Травмы на производстве

Основные источники и причины получения механических травм на производстве. Периодичность сдачи экзаменов по электробезопасности персонала, работающего в действующих условиях. Технические мероприятия, обеспечивающие безопасность работ по снятию напряжения.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 22.10.2012
Размер файла 57,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Основные источники и причины получения механических травм на производстве

Основные источники инфра и ультразвука на производстве и их действие на человека

Основные сведения о пожаре и взрыве

Периодичность сдачи экзаменов по электробезопасности персонала, работающего в действующих условиях

Технические мероприятия, обеспечивающие безопасность работ по снятию напряжения

Список использованной литературы

Основные источники и причины получения механических травм на производстве

Источником механических травм могут быть: движущиеся механизмы и машины, незащищенные подвижные элементы производственного оборудования, передвигающиеся изделия, заготовки, разрушающиеся конструкции, острые кромки, заусенцы и шероховатости на поверхности заготовок, изделий, инструментов и оборудования, подъемно-транспортное оборудование, а также падение предметов с высоты. К перечисленным выше источникам можно добавить воздействия, связанные с коррозией металлов, являющейся причиной ослабления прочности конструкции и способствующей внезапному ее разрушению; действием сосудов, работающих под давлением, которые в случае разрушения воздействуют на окружающую среду и людей; падением на скользких поверхностях, действием нагрузок при подъеме тяжестей и т.д.

Наиболее типичным источником механических травм являются риски, заусеницы, выступы на движущихся (как правило, вращающихся) частях механизмов и инструментов. Чаще всего они расположены в следующих трех основных местах:

точка операции - точка, в которой на материале выполняются следующие виды работ: резка, формовка, штамповка, тиснение, сверление, формирование заготовок и т.д.;

приводы и устройства, передающие механическую энергию, - любые компоненты механической системы, передающие энергию выполняющим работу частям машины, - маховики, шкивы, ремни, шатуны, муфты, кулачки, шпиндели, цепи, кривошипы и шестерни и др.;

прочие движущиеся части - все части машины, которые двигаются, пока машина находится в работе, такие как возвратно-поступательные, вращающиеся и поперечно движущиеся части, а также механизмы подачи и вспомогательные части машины.

Широкое разнообразие видов механического движения и действий, которые могут представлять опасность для рабочих, включают в себя движение вращающихся деталей, возвратно-поступательных плечей, движущихся ремней, шестерней, режущих зубьев и любых частей, которые могут ударить, толкнуть или оказать другое динамическое воздействие. Различные типы механического движения и действий присущи почти всем машинам, и понимание этого - первый шаг к защите от опасности, которую они могут представлять.

Существует три основных типа движения: вращательное, возвратно-поступательное и поперечное. Вращательное движение может быть опасным, т.к. даже гладкие медленно вращающиеся валы могут захватить одежду и вывернуть руку. Телесные повреждения, вызванные контактом с вращающимися частями, могут быть очень серьезными. Втулки, муфты, кулачки, маховики, наконечники валов, шпиндели, горизонтальные или вертикальные валы являются примерами общепринятых вращающихся механизмов, которые могут представлять опасность. Существует дополнительная опасность, когда на вращающихся частях машин и механизмов имеются прорези, заусенцы, выступающие болты, шпонки, установочные винты. Зоны захвата создаются вращающимися частями машины. Существуют три основных типа зон захвата:

Части с параллельными осями могут вращаться в разных направлениях. Эти части могут соприкасаться (создавая, таким образом, точку захвата) или находиться вблизи друг от друга. В этом случае материал, который подается между валиками, создает точки захвата. Эта опасность является общей для машин и механизмов со сцепленными шестернями, вращающимися вальцами и каландрами.

Второй тип точки захвата создается между вращающимися и тангенциально (по касательной) двигающимися частями: точка соприкосновения между трансмиссионной лентой и ее шкивом, цепью и звездочкой, зубчатой рейкой и шестерней.

Точки захвата также могут возникать между вращающимися и неподвижными частями, вызывая режущее, дробящее и обдирающее действие. В качестве примера можно привести маховики со спицами, резьбовые конвейеры или окружность абразивного колеса с неправильно отрегулированной опорой.

Возвратно-поступательное движение может быть опасным, поскольку во время движения вперед-назад или вверх-вниз рабочий может получить удар или попасть между движущейся частью и неподвижной частью. Поперечное движение (движение по прямой непрерывной линии) создает опасность, т. к. рабочий может получить удар или быть захвачен движущейся частью. Существуют четыре основных типа действий механизмов и инструмента технологического оборудования: резка, пробивка (удар), срезание и гибка. Режущее действие может быть связано с вращательным, возвратно-поступательным или поперечным движением. Режущее действие создает опасность, т. к. в точке операции могут быть повреждены пальцы, голова и руки, а отскочившая стружка может попасть в глаза и лицо. Типичными примерами машин, представляющих опасность с точки зрения режущего действия, являются ленточные и круглые пилы, расточные и сверлильные станки, токарные и фрезерные станки. Ударное действие (пробивка) возникает тогда, когда сила прилагается к салазкам (плунжеру) с целью вырубки заготовки, выбивки или штамповки металла или других материалов. Опасность от такого типа действий возникает в точке операции, где материал вставляется, удерживается, а затем вынимается вручную. Типичными машинами, использующими ударное действие, являются прессы с механическим. Типовая штамповочная приводом. Срезывающее действие возникает при приложении силы к салазкам или ножу, чтобы срезать или сколоть кромку металла или другого материала. Опасность возникает в точке операции, где материал вставляется, удерживается, а затем вынимается. Типичными примерами машин и механизмов, используемых для подобных операций, могут служить механические, гидравлические или пневматические ножницы. Сгибающее действие возникает тогда, когда сила прилагается на салазки с целью профилирования, вытягивания и штамповки металла и других материалов. Опасность возникает в точке операции, где материал вставляется, удерживается и затем вынимается. Оборудование, использующее сгибающее действие, включает прессы с механическим, пневматическим, гидравлическим приводами и станки для сгибания труб). Источником механических травм может быть ручной (отвертки, ножи, напильники, зубила, молотки, пилы, рубанки и т.д.) и механизированный (дрели, перфораторы, рубанки, пилы и т.д. с электро- и пневмоприводом) слесарный, столярный и монтажный инструмент. Как правило, этими видами инструментов повреждаются пальцы и руки при их попадании в зону обработки материала, а также глаза отлетающими из зоны обработки осколками, стружкой, пылью.

