасность", но и таким термином, как "риск".
В научной литературе встречается весьма различная трактовка термина "риск" и в него иногда вкладываются отличающиеся друг от друга содержания. Например, риск в терминологии страхования используется для обозначения предмета страхования (промышленного предприятия или фирмы), страхового случая (наводнения, пожара, взрыва и пр.), страховой суммы (опасности в денежном выражении) или же как собирательный термин для обозначения нежелательных или неопределенных событий. Экономисты и статисты, сталкивающиеся с этими вопросами, понимают риск как меру возможных последствий, которые проявятся в определенный момент в будущем. В психологическом словаре риск трактуется как действие, направленное на привлекательную цель, достижение которой сопряжено с элементами опасности, угрозой потери, неуспеха, либо как ситуативная характеристика деятельности, состоящая в неопределенности ее исхода и возможных неблагоприятных последствиях в случае неуспеха, либо как мера неблагополучия при неуспехе в деятельности, определяемая сочетанием вероятности и величины неблагоприятных последствий в этом случае. Ряд трактовок раскрывает риск как вероятность возникновения несчастного случая, опасности, аварии или катастрофы при определенных условиях (состоянии) производства или окружающей человека среды. Приведенные определения подчеркивают как значение активной деятельности субъекта, так и объективные свойства окружающей среды.
Общим во всех приведеннных представлениях является то, что риск включает неуверенность, произойдет ли нежелательное событие и возникнет ли неблагоприятное состояние. Заметим, что в соответствии с современными взглядами риск обычно интерпритируется как вероятностная мера возникновения техногенных или природных явлений, сопровождающихся возникновением, формированием и действием опасностей, и нанесенного при этом социального, экономического, экологического и других видов ущерба и вреда.
Под риском следует понимать ожидаемую частоту или вероятность возникновения опасностей определенного класса, или же размер возможного ущерба (потерь, вреда) от нежелательного события, или же некоторую комбинацию этих величин.
Применение понятия риск, таким образом, позволяет переводить опасность в разряд измеряемых категорий. Риск, фактически, есть мера опасности. Часто используют понятие "степень риска" (Level of risk), по сути не отличающееся от понятия риск, но лишь подчеркивающее, что речь идет об измеряемой величине.
Все названные (или подобные) интерпретации термина "риск" используются в настоящее время при анализе опасностей и управлении безопасностью (риском) технологических процессов и производств в целом.
Точное понимание употребляемого термина станет ясным после дальнейшего ознакомления с содержанием настоящей главы.
Формирование опасных и чрезвычайных ситуаций - результат определенной совокупности факторов риска, порождаемых соответствующими источниками.
Применительно к проблеме безопасности жизнедеятельности таким событием может быть ухудшение здоровья или смерть человека, авария или катастрофа технической системы или устройства, загрязнения или разрушение экологической системы, гибель группы людей или возрастания смертности населения, материальный ущерб от реализовавшихся опасностей или увеличения затрат на безопасность.
Каждое нежелательное событие может возникнуть по отношению к определенной жертве - объекту риска. Соотношение объектов риска и нежелательных событий позволяет различать индивидуальный, технический, экологический, социальный и экономический риск. Каждый вид его обусловливают характерные источники и факторы риска, классификация и характеристика которого приведены в табл. 1.1.
Таблица 1.1
Классификация и характеристика видов риска
Индивидуальный риск обусловлен вероятностью реализации потенциальных опасностей при возникновении опасных ситуаций. Его можно определить по числу реализовавшихся факторов риска:
где Rи - индивидуальный риск;
P - число пострадавших (погибших) в единицу времени t от определенного фактора риска f;
L - число людей, подверженных соответствующему фактору риска f в единицу времени t.
Источники и факторы индивидуального риска приведены в табл. 1.2.
Индивидуальный риск может быть добровольным, если он обусловлен деятельностью человека на добровольной основе, и вынужденным, если человек подвергается риску в составе части общества (например, проживание в экологически неблагоприятных регионах, вблизи источников повышенной опасности).
Технический риск - комплексный показатель надежности элементов техносферы. Он выражает вероятность аварии или катастрофы при эксплуатации машин, механизмов, реализации технологических процессов, строительстве и эксплуатации зданий и сооружений:
где Rт - технический риск;
DT - число аварий в единицу времени t на идентичных технических системах и объектах;
T - число идентичных технических систем и объектов, подверженных общему фактору риска f.
Источники и факторы технического риска приведены в табл.1.3.
Таблица 1.3
Источники и факторы технического риска
Экологический риск выражает вероятность экологического бедствия, катастрофы, нарушения дальнейшего нормального функционирования и существования экологических систем и объектов в результате антропогенного вмешательства в природную среду или стихийного бедствия. Нежелательные события экологического риска могут проявляться как непосредственно в зонах вмешательства, так и за их пределами:
где RО - экологический риск;
DO - число антропогенных экологических катастроф и стихийных бедствий в единицу времени t;
O - число потенциальных источников экологических разрушений на рассматриваемой территории.