Другими причинами получения механических травм могут являться:

падение на скользком полу, т. к. иногда на полу могут оказаться пятна разлитого или вытекшего из оборудования масла;

падение с высоты или неустойчивого, колеблющегося основания, на котором стоит человек при выполнении работы;

технологический транспорт (вагонетки, электрокары, погрузчики), передвигающиеся в рабочей зоне, цеху, на территории предприятия;

промышленные роботы и манипуляторы при попадании человека в зону их действия;

а также целый ряд других разнообразных, но менее типичных причин, например, разрушение трубопроводов и емкостей, находящихся под давлением, падение предметов с высоты, обрушение строительных конструкций и т.д.

В производстве широко используются подъемно-транспортное оборудование и машины, которые являются наиболее типичными источниками получения механических травм. Число видов и типов машин и устройств для подъемно-транспортных операций велико.

Подъемно-транспортные машины и устройства можно разделить на две большие группы: транспортирующие и грузоподъемные машины и устройства.

Транспортирующие машины предназначены для перемещения массовых грузов непрерывным способом. К ним относятся средства горизонтального транспорта: ленточные и цепные конвейеры (транспортеры), винтовые конвейеры (шнеки), пневматические транспортные устройства для перемещения главным образом пылевидных материалов. Кроме того, широко применяется трубопроводный транспорт. Горизонтальное перемещение материалов возможно также средствами периодически действующего транспорта с помощью подвесных дорог, рельсовым и безрельсовым транспортом (железнодорожными цистернами, вагонетками, автомашинами, автокарами и т.п.).

Примером средств горизонтального транспорта являются ленточные и цепные конвейеры, которые широко применяются в промышленности. Анализ травматизма показывает, что 90 % несчастных случаев на них происходит в момент устранения на ходу конвейера неполадок вследствие захвата частей тела и одежды набегающими движущимися частями оборудования. Поэтому на работающем конвейере запрещается исправлять смещение (сбег) ленты и устранять ее пробуксовку, убирать просыпавшийся и налипающий материал, подметать под конвейером.

К числу средств горизонтального непрерывного транспорта относятся винтовые конвейеры (шнеки). Их используют для транспортирования на относительно небольшие расстояния горячих, пылящих или выделяющих вредные испарения грузов, так как их конструкция может обеспечить достаточную герметичность.

К числу средств непрерывного транспорта без гибких тяговых органов относятся пневматические транспортные устройства. Транспортирующим агентом являются дымовые газы, нефтяные пары, водяной пар, воздух. Недостаток этого способа транспортирования - повышенный износ оборудования от эрозии, при этом лаже небольшая негерметичность может привести к значительным выбросам пыли и газа.

В качестве периодически действующего транспорта применяют автомашины и такие подъемно-транспортные устройства, как вагонетки, электрокары, приводимые в действие электродвигателями постоянного тока от аккумуляторов, автокары с бензиновым двигателем, самоходные электро- и бензопогрузчики для штабелирования штучных грузов, другие виды транспорта. Железнодорожный и речной транспорт занимает большое место среди других видов транспортирования сырья и материалов, а также готовой продукции. Грузоподъемными машинами являются подъемные устройства циклического действия с возвратно-поступательным движением грузозахватного органа в пространстве. Грузоподъемные машины можно разделить на подъемники и краны. Подъемники поднимают груз по определенной траектории, заданной жесткими направляющими. К подъемникам относятся домкраты, блоки, ручные лебедки, лифты (грузовые и для подъема людей). Кран - это грузоподъемная машина, предназначенная для подъема и перемещения груза, подвешенного с помощью грузового крюка или другого грузозахватного органа. Основные опасности, возникающие при эксплуатации подъемно-транспортных машин и устройств:

падение груза с высоты вследствие разрыва грузового каната или неисправности грузозахватного устройства (ГЗУ);

разрушение металлоконструкции крана (тягового органа - в конвейерных установках);

потеря устойчивости и падение стреловых самоходных кранов;

спадание каната или цепи с блока особенно при подъеме груза, кроме того при раскачке блока возможно соскальзывание каната или цепи с крюка;

самопроизвольное опускание груза при использовании ручных лебедок, при этом может иметь место травмирование как самим грузом, так и приводными рукоятками;

срыв винтовых, реечных и гидравлических домкратов, если они установлены на неустойчивом и непрочном основании или не вертикально (с наклоном), а также самопроизвольное опускание; ручные безрельсовые тележки могут являться источником травм при погрузке и разгрузке крупногабаритного груза. Подъемно-транспортные машины содержат большое количество разнообразных механизмов, обладающих комплексом механических опасностей, перечисленных выше.

Опасная зона подъемно-транспортной машины не является постоянной и перемещается в пространстве при перемещении всей машины или ее отдельных частей.

Основные источники инфра и ультразвука на производстве и их действие на человека

В биологическом отношении шум - это заметный стрессовый фактор, вызывающий срыв приспособительных реакций. Биологические последствия его действия: от функциональных нарушений регуляции центральной нервной системы (ЦНС) до морфологически выраженных разрушительных процессов в разных органах. Степень шумовой патологии зависит от интенсивности, нестационарности и продолжительности действия, состояния ЦНС, от индивидуальной чувствительности организма к шуму. Особенно чувствительны к шуму женский и детский организмы. Шум угнетает ЦНС, вызывает изменение скорости дыхания и пульса, может способствовать нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, гипертонической болезни. Достаточно полно изучена клиника профессиональных потерь слуха от шума (тугоухость). Основные симптомы профессиональной тугоухости - это постепенная потеря слуха на оба уха, первоначальное ограничение слуха в зоне 4000 Гц с последующим распространением на более низкие частоты, определяющие способность восприятия речи. Дополнительными признаками тугоухости может быть ряд непостоянных симптомов: звон и шум в голове, гиперемия барабанной перепонки, ее втянутость и т.п. Профессиональное снижение слуха связано с поражением слухового нерва, а его патологоанатомическая основа заключается в дегенеративных изменениях органа Корти и спирального ганглия. При шумовом воздействии у людей наблюдается нарушение регуляции мозгового кровообращения. Также шум может нарушать функцию сердечно-сосудистой системы. Он влияет на тонус периферических сосудов и особенно капилляров. Такая биологическая система, как орган слуха, при помощи шумовой нагрузки должна выполнять две цели:

обеспечивать организм сенсорной информацией, что позволяет ему приспособиться к окружающей обстановке (ориентирование: связь, избегание и т.п.);

обеспечить самосохранение, т.е. орган должен противостоять повреждающему воздействию входного сигнала.