Масштабы экологического риска оцениваются процентным соотношением площади кризисных или катастрофических территорий DS к общей площади рассматриваемого биогеоценоза S:
Дополнительным косвенным критерием экологического риска может служить интегральный показатель экологичности территории предприятия, соотносимой с динамикой плотности населения (численности работающих):
где ОT - уровень экологичности территории;
DL - динамика плотности населения (работающих);
S - площадь исследуемой территорий;
DM - динамика прироста численности населения (работающих) в течение периода наблюдения t:
DM = G+F - U- V,
где G,F,U,V - соответственно численность родившихся за наблюдаемый период, прибывших в данную местность на постоянное местожительство, умерших и погибших, выехавших в другую местность на постоянное местожительство (уволившихся).
В этой формуле разность GU характеризует естественный, а FV - миграционный прирост населения на территории (текучесть кадров).
Положительные значения уровней экологичности позволяют разделять территории по степени экологического благополучия и, наоборот, отрицательные значения уровней - по степени экологического бедствия. Кроме того, динамика уровня экологичности территории позволяет судить об изменении экологической ситуации на ней за длительные промежутки времени, определить зоны экологического бедствия (демографического кризиса) или благополучия.
Источники и факторы экологического риска приведены в табл. 1.4.
Таблица 1.4
Источники и факторы экологического риска
Социальный риск характеризует масштабы и тяжесть негативных последствий чрезвычайных ситуаций, а также различного рода явлений и преобразований, снижающих качество жизни людей. По существу - это риск для группы или сообщества людей. Оценить его можно, например, по динамике смертности, рассчитанной на 1000 человек соответствующей группы:
где RС - социальный риск;
C1 - число умерших в единицу времени t (смертность) в исследуемой группе в начале периода наблюдения, например до развития чрезвычайных событий;
C2 - смертность в той же группе людей в конце периода наблюдения, например на стадии затухания чрезвычайной ситуации;
L - общая численность исследуемой группы.
Источники и наиболее распространенные факторы социального риска приведены в табл. 1.5.
Таблица 1.5
Источники и факторы социального риска
Экономический риск определяется соотношением пользы и вреда, получаемых обществом от рассматриваемого вида деятельности:
где RЭ - экономический риск, %;
В - вред обществу от рассматриваемого вида деятельности;
П - польза.
В общем виде
В= Зб+У ,
где Зб - затраты на достижение данного уровня безопасности;
У - ущерб, обусловленный недостаточной защищенностью человека и среды его обитания от опасностей.
Чистая польза, т.е. сумма всех выгод (в стоимостном выражении), получаемых обществом от рассматриваемого вида деятельности:
П=Д - Зб - В>0 или П=Д - Зп - Зб - У>0,
где Д - общий доход, получаемый от рассматриваемого вида деятельности;
Зп - основные производственные затраты.
Формула экономически обоснованной безопасности жизнедеятельности имеет вид
У < Д - ( Зп + Зб ).
безопасность общество промышленный техногенный
В условиях хозяйственной деятельности необходим поиск оптимального отношения затрат на безопасность и возможного ущерба от недостаточной защищенности. Найти его можно, если задаться некоторым значением реально достижимого уровня безопасности производства Кбп. Эту задачу можно решить методом оптимизации.
Использование рассматриваемых видов риска позволяет выполнять поиск оптимальных решений по обеспечению безопасности как на уровне предприятия, так и на макроуровнях в масштабах инфраструктур. Для этого необходимо выбирать значения приемлемого риска.
Приемлемый риск сочетает в себе технические, экологические, социальные аспекты и представляет некоторый компромисс между приемлемым уровнем безопасности и экономическими возможностями его достижения, т.е. можно говорить о снижении индивидуального, технического или экологического риска, но нельзя забывать о том, сколько за это придется заплатить и каким в результате окажется социальный риск.
2. Понятие техногенного воздействия
Техногенные воздействия - воздействия промышленных и сельскохозяйственных технологий, транспорта и коммуникаций, а также объектов военного назначения, способные вызвать нарушения жизнедеятельности населения, функционирования объектов экономики, систем государственного управления, окружающей среды. Т.в. определяются назначением объектов техносферы и создаваемых ими опасностей - энергетических, информационных, биологических; они различаются длительностью (краткосрочные, длительные, циклические), степенью (сверхслабые, слабые, сильные, сверхсильные), допустимостью (допустимые, недопустимые), контролируемостью (контролируемые, неконтролируемые).
Наука предложила нам много специфичных способов для управления поведением, мыслями и чувствами человека. Это техногенные методы, которые используют: нижепороговое раздражение, инфразвук, ультразвук, сверхвысокочастотное излучение (СВЧ), торсионное излучение, ударные волны.