В условиях шума эти цели вступают в противоречие. С одной стороны, орган слуха должен обладать высокой разрешающей чувствительностью к полезным сигналам, с другой, с целью приспособления к шуму слуховая чувствительность должна снижаться. Это приводит к противоречию в обеспечении функций. В шумовой обстановке организм вырабатывает компромиссное решение, которое выражается в виде снижения слуховой чувствительности, временного смещения порогов, т.е. внутренней адаптации органа слуха с одновременным снижением адаптационной способности организма в целом. Сравнительные исследования адаптации органа слуха у людей, еще не адаптированных к интенсивному шуму и у работающих в шуме несколько лет, показали, что временное смещение порогов последних менее выражено и наступает раньше. Нормально функционирующая система с хорошей подвижностью нервных процессов должна реагировать на звуковую нагрузку выраженным сдвигом порога. В этом плане низкий показатель - временное смещение порогов у лиц, впервые попавших в условия мощного шума, можно рассматривать как признак недостаточности или истощения нервной системы. Подобное явление отмечено у некоторых лиц, работающих длительное время в условиях шума, у которых наряду с неизменным слухом диагностируют все ведущие симптомы шумовой патологии (астеновегетативный синдром, астеническое состояние и др.). Можно предположить, что для целесообразного функционирования и существования органа слуха в условиях меняющегося характера шумового раздражителя должны быть механизмы адаптации, которые являются более быстротечными, чем временное смещение порогов. Подобные процессы перестройки в органе слуха, отражающие действие нестационарного акустического раздражителя и соизмеримые с его нестационарностью (порядка 10-100 мс), можно назвать динамической адаптацией.

Постоянное смещение порога слуховой чувствительности не отражает приспособленность органа слуха к шумовому воздействию, а является проявлением адаптиро-ванности организма в целом. В этом случае страдает функция органа, остается только адаптация организма в целом.

Выделяют три основных контура адаптивного поведения организма в целом, однако это не исключает наличия и других приспособительных механизмов. Утомление органа слуха можно рассматривать как промежуточное звено между временным смещением и постоянным смещением порогов. Утомлением какого-либо органа следует назвать процесс лишь в том случае, когда в нем происходят длительные изменения, нарушающие его нормальное функционирование. На этом же промежуточном уровне, как указывалось, отмечается «противоречие» органа организму в целом. Там, где затрагиваются интересы организма (происходят существенные затраты энергии), возникают расстройства его функции и могут развиваться неблагоприятные явления в организме в целом, такие как утомление, снижение работоспособности и т.п.

В производственных и многих других условиях в настоящее время все чаще встречаются шумы непостоянного характера. Они подразделяются на колеблющиеся во времени, прерывистые и импульсные. Колеблющимся во времени считается шум, уровень которого непрерывно меняется во времени. Этот вид шума встречается, когда одновременно работает несколько типов оборудования, включаемого на ограниченные промежутки времени, или при смене работы механизмов. Прерывистый шум, уровень которого резко падает до уровня фонового, причем длительность интервалов, в течение которых уровень остается постоянным и превышающим уровень фонового шума, составляет 1 с и более, можно характеризовать длительностью отрезков шума, длительностью пауз, а также различием уровней импульс - фон. Импульсный шум представляет собой последовательность звуковых сигналов длительностью менее 1 с, которые, помимо параметров, характерных для импульсов (длительность, время установления, уровень пика и амплитуда), можно оценивать по характеру распределения во времени и по различию уровней импульса - фон. При воздействии прерывистого шума часто чередующиеся короткие звуки (шумы) считаются более неблагоприятными, чем продолжительные регулярно чередующиеся шумы с достаточно длительными паузами. Увеличение длительности пауз в этом случае приводит к менее выраженному воздействию шума.

Сравнительное изучение постоянного и непостоянного шумов показало, что на уровне целого организма импульсный шум вызывает более неблагоприятное действие, чем постоянный. Эффективность воздействия меняющегося во времени шума выше, чем постоянного, что объясняется более значительным раздражающим эффектом и трудностью наступления адаптации к такого рода шумам. Действие непостоянного шума рассматривают как результат взаимодействия организма и меняющегося во времени раздражителя. Организм в этом случае вырабатывает стратегию, обеспечивающую минимальное (суммарное) биологическое действие шума, используя для этой цели динамическую адаптацию. Действие непостоянного шума можно рассматривать как интегральный результат, которому может быть дана однозначная оценка, отражающая влияние не каждого отдельно взятого шумового воздействия, а всей его последовательности.

С широким внедрением в промышленности технических средств, использующих ультразвук, возникла проблема воздействия на организм человека шумов в ультразвуковой зоне частот >20 кГц. Возможно неблагоприятное действие ультразвука через воздух. При этом отмечается ряд ранних неблагоприятных субъективных ощущений у рабочих, обслуживающих ультразвуковые установки: головные боли, усталость, бессонница, обострение обоняния и вкуса. Описана клиническая симптоматика у рабочих, обслуживающих ультразвуковые установки, характеризующаяся сначала функциональными, а затем органическими изменениями в центральной и периферической нервной системе, особенно в ее вегетативных структурах. В последних случаях страдает периферический нейрососудистый аппарат. Также отмечены нарушения в вестибулярном анализаторе. Ультразвук может воздействовать на работающих через волокна слухового нерва, которые проводят высокочастотные колебания, и специфически влиять на высшие отделы анализатора, а также на вестибулярный аппарат, который интимно связан со слуховым органом. Инфразвуковые шумы (акустические колебания ниже 16-20 Гц), создаваемые промышленным оборудованием, при длительном воздействии вызывают специфические реакции. Источниками инфразвука могут быть средства наземного, воздушного и водного транспорта, а также пульсации давления в газовоздушных смесях, перемещаемых технологическим оборудованием и т.п. Порог восприятия инфразвуковых колебаний для слухового анализатора составляет в диапазоне 1-30 Гц - 120-80 дБ, а болевой порог - 130-140 дБ. Считается, что болевое ощущение, независимо от частоты действующего шума, является защитной реакцией против перераздражения. Спектр шума, состоящий из низкочастотной и инфразвуковой энергии, может воздействовать на такие части тела, как грудь, живот, глаза и придаточные пазухи носа, вызывая неприятные ощущения и утомление. Низкочастотные звуковые колебания в значительной мере воспринимаются поверхностью тела - тельцами Пачини, т.е. теми же рецепторами, что и вибрация. Поэтому при интенсивности низкочастотного шума («воздушной вибрации»), превышающей 121-128 дБ, рекомендуют производить защиту всего организма. Считают, что инфразвук даже небольшой интенсивности оказывает такое же действие, как и вибрация низкой частоты. Изменение функции вестибулярного аппарата может быть самым значительным из физиологических реакций.

В зависимости от того, где находится источник звука - на открытом пространстве или в помещении, - для расчета уровня шума в расчетной точке (РТ) применяют различные формулы. В помещении уровень шума в расчетной точке складывается из прямых и отраженных от стен, пола и потолка звуковых волн. Для защиты от акустических колебаний (шума, инфра- и ультразвука) можно использовать следующие методы:

снижение звуковой мощности источника звука (уменьшение Lp);

размещение рабочих мест с учетом направленности излучения звуковой энергии (уменьшение G);

удаление рабочих мест от источника звука (увеличение г);

акустическая обработка помещений (увеличение В);

звукоизоляция (увеличение Д/,);

применение глушителей (увеличение дЈ);

применение средств индивидуальной защиты.

Снижение звуковой мощности источника звука (уменьшение Lp). Для снижения шума механизмов и машин применяют методы, аналогичные методам, снижающим вибрацию машин, т. к. вибрация является источником механического шума. Аэродинамический шум, вызываемый движением потоков воздуха и газа и обтеканием им элементов механизмов и машин, - наиболее мощный источник шума, снижение которого в источнике наиболее сложно. Для уменьшения интенсивности генерации шума улучшают аэродинамическую форму элементов машин, обтекаемых газовым потоком, и снижают скорость движения газа. Изменение направленности излучения шума (уменьшение G). При размещении установок с направленным излучением необходима соответствующая ориентация этих установок по отношению к рабочим и населенным местам, поскольку величина направленности может достигать 10...15 дБ. Например, отверстие воздухозаборной шахты вентиляционной установки или устье трубы сброса сжатого газа необходимо располагать так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места.

Удаление рабочих мест от источника звука (увеличение г). Увеличение расстояния от источника звука в 2 раза приводит к уменьшению уровня звука на 6 дБ.

Акустическая обработка помещения - это мероприятие, снижающее интенсивность отраженного от поверхностей помещения (стен, потолка, пола) звука. Для этого применяют звукопоглощающие облицовки поверхностей помещения и штучные (объемные) поглотители различных конструкций, подвешиваемые к потолку помещения. Поглощение звука происходит путем перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в пористом материале облицовки или поглотителя. Для большей эффективности звукопоглощения пористый материал должен иметь открытые со стороны падения звука незамкнутые поры. Звукопоглощающие материалы характеризуются коэффициентом звукопоглощения а, равным отношению звуковой энергии, поглощенной материалом, и энергии, падающей на него. Звукопоглощающие материалы должны иметь коэффициент звукопоглощения не менее 0,3. Чем это значение выше, тем лучше звукопоглощающий материал. Звукопоглощающие свойства пористых материалов определяются толщиной слоя, частотой звука, наличием воздушной прослойки между материалом и поверхностью помещения. Установка звукопоглощающих облицовок снижает уровень шума на 6...8 дБ в зоне отраженного звука (вдали от его источника) и на 2...3 дБ в зоне превалирования прямого шума (вблизи от источника). Несмотря на такое относительно небольшое снижение уровня шума, применение облицовок целесообразно по следующим причинам: во-первых, спектр шума в помещении меняется за счет большей эффективности (8... 10 дБ) облицовок на высоких частотах: он делается более глухим и менее раздражающим; во-вторых, становится более заметным шум оборудования, а следовательно, появляется возможность слухового контроля его работы, становится легче разговаривать, улучшается разборчивость речи. По этим причинам помещения концертных залов подвергают акустической обработке.

Штучные звукопоглотители применяют при недостаточности свободных поверхностей помещения для закрепления звукопоглощающих облицовок. Поглотители различных конструкций, представляющие собой объемные тела, заполненные звукопоглощающим материалом (тонкими волокнами), подвешивают к потолку равномерно по площади. Эффективность снижения шума штучными поглотителями рассчитывают по указанной выше формуле, принимая А = Апу где А и п - соответственно эквивалентная площадь звукопоглощения одного поглотителя и их количество. Для стандартных материалов облицовок и типов штучных звукопоглотителей значения коэффициентов звукопоглощения а и эквивалентной площади звукопоглощения Ах известны и содержатся в справочных данных по борьбе с шумом.

Звукоизоляция. При недостаточности указанных выше мероприятий для снижения уровня шума до допустимых значений или невозможности их осуществления применяют звукоизоляцию. Снижение шума достигается за счет уменьшения интенсивности прямого звука путем установки ограждений, кабин, кожухов, экранов. Сущность звукоизоляции состоит в том, что падающая на ограждение энергия звуковой волны отражается в значительно большей степени, чем проходит через него.

Звукоизоляция перегородки тем больше, чем она тяжелее (изготовлена из более плотного материала и толще) и чем выше частота звука.

Перегородки выполняют из бетона, кирпича, дерева и т.п. Наиболее шумные механизмы и машины закрывают кожухами, изготовленными из конструкционных материалов - стали, сплавов алюминия, пластмасс и др., и облицовывают изнутри звукопоглощающим материалом.