При нижепороговом раздражении - используются свойства различных очень слабых (т. е. нижепороговых) раздражителей (слова или картинки), которые практически не воспринимаются сознанием, но глубоко внедряются в подсознания, поскольку критика со стороны сознания полностью отсутствует. Такие воздействия могут совершенно незаметно ориентировать мышление и поведение человека в конкретном направлении. Особенно подвержены таким внушением сердечники и потенциальные сердечники. Удобнее всего внедряться через аудиальный (слуховой) и визуальный (зрительный) каналы. На музыку посредством микшера накладывается неоднократно повторяемый словесный текст внушения, но с замедлением в десять - пятнадцать раз. Транслируемые таким образом слова воспринимаются, как глухой вой, и после наложения становятся совершенно незаметными. При визуальном внедрении в подсознание в запись видеофильма вклинивают очень короткие (0,04с) врезки картинок внушаемого текста или образа, упорно повторяемые через каждые 5с.
При ультразвуке используют, как тепловые, так и механические воздействия упругих колебаний с частотой выше 100 кГц. Даже малая интенсивность подобных концентрированных колебаний значительно влияет на мыслительные структуры и нервную систему, вызывая головную боль, головокружение, расстройство зрения, дыхания, конвульсии, а иногда и отключение сознания. Прокалывание избранных участков мозга хорошо сфокусированным ультразвуком применяется для невозвратного изъятия из памяти каких-то воспоминаний. Ультразвук используется для подавления воли, угнетения иммунной системы, ухудшения самочувствия, приведение человека в пассивное состояние. Импульсами ультразвукового излучения можно остановить сердце любого человека. При этом смерть для окружающих будет выглядеть естественной, при вскрытии трупа насильственной смерти не обнаруживается. Субъективно ультразвук ощущается, как некоторая вибрация тела и органов.
При инфразвуке на человека оказывает влияние механический резонанс упругих колебаний с частотами ниже 16 Гц, обычно не воспринимаемыми на слух. Самым опасным считается промежуток от 6 до 9 Гц. Психотронные эффекты сильнее всего проявляются на частоте 7 Гц, созвучной альфа-ритму природных колебаний мозга, причем любая умственная работа при этом делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Звук малой интенсивности вызывает тошноту и звон в ушах, а также ухудшает зрение и безотчетный страх. Звук средней интенсивности расстраивает органы пищеварения и мозг, рождая паралич, общую слабость, а иногда слепоту. Упругий мощный инфразвук способен повредить и даже остановить сердце. Обычно неприятные ощущения начинаются со 120 дБ, травмирующие со 130 дБ.
Инфрачастоты около 12 Гц при мощности 85-110 дБ наводят приступы морской болезни, головокружение, а колебания с частотой от 15-18 Гц при той же интенсивности внушают чувство беспокойства, неуверенности и панического страха.
Сверхвысокочастотное излучение (СВЧ) - это электромагнитное излучение, которое воздействуя на биотоки, имеющие частоту от 1 до 35 Гц вызывает нарушение восприятия реальности, подъем и снижение тонуса, усталость, тошноту, головную боль, полную стерилизацию инстинктивной сферы, повреждение сердца, мозга и центральной нервной системы. Волны активно модулированные в частотах альфа-ритма мозга, способны вызвать необратимые « заскоки » в поведении, шизофрению. СВЧ излучения, модулированные речью, внедряют информацию прямо в мозг, поэтому люди слышат голоса операторов, которые работают с ними, при этом любая психообработка подсознания ускоряется. В качестве антенн для передатчиков таких волн используются телефонные и радиорелейные проводки, трубы канализации и отопления, телевизор, телефон, противопожарная сигнализация. Под воздействием СВЧ излучения возникает усталость, тошнота, головная боль, может повреждаться сердце, мозг, центральная нервная система. Направленное СВЧ облучение вызывает судороги ног, боли в ушах, жжение в подошвах ног, рези в глазах, щелчки в «гудящей» голове, при ударах в носоглотку вызывает кашель, чихание, насморк, аритмию сердца, онемение рук. Это частоты от 3 ГГц до 30 ГГц с длиной волны от 1 см до 10 см.
Частоты от 30 ГГц до 300 ГГц с длиной волны от 1 мм до 1 см сильно влияют на центральную нервную систему, приводят к патологическим отклонениям внутренних органов, человек, находящийся в диапазоне этих частот, трудно себя контролирует, эти частоты вызывают агрессию и могут подтолкнуть человека на неблаговидный поступок в глазах окружающих. Это так называемое «нелетальное оружие» очень хорошо применяется для создания локальных войн, для создания межнациональных конфликтов.
2.1 Последствия техногенного воздействия
Человек всегда использовал окружающую среду в основном как источник ресурсов, однако, в течение очень длительного времени его деятельность не оказывала заметного влияния на биосферу. Лишь в конце прошлого столетия изменения биосферы под влиянием хозяйственной деятельности обратили на себя внимание ученых. Эти изменения нарастали и в настоящее время обрушились на человеческую цивилизацию. Стремясь к улучшению условий своей жизни человечество постоянно наращивает темпы материального производства, не задумываясь о последствиях. При таком подходе большая часть взятых от природы ресурсов возвращается ей в виде отходов, часто ядовитых или не пригодных для утилизации. Это приносит угрозу и существованию биосферы, и самого человека.
Современное человечество использует не только огромные энергетические ресурсы биосферы, но и небиосферные источники энергии (например, атомной), ускоряя геохимические преобразования природы. Некоторые процессы, вызванные технической деятельностью человека, направлены противоположно по отношению к естественному ходу их в биосфере (рассеивание металлов, руд, углерода и др. биогенных элементов, торможение минерализации и гумификации, освобождение законсервированного углерода и его окисление, нарушение крупномасштабных процессов в атмосфере, влияющих на климат и т.п.).
В XX веке, бурное развитие энергетики, машиностроения, химии, транспорта привело к тому, что человеческая деятельность стала сравнима по масштабам с естественными энергетическими и материальными процессами, происходящими в биосфере. Интенсивность потребления человечеством энергии и материальных ресурсов растет пропорционально численности населения и даже опережает его прирост. В.И.Вернадский писал: "Человек становится геологической силой, способной изменить лик Земли". Это предупреждение пророчески оправдалось. Последствия антропогенной масшт(предпринимаемой человеком) деятельности особенно проявляется в истощении природных ресурсов, загрязнении биосфбиосферы отходами производства, разрушении природных экосистем, изменении структуры поверхности Земли, изменении климата. Антропогенные воздействия приводят к нарушению практически всех природных биогеохимических циклов. .
Загрязняющие вещества
Бактериальное загрязнение и ядовитые химические вещества (например, фенол) приводят к омертвению водоемов. Вредные вещества, поступающие в воды: нефть, нефтепродукты (в результате нефтедобычи, транспортировки, переработки, использования нефти в качестве топлива и промышленного сырья), токсичные синтетические вещества (применяющиеся в промышленности, на транспорте, в коммунальнобытовом хозяйстве), металлы (ртуть, свинец, цинк, медь, хром, олово, марганец). Одним из видов загрязнения является тепловое загрязнение (электростанции, промышленные предприятия часто сбрасывают подогретую воду в водоем, что уменьшает количество кислорода, увеличивает токсичность примесей, нарушает биологическое равновесие).
С речным стоком, а также от морского транспорта, в моря поступают болезнетворные отходы, нефтепродукты, соли тяжелых металлов, ядовитые органические соединения, в т.ч. пестициды. .
Загрязнение почвы
Загрязнение почвенного покрова ртутью (с ядохимикатами и отходами промышленных предприятий), свинцом (при выплавке свинца и от автотранспорта), железом, медью, цинком, марганцем, никелем, алюминием и другими металлами (вблизи крупных центров черной и цветной металлургии), радиоактивными элементами (в результате выпадения осадков от атомных взрывов или при удалении жидких и твердых отходов промышленных предприятий, атомных станций или научно-исследовательских институтов, связанных с изучением и использованием атомной энергии), стойкими органическими соединениями, применяемыми в качестве ядохимикатов. Они накапливаются в почве и воде и, главное, включаются в экологические пищевые цепи: переходят из почвы и воды в растения, в животных, и в итоге переходят в организм человека с пищей. Неумелое и бесконтрольное использование любых удобрений и ядохимикатов приводит к нарушению круговорота веществ в биосфере.
Загрязнение атмосферы
Атмосфера внешняя оболочка биосферы. По данным ученых ежегодно в мире в результате деятельности человека в атмосферу поступает 25,5 млрд. т оксидов углерода, 190 млн. т оксидов серы, 65 млн. т оксидов азота, 1,4 млн. т фреонов, органические соединения свинца, углеводороды, в том числе канцерогенные, большое количество твердых частиц (пыль, копоть, сажа).
Произодственный процесс (выброс пыли млн.т/год) 1. Сжигание каменного угля 93,600 2. Выплавка чугуна 20,210 3. Выплавка меди (без очистки) 6,230 4. Выплавка цинка 0,180 5. Выплавка олова (без очистки) 0,004 6. Выплавка свинца 0,130 7. Производство цемента 53,370
Над городами и промышленными районами в атмосфере возрастает концентрация газов. Загрязненный воздух вреден для здоровья. Кроме того, вредные газы, соединяясь с атмосферной влагой и выпадая в виде кислых дождей, ухудшают качество почвы и снижают урожай. Глобальное загрязнение атмосферного воздуха сказывается на состоянии природных экосистем, особенно зеленого покрова нашей планеты.