Защитные свойства экрана возникают из-за того, что при огибании прямой звуковой волной кромок экрана за ним образуется зона звуковой тени тем большей протяженности, чем меньше длина волны (выше частота звука). Т.к. экран защищает только от прямой звуковой волны, его применение эффективно только в области превалирования прямого шума над отраженным. Поэтому экраны надо устанавливать между источником шума и рабочим местом, если они расположены недалеко друг от друга. Звуковые экраны широко применяют не только на производстве, но и в окружающей среде, например для защиты от шума транспортных потоков зоны пешеходных дорожек, проходящих вдоль магистрали. В качестве экранов, снижающих уровень шума, используются лесозащитные полосы, поглощающие звук. Лесозащитные полосы должны быть сплошными, без промежутков, через которые может проникать шум. Для этого деревья высаживают в несколько рядов (чем шире полоса лесных насаждений, тем лучше) в шахматном порядке, снизу в зоне оголенной части ствола дерева высаживают кустарник. Эффективность снижения шума лесными насаждениями уменьшается зимой, когда деревья сбрасывают листву.

Глушители применяют для снижения аэродинамического шума. Глушители шума принято делить на абсорбционные, использующие облицовку поверхностей воздуховодов звукопоглощающим материалом; реактивные типа расширительных камер, резонаторов, узких отростков, длина которых равна Уд длины волны заглушаемого звука; комбинированные, в которых поверхности реактивных глушителей облицовывают звукопоглощающим материалом; экранные реактивные глушители в отличии от абсорбционных заглушают шум в узких частотных диапазонах и применяются для снижения шума источников с резко выраженными дискретными составляющими. Если таких составляющих несколько, глушитель выполняют в виде комбинации камер и резонаторов, каждый из которых рассчитан на заглушение шума определенного диапазона. Реактивные глушители широко используют для снижения шума выпуска выхлопных газов двигателей внутреннего сгорания

Экранные глушители устанавливают перед устьем канала для выхода воздуха в атмосферу или его забора (например, для вентиляционных или компрессорных установок, выброса сжатого газа и т.д.). Эффективность их тем выше, чем ближе они расположены к устью канала. Однако при этом увеличивается гидравлическое сопротивление для сброса и забора воздуха (газов), а следовательно, и время сброса. При расчете и установке таких глушителей ищут оптимальный вариант. Эффективность глушителей может достигать 30...40 дБ, при наличии в помещении одинаковых источников, удаление половины из них снижает уровень звука в помещении на 3 дБ. При наличии же в помещении источников звука, сильно различающихся по своей звуковой мощности, суммарный уровень звукового давления определяет в основном источник с наибольшей звуковой мощностью. Например, при наличии трех источников, создающих в отдельности уровень звукового давления 100, 80, 70 дБ суммарный уровень звукового давления будет равен:

Lz =101g(1010 +I08 -г107)*100дБ.

Таким образом, для радикального снижения уровня шума на рабочем месте нужно удалить или заглушить наиболее шумный источник. Так, удаление источника шума в 100 дБ уменьшит уровень шума немногим менее чем на 20 дБ.

Средства индивидуальной защиты. К СИЗ от шума относят ушные вкладыши, наушники и шлемы.

Вкладыши - мягкие тампоны из ультратонкого материала, вставляемые в слуховой канат. Их эффективность не очень высока и в зависимости от частоты шума может составлять 5„.15дБ.

Наушники плотно облегают ушную раковину и удерживаются на голове дугообразной пружиной. Их эффективность изменяется от 7 дБ на частоте 125 Гц до 38 дБ на частоте 8000 Гц.

Шлемы применяют при воздействии шумов очень высоких уровней (более 120 дБ). Они закрывают всю голову человека, т. к. при таких уровнях шума он проникает в мозг не только через ухо, но и непосредственно через черепную коробку.

Особенности защиты от инфра- и ультразвука. В принципе, для защиты от инфра- и ультразвука применимы методы для зашиты от шума, изложенные выше.

Для защиты от низких инфразвуковых частот звукоизоляция крайне неэффективна - требуются очень толстые и массивные звукоизолирующие перегородки. Также неэффективны звукопоглашение и акустическая обработка помещений. Поэтому основным методом борьбы с инфразвуком является борьба в источнике его возникновения.

Другими мероприятиями по борьбе с инфразвуком являются:

повышение быстроходности машин, что обеспечивает перевод максимума излучения в область слышимых частот, где становятся эффективными звукоизоляция и звукопоглощение;

устранение низкочастотных вибраций;

применение глушителей реактивного типа.

Ультразвук из-за очень высоких частот быстро поглощается в воздухе и материалах конструкций, поэтому он распространяется на небольшие расстояния. Для зашиты от ультразвука очень эффективной является звукоизоляция и звукопоглощение. Из формулы видно, что для звукоизоляции требуются тонкие перегородки. Обычно источники ультразвука заключают в кожухи из тонкой стали, алюминия (толщиной 1 мм), обклеенные внутри резиной. Применяют также эластичные кожухи из нескольких слоев резины общей толщиной 3,5 мм. Эффективность таких кожухов может достигать 60...80 дБ. Применяют также экраны, расположенные между источником и работающими.

травма производство электробезопасность напряжение

Основные сведения о пожаре и взрыве

Пожар - неконтролируемое горение вне специального очага, наносящее материальный ущерб и создающее опасность для жизни и здоровья людей.

Горение - окислительный процесс, возникающий при контакте горючего вещества, окислителя и источника зажигания.

По скорости распространения пламени горение подразделяется на нормальное (дефлаграционное), при котором пламя распространяется со скоростью до нескольких десятков метров в секунду; взрывное - при скорости распространения пламени до нескольких сотен метров в секунду и детонационное - при распространении пламени со скоростью до нескольких тысяч метров в секунду.

В процессе реакции горения сгорание веществ может быть полным и неполным.

Концентрацию горючего вещества и окислителя, при которой происходит полное сгорание вещества, называют стехиометрической. В условиях пожара полного сгорания веществ в воздухе чаще всего не происходит, о чем свидетельствует наличие дыма - дисперсной системы из продуктов горения и воздуха, содержащей твердые и жидкие частицы.

Все реакции горения веществ относятся к экзотермическим, т. е. сопровождающимся выделением теплоты. Из-за выделения теплоты реакции горение, возникнув в одной зоне вещества, распространяется на всю массу реагирующих веществ.

В зависимости от агрегатного состояния реагируемых веществ горение бывает гомогенным (однородным), при котором исходные вещества (горючее и окислитель) находятся в газо- или парообразном состоянии, и гетерогенным (неоднородным), при котором одно из веществ (обычно горючее) находится в твердом или жидком состоянии, а другое (обычно окислитель) - в газообразном.

Процесс возникновения горения подразделяется на несколько видов: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв и детонация. Кроме того, существуют и особые виды горения: тление и холоднопламенное горение.

Вспышка - процесс мгновенного сгорания паров легковоспламеняющихся и горючих жидкостей, вызванный непосредственным воздействием источника воспламенения.

Возгорание - явление возникновения горения под действием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остается относительно холодной.

Самовозгорание - явление резкого увеличения скорости экзотермических реакций в веществе, приводящее к возникновению горения при отсутствии источника зажигания.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

В производственных условиях могут самовозгораться древесные опилки, промасленная ветошь. Самовоспламеняться может бензин, керосин.

Взрыв - быстрое химическое превращение вещества (взрывное горение), сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

При детонации передача энергии от слоя к слою смеси осуществляется не за счет теплопроводности, а распространением ударной волны. Давление в детонационной волне значительно выше давления при взрыве, что приводит к сильным разрушениям.

Тление - беспламенное горение твердого вещества, поверхность которого раскалена и излучает свет и тепло. Тление сопровождается термическим разложением горючего вещества и обильным выделением горючих газов и парообразных продуктов, которые свободно рассеиваются в атмосфере. Тление твердого вещества возможно при недостатке кислорода в зоне горения, при недостатке выделяющейся в зоне теплоты, при очень быстром отводе выделяющейся теплоты из зоны возникшей реакции горения.

Холоднопламенное горение - основная форма нетеплового самоускоряющегося режима реакции, которая при этом остается незавершенной, т.к. не вся химическая энергия реагирующей смеси расходуется на разогрев продуктов реакции.

Для оценки пожаро- и взрывоопасности производств необходимо знать показатели пожаро- и взрывоопасности веществ, используемых в производственных процессах.

Горючие вещества, применяемые в производстве, подразделяются на:

газообразные - вещества, абсолютное давление паров которых при температуре 50°С равно или выше 300 кПа;

жидкие - вещества с температурой плавления не более 50°С;

твердые - вещества с температурой плавления, превышающей 50°С;

пыли - размельченные твердые вещества с размером частиц менее 850 мкм.

Горючесть - это способность вещества или материала к горению под воздействием источника зажигания.

По горючести (возгораемости) материалы подразделяются на три группы:

негорючие (несгораемые),

трудкогорючие (трудносгораемые);

горючие (сгораемые).

Принято считать негорючими такие материалы, которые не горят, не тлеют и не обугливаются под воздействием открытого пламени или высокой температуры.

Трудногорючие материалы - материалы, которые загораются и горят только при воздействии на них открытого огня.

Горючие материсьгы - материаты, горение которых продолжается после удаления источника огня, которым они были подожжены.

Горючие материалы и вещества подразделяются на:

легковоспламеняющиеся вещества и материалы, которые способны воспламеняться от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.);

вещества средней воспламеняемости, которые воспламеняются от длительного воздействия источника зажигания с низкой температурой;

трудновоспламеняющиеся вещества, которые способны воспламеняться только под действием мощного источника зажигания.

К легковоспламеняемым веществам относятся прежде всего горючие жидкости (ЛВЖ - легковоспламеняемые жидкости). ЛВЖ - горючие жидкости с температурой вспышки в закрытом тигле не выше 61°С или в открытом тигле не выше 66°С.

К горючим жидкостям (ГЖ) относятся такие, которые способны самостоятельно гореть после удаления источника зажигания, но имеют температуру вспышки выше 61°С в закрытом тигле.

Температура вспышки - наименьшая температура горючего вещества, при которой образовавшиеся над его поверхностью пары и газы способны вспыхивать в воздухе от источника зажигания, однако скорость образования паров или газов еще недостаточна для поддержания устойчивого горения.

Температура вспышки является одним из критериев, по которому устанавливают безопасные способы хранения, транспортирования и применения веществ.

Ацетон имеет температуру вспышки -18 °С, разные сорта бензина от -39 до -17 °С, керосин +40 °С, масло трансформаторное +147 °С.

Основными показателями взрыво- и пожароопасности твердых и жидких веществ являются температура воспламенения и самовоспламенения.

Температура воспламенения наименьшая температура вещества, при которой вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания начинается устойчивое горение.

Температуру воспламенения применяют для установления группы горючести веществ, оценки пожарной опасности оборудования и технологических процессов, связанных с переработкой горючих веществ.

Для ЛВЖ температура воспламенения отличается от температуры вспышки на 1...5 "С, для других веществ - на 20 "С и более.

Температура самовоспламенения - самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермической реакции, заканчивающейся пламенным горением.

Температура самовоспламенения газов и паров горючих жидкостей находится в пределах 250...700 °С; для твердых веществ (цинка, магния, алюминия) - 450...800 °С; дерева, каменного угля, торфа - 250...450 ЭС.

В зависимости от температуры самовоспламенения различают:

горючие вещества, имеющие температуру самовоспламенения выше температуры окружающей среды;

горючие вещества, имеющие температуру самовоспламенения равную температуре окружающей среды;

горючие вещества, имеющие температуру самовоспламенения ниже температуры окружающей среды.

Последние вещества называют самовозгорающимися, т. к. они могут загораться без внесения тепла извне и представляют собой большую опасность.

Самовозгорающиеся вещества подразделяют на три группы:

вещества, способные самовозгораться от воздействия воздуха (например, растительные масла и животные жиры, бурый и каменный уголь, торф, обтирочные концы, древесные опилки и т.п.);

вещества, подверженные самовозгоранию при действии на них воды (например, карбид кальция, карбиды щелочных металлов, метатлические калий и натрий и др.);

вещества, самовозгорающиеся в результате смешения друг с другом; в эту группу входят различные газообразные, жидкие и твердые окислители (галлоиды - хлор, бром; ацетилен, водород, метан и этилен в смеси с хлором самовозгораются).