Основная причина загрязнения атмосферы сжигание природного топлива и металлургическое производство. Среди загрязняющих веществ выделяется сернистый ангидрид ядовитый газ, легко растворимый в воде. Концентрация сернистого газа в атмосфере особенно высока в окрестностях медеплавильных заводов. Он вызывает разрушение хлорофилла, недоразвитие пыльцевых зерен, засыхание и опадание листьев, хвои. В результате сжигания различного топлива в атмосферу ежегодно выбрасывается около 20 миллиардов тонн углекислого газа. Антропогенные выбросы углекислого газа превышают естественные и составляют в настоящее время большую долю его количества, нарушают прозрачность атмосферы, а следовательно ее тепловой баланс. .
Загрязнение гидросферы
Вода основа жизненных процессов в биосфере.
Огромное количество воды используется в промышленности. На выплавку 1 т стали необходимо 200 м3. На производство 1 т бумаги требуется 100 м3, на изготовление 1 т синтетического волокна от 2500 до 5000 м3. Промышленность поглощает 85% всей воды, расходуемой в городах. Постоянное увеличение водопотребления на планете ведет к опасности , что обуславливает необходимость разработки мероприятий по рентабельному использованию водных ресурсов.
Кроме высокого уровня расхода, нехватки воды вызывается ее растущее загрязнение вследствие сброса в реки отходов промышленности и особенно химического производства и коммуникационных сточных вод.
2.2 Классификация внешних воздействующих факторов
Для обеспечения надежной работы сложных систем необходимо обеспечить надежную работу входящих в них простых элементов, это зависит от умения оценивать ожидаемое воздействие внешней среды.
В зависимости от характера воздействий на изделия внешние воздействующие факторы (ВВФ) делят на семь классов: механические, кинематические и другие природные ВВФ, биологические, радиационные, ВВФ электромагнитных полей, ВВФ специальных сред, термические. Каждый класс в зависимости от физической, биологической или химической сущности явлений, лежащих в основе ВВФ, делят на группы, а каждую группу - на виды, с соответствующими характеристиками.
Для элементов технических систем, расположенных на земной поверхности, определяющими и дестабилизирующими внешними факторами являются климатические. Класс климатических факторов подразделяют на группы и виды факторов (табл. 3.1).
Таблица 3.1
Класс климатических и других природных ВВФ
Для конкретных типов или групп технических изделий виды воздействующих климатических факторов и их значение устанавливают в зависимости от макроклиматических районов, в которых будут эксплуатироваться системы.
Формирование климата обусловливается воздействием режима солнечной радиации, циркуляции атмосферного воздуха, влагооборота, физико-географических особенностей, воздействием человека, а также географическим положением территории. Основные характеристики климатических районов даны в табл.3.1.
Воздействие климатических факторов вызывает определенного вида отказы, интенсифицирует потоки отказов, возникающих в результате случайных перегрузок, несовершенства структурной схемы машины и др.
На машины, механизмы и аппараты технических систем при эксплуатации на открытом воздухе действуют климатические факторы и атмосферные явления, которые вызывают изменение физических и химических свойств конструкционных и эксплуатационных материалов.
Ухудшение эксплуатационных свойств материалов и условий работы механизмов машин вызывает пусковые и нагрузочные отказы и ускоряет появление внезапных и постепенных отказов.
Поскольку под действием климатических факторов снижается надежность элементов систем (прежде всего, изменяются свойства конструкционных и эксплуатационных материалов), следует рассмотреть влияние климатических факторов на эти материалы.
3.Количественные меры техногенного воздействия
Традиционный подход к обеспечению безопасности при эксплуатации технических систем и технологий базируется на концепции "абсолютной безопасности" - ALAPA (аббревиатура от "As Low As PracticabLe AchievabLe": "настолько низко, насколько это достижимо практически"). То есть внедрение всех мер защиты, которые практически осуществимы. Как показывает практика, такая концепция неадекватна законам техносферы. Эти законы имеют вероятностный характер, и абсолютная безопасность достигается лишь в системах, лишенных запасенной энергии. Требование абсолютной безопасности, подкупающее своей гуманностью, оборачивается трагедией для людей, потому что обеспечить нулевой риск в действующих системах невозможно, и человек должен быть ориентирован на возможность возникновения опасной ситуации, т.е. ориентирован на соответствующий риск.
Современный мир отверг концепцию абсолютной безопасности и пришел к концепции "приемлемого" (допустимого) риска. Это понятие произошло от принятого в современной научной литературе термина - "принцип приемлемого риска", известного как принцип ALARA (аббревиатура от "As Low As ReasonabLe AchievabLe": "настолько низко, насколько это достижимо в пределах разумного", учитывая социальные и экономические факторы). То есть если нельзя создать абсолютно безопасные технологии, обеспечить абсолютную безопасность, то, очевидно, следует стремиться к достижению хотя бы такого уровня риска, с которым общество в данный период времени сможет смириться.