Основными показателями пожаро- и взрывоопасности горючих газов и паров являются нижний и верхний концентрационные пределы воспламенения (взрываемости), выраженные в объемной доле компонента в смеси (%) или в массовых концентрациях (мг/м3).

Минимальная концентрация горючих газов, паров, пыли в воздухе, при которой они способны загораться и распространять пламя, называется нижним концентрационным пределом воспламенения (НПВ),

Максимальная концентрация горючих газов, паров и пыли, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения (ВПВ).

Область смесей горючих газов и паров с воздухом, лежащих между нижним и верхним концентрационными пределами воспламенения, называется областью воспламенения.

Нижнему и верхнему концентрационным пределам соответствуют нижний и верхний температурные пределы.

Температурные пределы воспламенения паров - это такие значения температуры вещества, при которых его насыщенные пары образуют в окислительной среде концентрации, равные соответственно НПВ и ВПВ, и называются соответственно нижним (НТПВ) и верхним (ВТПВ) температурными пределами воспламенения.

При определении степени опасности пыли, находящейся во взвешенном состоянии в производственном помещении, необходимо учитывать в первую очередь ее способность образовывать с воздухом (кислородом) взрывоопасные смеси, а также чувствительность таких смесей к различным источникам воспламенения. Пыль, осевшая на поверхностях различных предметов, может взрываться только после ее перехода во взвешенное состояние (аэрозоль). Для начала ее горения или взрыва необходим источник зажигания. В осевшем состоянии степень пожаровзрывопасности пыли определяется возможностью ее самовозгорания.

Основные причины и источники пожаров и взрывов. Основные причины пожаров на предприятиях: нарушение технологического режима - 33 %; неисправность электроустановок - 16 %; самовозгорание промасленной ветоши и других материалов, склонных к самовозгоранию, - 10 %.

Открытое пламя и искры наиболее часто являются источником зажигания различной горячей среды (открытое пламя и искры возникают при сварке, резке металлов, заточке инструмента, зачистке швов и целом ряде других технологических процессов). Наиболее частой причиной пожара из-за неисправности электроустановок являются: короткие замыкания, особенно с образованием электрической дуги: перегрузка электрической сети в результате подключения потребителей (машин, оборудования и т.д.) повышенной мощности, на которую не рассчитана электрическая сеть. Причиной пожара могут быть разряды статического электричества, а также разряды молнии.

Опасные факторы пожара. Независимо от причин пожар характеризуется рядом опасных факторов, воздействующих на людей и материальные ценности в условиях производства.

Опасный фактор пожара (ОФП) - фактор пожара, воздействие которого приводит к травме, отравлению или гибели человека, а также к материальному ущербу. К ОФП относятся следующие:

открытое пламя и искры;

повышенная температура окружающей среды;

токсичные продукты горения;

дым;

пониженная концентрация кислорода;

последствия разрушения и повреждения объекта;

опасные факторы, проявляющиеся в результате взрыва (ударная волна, пламя, обрушение конструкций и разлет осколков, образование вредных веществ с концентрацией в воздухе существенно выше ПДК).

Пламя чаще всего поражает открытые части тела. Очень опасны ожоги, получаемые от горящей одежды, которую трудно потушить и сбросить. Особенно легко воспламеняется одежда из синтетических тканей. Температурный порог жизнеспособности тканей человека составляет около 45"С.

Повышенная температура окружающей среды, поверхностей предметов нарушает тепловой режим тела человека, вызывает перегрев, ухудшение самочувствия из-за интенсивного выведения необходимых организму солей, нарушения ритма дыхания, деятельности сердца и сосудов. Необходимо избегать длительного облучения инфракрасными лучами интенсивностью около 540 Вт/м2 и кратковременного облучения с интенсивностью 1050 Вт/м2. Температура тела человека в зоне облучения при пожаре не должна превышать 39...40°С, т.к. при этом возникает опасность теплового удара, а при 60...70 "С в организме человека происходят необратимые изменения, при которых наступает смерть.

Токсичные продукты горения. Состав продуктов сгорания зависит от состава горящего вещества и условий, при которых происходит его горение. При горении прежде всего выделяется большое количество оксида углерода (СО), углекислого газа (СО,), оксидов азота (NOX), которые заполняют объем помещения, в котором происходит горение, и создают опасные для жизни человека концентрации. Концентрация СО может достигать 10 % от объема помещения, в то время как при 1 % объемной концентрации человек теряет сознание, а затем может наступить смерть. Концентрация углекислого газа СО2 более 3...4 % становится опасной при вдыхании воздуха с такой концентрацией более получаса. Концентрация углекислого газа в 8... 10 % вызывает быструю потерю сознания и смертельный исход.

Однако в продуктах сгорания могут быть и значительно более токсичные вещества, например цианистый водород (HCN) и др. Наиболее опасны продукты сгорания различных синтетических веществ, пластмасс.

Дым, выделяющийся при пожаре, очень разнообразен по своему составу и свойствам. По цвету, он может быть белым, серым, черным и представляет собой аэрозоль, состоящий из мельчайших твердых частиц, находящихся во взвешенном состоянии в продуктах сгорания. В дыме содержатся раздражающие и токсичные вещества, дым снижает видимость, в результате чего теряется ориентация человека в помещении и усложняются условия эвакуации.

Недостаток кислорода. Нормальное содержание кислорода в атмосферном воздухе примерно 21 % по объему. При пожаре атмосферный кислород расходуется как окислитель в реакции горения, и его концентрация в помещении резко снижается. Человек теряет сознание при концентрации кислорода примерно 18 % по объему, возникает удушье. Практика показывает, что наибольшее количество людей погибает при пожарах не от прямого воздействия огня, а от удушья, связанного с недостатком кислорода, и от отравления токсичными продуктами сгорания.

Обрушение и разрушение несущих конструкций здания. При воздействии высоких температур, возникающих в очаге пожара, несущие конструкции здания теряют свою механическую прочность, и происходит их обрушение. Это приводит к гибели людей и большим материальным потерям.

Взрыв приводит к быстрому обрушению конструкции. Человек может быть также поражен ударной волной, разлетающимися осколками и элементами конструкций.

Таким образом, пожары наносят большой материальный и моральный ущерб, ведут к разрушению промышленных зданий, гибели людей.

Периодичность сдачи экзаменов по электробезопасности персонала, работающего в действующих условиях

Обучение является важнейшим инструментом обеспечения безопасности труда. Обучение должно осуществляться при профессиональной подготовке специалистов, рабочих и служащих.

Обучение безопасности труда осуществляется при получении образования в высших и средних специальных учебных заведениях, в системе профессиональных училищ. Для этого в образовательные программы учебных заведений введены такие обязательные общепрофессиональные дисциплины, как «Безопасность жизнедеятельности» и «Охрана труда». Кроме того, обучение руководителей и специалистов осуществляется через систему повышения квалификации. На предприятиях проводится периодическое обучение рабочих и служащих по вопросам охраны труда.

Инструктажи являются важными в обеспечении безопасности труда. Согласно ГОСТ 12.0.004-90 предусмотрено проведение пяти видов инструктажа:

вводный;

первичный;

повторный;

внеплановый;

целевой.

Вводный инструктаж проводится при поступлении на работу службой охраны труда предприятия. Этот инструктаж обязаны пройти все вновь поступающие на предприятие, а также командированные и учащиеся, прибывшие на практику. Цель этого инструктажа - ознакомить с общими правилами и требованиями охраны труда на предприятии.

Первичный инструктаж проводится для всех принятых на предприятие перед первым допуском к работе (в том числе, учащиеся, прибывшие на практику), а также при переводе из одного подразделения в другое. Инструктаж проводится непосредственно на рабочем месте. Цель этого инструктажа - изучение конкретных требований и правил обеспечения безопасности при работе на конкретном оборудовании, при выполнении конкретного технологического процесса.

Все рабочие после первичного инструктажа на рабочем месте должны в зависимости от характера работы и квалификации пройти в течение 2... 14 смен стажировку под руководством лица, назначенного приказом (распоряжением) по цеху (участку и т.п.). Рабочие допускаются к самостоятельной работе после стажировки, проверки знаний и приобретенных навыков безопасных способов работы.

Повторный инструктаж проводится не реже раза в полгода, а для работ повышенной опасности - раза в квартал. Цель этого инструктажа - восстановление в памяти работника правил охраны труда, а также разбор имеющих место нарушений требований безопасности в практике производственного участка, цеха, предприятия.

Внеплановый инструктаж проводится в следующих случаях:

при введении в действие новых или переработанных стандартов, правил, инструкций по охране труда, а также изменений и дополнений к ним;

при изменении технологического процесса, замене или модернизации оборудования, приспособлений и инструмента, сырья, материалов и других факторов, влияющих на безопасность;

при перерывах в работе для работ, к которым предъявляются повышенные требования безопасности, более чем на 30 календарных дней, а для остальных - 60 дней;

по требованию органов надзора.

Целевой инструктаж проводится при выполнении разовых работ, не связанных с прямыми обязанностями по специальности (погрузочно-разгрузочные работы, разовые работы вне предприятия, цеха, участка и т.п.); ликвидации аварий, катастроф и стихийных бедствий; производстве работ, на которые оформляется наряд - допуск, разрешение или другие специальные документы; проведении экскурсии на предприятии, организации массовых мероприятий с учащимися (спортивные мероприятия, походы и др.).


Подобные документы

  • Проблема гибели людей при пожарах – предмет особого беспокойства. Определение пожарной безопасности, основные функции системы ее обеспечения. Причины и источники пожаров на производстве. Пожарная безопасность в быту. Мероприятия по пожарной профилактике.

    реферат [45,7 K], добавлен 16.02.2009

  • Изучение особенностей и видов поражения электрическим током, действия на человеческий организм. Организационные мероприятия, обеспечивающие безопасность работ в электроустановках. Помещения, разделяющиеся по опасности напряжения электрическим током.

    доклад [58,2 K], добавлен 27.12.2010

  • Основные понятия о риске. Организация безопасного производства работ с повышенной опасностью. Санитарно-технические требования к производственным помещениям. Методы анализа производственного травматизма, причины возникновения и пути борьбы с ним.

    контрольная работа [1,4 M], добавлен 04.02.2011

  • Требования выполнения норм охраны труда применительно к объектам строительства. Наиболее характерные травмы и несчастные случаи при производстве работ. Мероприятия по технике безопасности в строительстве для арматурщика; работа в аварийных ситуациях.

    реферат [22,1 K], добавлен 12.04.2018

  • Основные понятия электробезопасности. Общие требования безопасности перед и во время работы. Снижение напряжения прикосновения. Группы допуска по электробезопасности. Обязанности персонала, обслуживающего электроустановки и электрооборудование.

    отчет по практике [23,6 K], добавлен 06.09.2015

  • Сущность и значение охраны труда, обязанности и права работника. Понятие и виды инструктажей. Правила безопасности при работе с вредными веществами. Техника безопасности при производстве дорожных работ. Организация противопожарной защиты на предприятии.

    контрольная работа [19,1 K], добавлен 14.04.2011

  • Понятие и характеристика производственной травмы, несчастного случая, профессионального заболевания. Организация мер доврачебной помощи пострадавшему и его госпитализация. Технические и организационные причины возникновения производственного травматизма.

    контрольная работа [31,6 K], добавлен 02.08.2010

  • Состояние воздушной среды, питьевой воды, образование и движение отходов. Экологическая безопасность на производстве. Оценка возможных негативных и техногенных факторов в районе проведения работ. Безопасность работ в районе чрезвычайных ситуаций.

    курсовая работа [261,7 K], добавлен 28.09.2015

  • Причины производственного травматизма и профессиональных заболеваний. Безопасность труда в литейном производстве, гигиена труда и производственная санитария в химической промышленности, безопасность в организациях строительства и производства работ.

    контрольная работа [73,6 K], добавлен 01.06.2010

  • Основные причины выделения, попадания в окружающую среду ядовитых веществ. Мероприятия по обеспечению безопасности работ при контакте с вредными веществами. Классификация средств индивидуальной защиты, применение респираторов, защитных очков, спецодежды.

    реферат [629,6 K], добавлен 18.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.