В силу этих обстоятельств в промышленно развитых странах, начиная с конца 70-х - начала 80-х гг., в исследованиях, связанных с обеспечением безопасности, начался переход от концепции "абсолютной" безопасности к концепции "приемлемого" риска. Степень внедрения этой концепции в практическую деятельность сегодня различна в разных странах и в некоторых из них уже введена в законодательство. Например, в Нидерландах эта концепция в 1985 г. была принята парламентом страны в качестве государственного закона. Согласно ему, вероятность смерти в течение года для индивидуума от опасностей, связанных с техносферой, >10-6 считается недопустимой, а <10-8 - пренебрежимой. "Приемлемый" уровень риска выбирается в диапазоне 10-6-10-8 в год, исходя из экономических и социальных причин. Для сравнения: риск смерти человека, равный 10-6, соответствует риску, которому он подвергается в течение своей поездки на автомобиле на расстояние в 100 км или полете на самолете на расстояние 650 км, или, если он выкуривает 3/4 сигареты, или в течение 15 мин занимается альпинизмом и т.д.
В Нидерландах при планировании промышленной деятельности, наряду с географическими, экономическими и политическими картами, используются и карты риска для территории страны. В этих условиях, чтобы построить промышленное предприятие и ввести его в эксплуатацию, проектировщикам требуется количественно определить уровень риска его эксплуатации и доказать правительственным органам приемлемость этого риска. При лицензировании нового крупного промышленного предприятия также требуется предоставить топографическую карту риска, которому будет подвергаться человек, оказавшийся в зоне расположения этого предприятия. На этой карте должны быть указаны замкнутые кривые равного риска, каждая из которых соответствует следующим численным значениям вероятности смерти индивидуума в течение года: 10-4, 10-5, 10-6, 10-7. Требования такого же рода предъявлены и к уже действующим предприятиям.
Проблема уменьшения риска решается в Нидерландах настолько активно и последовательно, насколько это возможно при нынешнем уровне знаний. Основные принципы такой деятельности закреплены в правительственной программе управления риском, которая является составной частью общей программы по защите окружающей среды.
Эксперты стараются определить риск всесторонне. Учитывают индивидуальный риск, социальный риск и даже риск для экосистем. Первый задается вероятностью гибели отдельного человека, второй - соотношением между количеством людей, которые могут погибнуть при одной аварии, и вероятностью такой аварии, а третий - процентом биологических видов экосистемы, на которых скажется вредное воздействие. Рассматриваются не только события, приводящие к мгновенной смерти, но и факторы, дающие отдаленные последствия - например, использование пестицидов в сельском хозяйстве или загрязнение окружающей среды. Разработаны сложные комплексы компьютерных программ, способные вычислить вероятность аварии на предприятии, определить величину и характер опасных выбросов, учесть метеорологические условия, рельеф местности, расположение дорог и населенных пунктов и в конечном счете построить карту распределения риска.
Существует уровень риска, который можно считать пренебрежимо малым. Если риск от какого-то объекта не превышает такого уровня, нет смысла принимать дальнейшие меры по повышению безопасности, поскольку это потребует значительных затрат, а люди и окружающая среда из-за действия иных факторов все равно будут подвергаться почти прежнему риску. С другой стороны, есть уровень максимального приемлемого риска, который нельзя превосходить, каковы бы ни были расходы. Между двумя этими уровнями лежит область, в которой и нужно уменьшать риск, отыскивая компромисс между социальной выгодой и финансовыми убытками, связанными с повышением безопасности.
Решение о том, какой уровень риска считать приемлемым, а какой нет, носит не технический, а политический характер и во многом определяется экономическими возможностями страны. Правительство и парламент Нидерландов законодательно установили такие уровни. Максимальным приемлемым уровнем индивидуального риска (уже об этом мы говорили) считается величина 10-6 в год. Иными словами, вероятность гибели человека в течение года не должна превышать одного шанса из миллиона. Пренебрежимо малым считается индивидуальный риск 10-8 в год. Для факторов, которые приводят к отдаленным опасным последствиям и не имеют порога действия, приняты эти же нормы. Если такие факторы сказываются лишь на превышения порога (например, предельно допустимой концентрации вредного вещества), то максимальный приемлемый уровень риска соответствует порогу. Максимальным приемлемым уровнем риска для экосистем считается тот, при котором может пострадать 5% видов биогеоценоза.
Два конкретных примера того, как работают такие нормы на практике. Голландская компания "GeneraL ELectric PLastics" обратилась за разрешением на расширение производства на одном из своих заводов. На этот завод по железной дороге привозилось примерно 600 т хлора в неделю, а в качестве промежуточного реактива использовался фосген. Жители расположенного в 600 м поселка возражали против такого разрешения, поскольку боялись увеличения риска катастрофы. Эксперты провели расчет, и оказалось, что вклад фосгена в общий риск, создаваемый заводом, совсем не велик. Зато расширение завода неминуемо приводило к увеличению объемов хранения и перегрузки хлора, в результате чего значительная часть поселка могла оказаться в зоне, где риск превышал 10-7. Из этой ситуации был найден довольно неожиданный выход: чтобы сделать завод более безопасным, требовалось не просто расширить его, но и начать собственное производство хлора. Тогда исчезла бы угроза, связанная с перевозкой и хранением этого ядовитого газа, и общая безопасность предприятия даже возросла бы. Такой выход устроил и местные власти, и руководителей компании.
Другой случай произошел на юго-востоке Голландии, где расположено крупное химическое предприятие, выпускающее среди прочего до полумиллиона тонн аммиака и акрилонитрита в год и отстоящее от ближайших поселков всего на 200 м. Когда местные власти предложили план застройки местности между поселком и предприятием, по существующим правилам был проведен анализ уровня риска в этой зоне. На территории завода находилось около 35 различных объектов, 10 из которых вносили главный вклад в общую угрозу. Каждый из них был тщательно изучен. Неожиданно обнаружилось, что многие считавшиеся раньше весьма опасными установки на самом деле не играют той роли, которую им приписывали. Зато недооценивалась опасность, связанная с хранилищами аммиака. Выяснилось, что часть новой застройки попадает в зону с высоким уровнем риска. Эксперты дали две рекомендации: руководству завода принять меры по снижению риска, местным властям ограничить строительство на территориях, примыкающих к заводу. Жители поселков с энтузиазмом приняли первую часть рекомендаций и с негодованием - вторую. После обсуждения в парламенте было решено в этот раз позволить строительство в зоне, где риск не превышает 10-6, но в будущем ориентироваться на линию, на которой риск составляет 10-8, то есть пренебрежимо мал.
Специалисты из разных стран спорят о том, насколько правильны и объективны используемые в Нидерландах методы расчета, насколько точны их карты, насколько оправдан поиск компромисса между выгодой и безопасностью. Рядовым жителям - неспециалистам, судить об этом трудно. Зато они чувствуют, что государство не на словах, а на деле заботиться об их жизни, так что они могут доверять самому подходу к проблеме - честному и действенному.
Конечно, Нидерланды надо рассматривать как пример страны, где наиболее широко используются вероятностные методы в практической деятельности по обеспечению безопасности населения от риска при эксплуатации промышленных объектов. В других странах масштабы использования концепции "приемлемого" риска в законодательстве более ограничены, но во всех этих странах существует тенденция к ее все более полному применению. Например, в ФРГ концепция "приемлемого" риска является основой, на которой развиваются научные основы в области безопасности. Полученные при этом результаты используются для повышения безопасности и минимизации риска, а не для достижения общественного признания определенной технологии.
Поскольку границы оправданного риска трудно рационально обосновать, при решении расчетных или эксплуатационных технических задач следует использовать сравнение с риском в аналогичных ситуациях. При этом в анализе следует принимать во внимание наиболее неблагоприятный случай (правда, чтобы не впадать в крайности, рисуя себе нереальные ужасные картины, необходимо постоянно опираться на здравый смысл). Установленный таким образом крайне неблагоприятный случай угрозы нужно сравнить по частоте и величине с уже ранее имевшими место аналогичными рисками. При этом необходимо учитывать, что на частоту влияют как пространственная, так и временная протяженность рассматриваемых явлений. Кроме того, нужно учитывать продолжительность каждого события и степень стабильности исходных параметров.
Условия и вид деятельности |
10-7 чел/год |
|
Аварии автомашин |
2700 |
|
Огонь и взрывы |
400 |
|
Водоемы |
280 |
|
Обращение с механизмами |
100 |
|
Воздушное сообщение |
75 |
|
Электричество |
51 |
|
Молния |
5,5 |
|
Общественный транспорт |
0,45 |
|
Радиоактивное излучение |
0,05 |
|
Вид деятельности |
10-7 чел/ч |
|
Профессиональная деятельность |
3 -0,2 |
|
Участие в движении транспорта |
10 - 0,5 |
|
Занятие домашним хозяйством и свободное время |
0,5 |
|
Тяжелые заболевания |
3 -0,01 |
Из таблиц видно, что риск летального исхода существует на уровне 10-7 и выше на человека в год. Таким образом, при проектировании и эксплуатации технических устройств риск на уровне 10-7 чел/год может быть принят допустимым при следующих условиях:
· - проблема риска проанализирована глубоко и всесторонне;
· - анализ проведен до принятия решений и подтвержден имеющимися данными в определенном временном интервале;
· - после наступления неблагоприятного события анализ и заключение о риске, полученные на основании имевшихся данных, не меняются;
· - анализ показывает, и результаты контроля все время подтверждают, что угроза не может быть уменьшена ценой оправданных затрат.
Принятую оценку допустимого риска и указанные условия нужно выполнять строго и рассматривать как первый шаг к количественному сравнению. При необходимости в дальнейшем, когда будет накоплено больше опыта, эта оценка может быть изменена. Установленную оценку допустимого риска не следует, однако, воспринимать как оправданный предел; она должна служить лишь основой относительной шкалы принимаемых рисков.
Список литературы
1. Алтунин А.Т., Гражданская оборона: учебное пособие /Под. ред. А.Т. Алтунина. - М.: 2009.
2. Артюнина Г.П., Игнатькова С.А. Основы медицинских знаний: Здоровье, болезнь и образ жизни. - М.: Изд-во «Академический проспект», 2008. - 560 с.
3. Арустамов Э.А., Безопасность жизнедеятельности / Э.А. Арустамов. - М.: Изд.центр Акад., 2009.
4. Бароненко В.А., Рапопорт Л.А. Здоровье и физическая культура студента / В.А. Бароненко, Л.А. Рапопорт. - М.: Альфа - М, 2006.
5. Белов С.В., Безопасность жизнедеятельности: учеб. для вузов / Под общ. ред. Белова С.В. 2-е изд., испр. и доп./ С.В. Белов, А.Ф. Козьяков, Л.Л. Морозова, А.В. Ильницкая. - М.: Академия, 2007.
6. Кукин П.П., Лапин В.Л. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (Охрана труда): Учебное пособие для вузов / П.П.Кукин В.Л. Лапин Н.Л. Пономарев. - М.: Высш. шк., 2006.
7. Хван Т.А. Безопасность жизнедеятельности: Учебное пособие для студентов вузов / Т.А. Хван, П.А. Хван. - Ростов-на-Дону: Феникс, 2007.
Размещено на Allbest.ru
Подобные документы
Понятие и источники техногенных чрезвычайных ситуаций. Причины техногенных чрезвычайных ситуаций, негативные факторы при их возникновении. Классификация чрезвычайных ситуаций по масштабу распространения, по темпу развития и по природе происхождения.
реферат [32,1 K], добавлен 23.02.2009Виды техногенных катастроф и их причины. Классификация чрезвычайных ситуаций техногенного характера. Авария на Саяно-Шушенской ГЭС как пример крупной техногенной катастрофы в России. Техногенные катастрофы за рубежом. Проблема атомной энергетики в США.
реферат [50,5 K], добавлен 25.06.2013Сущность и классификация чрезвычайных ситуаций по источникам их возникновения и опасным явлениям. Источники природных, техногенных, биолого-социальных чрезвычайных ситуаций. Характеристика очагов поражения, возникающих в результате аварий, катастроф.
курсовая работа [833,0 K], добавлен 17.02.2015Характеристика техногенных опасностей и последствия их воздействия на природную среду. Техногенные опасности в экономике РФ, основные факторы их возникновения. Мероприятия по защите населения и территорий от чрезвычайных ситуаций техногенного характера.
реферат [33,6 K], добавлен 29.03.2010Методы повышения безопасности сосудов, работающих под давлением. Параметры испытания сосудов. Причины аварий и катастроф на объектах экономики. Обеспечение личной безопасности при техногенных авариях. Типы чрезвычайных ситуаций техногенного характера.
контрольная работа [29,0 K], добавлен 06.02.2012Безопасность в системе "человек-среда обитания-машина-ЧС". Опасные и вредные производственные факторы. Производственная санитария. Понятие и классификация чрезвычайных ситуаций. Изменение экологической обстановки. Причины и стадии техногенных катастроф.
контрольная работа [40,9 K], добавлен 13.06.2014Общемировой ущерб от чрезвычайных ситуаций. Условия возникновения чрезвычайных ситуаций техногенного характера. Техногенная авария на Чернобыльской атомной электростанции. Виды катастроф. Аварии с выбросом биологически опасных веществ, их последствия.
реферат [51,7 K], добавлен 12.08.2013Условия формирования и классификация техногенных чрезвычайных ситуаций. Характеристика чрезвычайных ситуаций техногенного происхождения: аварии на химических, радиационных, пожаро- и взрывоопасных объектах, на транспорте, гидротехнических сооружениях.
реферат [1,0 M], добавлен 09.04.2014Мероприятия по предупреждению возникновения и развития чрезвычайных ситуаций. Цели, задачи и функциональные подсистемы деятельности Единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций. Порядок реагирования на прогнозы.
курсовая работа [6,7 M], добавлен 17.02.2015Источники чрезвычайных ситуаций, потери и ущерб как их следствие. Классификация чрезвычайных ситуаций. Система защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера. Зонирование территорий по видам опасности.
реферат [46,7 K], добавлен 19.09.2012