Расчет математической модели при пожаре

Основные понятия, уравнения интегральной математической модели пожара на основе теплофизических функций. Критерии выбора моделей пожара для расчетов. Прогнозирование мероприятий по эвакуации. Интегральная математическая модель расчета газообмена в здании.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 19.09.2012
Размер файла 75,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Основные понятия и уравнения интегральной математической модели пожара на основе теплофизических функций

1.1 Общие сведения

1.2 Критерии выбора моделей пожара для расчетов

1.3 Интегральная математическая модель расчета газообмена в здании, при пожаре

Заключение

Список литературы

пожар математический модель

Введение

Расчет пожара (прогнозирование опасных факторов) необходим для оценки своевременности эвакуации и разработке мероприятий по ее совершенствованию, при создании и совершенствовании систем сигнализации, оповещения и тушения пожаров, при разработке планов пожаротушения (планирования боевых действий пожарных подразделений при пожаре), для оценки фактических пределов огнестойкости, проведении пожарно-технических экспертиз и других целей.

В развитии пожара в помещении обычно выделяют три стадии:

- начальная стадия - от возникновения локального неконтролируемого очага горения до полного охвата помещения пламенем; при этом средняя температура среды в помещении имеет не высокие значения, но внутри и вокруг зоны горения температура такова, что скорость тепловыделения выше скорости отвода тепла из зоны горения, что обуславливает само ускорение процесса горения;

- стадия полного развития пожара - горят все горючие вещества и материалы, находящиеся в помещении; интенсивность тепловыделения от горящих объектов достигает максимума, что приводит и к быстрому нарастанию температуры среды помещения до максимальных значений;

- стадия затухания пожара - интенсивность процесса горения в помещении снижается из-за расходования находящейся в нём массы горючих материалов или воздействия средств тушения пожара.

Однако в любом случае, как показывает уравнение «стандартного пожара», температура в очаге пожара через 1,125 мин достигает значения 365оС. Поэтому очевидно, что возможное время эвакуации людей из помещений не может превосходить продолжительности начальной стадии пожара.

1. Основные понятия и уравнения интегральной математической модели пожара на основе теплофизических функций

1.1 Общие сведения

В начальной стадии развития пожара опасными для человека факторами являются: пламя, высокая температура, интенсивность теплового излучения, токсичные продукты горения, дым, снижение содержания кислорода в воздухе, поскольку при достижении определённых уровней они поражают его организм, особенно при синергическом воздействии.

Исследованиями отечественных и зарубежных учёных установлено, что максимальная температура, кратковременно переносимая человеком в сухой атмосфере, составляет 149 0С, во влажной атмосфере вторую степень ожога вызывало воздействие температуры 55 0С в течение 20с и 70 0С при воздействии в течение 1с; а плотность лучистых тепловых потоков 3500 вт/м2 вызывает практически мгновенно ожоги дыхательных путей и открытых участков кожи; концентрации токсичных веществ в воздухе приводят к летальному исходу: окиси углерода (СО) в 1,0% за 2-3 мин, двуокиси углерода (СО2) в 5% за 5 мин., цианистого водорода (HCN) в 0,005% практически мгновенно; при концентрации хлористого водорода (HCL) 0,01- 0,015% останавливается дыхание; при снижении концентрации кислорода в воздухе с 23% до 16% ухудшаются двигательные функции организма, и мускульная координация нарушается до такой степени, что самостоятельное движение людей становится невозможным, а снижение концентрации кислорода до 9% приводит к смерти через 5 минут.

Совместное действие некоторых факторов усиливает их воздействие на организм человека (синергический эффект). Так токсичность окиси углерода увеличивается при наличии дыма, влажности среды, снижении концентрации кислорода и повышении температуры. Синергетический эффект обнаруживается и при совместном действии двуокиси азота и понижении концентрации кислорода при повышенной температуре, а также при совместном воздействии цианистого водорода и окиси углерода.

Особое воздействие на людей оказывает дым. Дым представляет собой смесь несгоревших частиц углерода с размерами частиц от 0,05 до 5,0 мкм. На этих частицах конденсируются токсичные газы. Поэтому воздействие дыма на человека также имеет, по-видимому, синергический эффект.

В действительности при пожаре выделяется значительно больше токсинов, воздействие которых достаточно хорошо изучено. Максимально допустимый уровень опасных (основных) факторов пожара, воздействие которого не приносит вреда человеку нормирован. Вырываясь из помещения, опасные факторы пожара, прежде всего дым, стремительно распространяются по коммуникационным путям здания.

Для прогнозирования опасных факторов пожара в настоящее время используются интегральные (прогноз средних значений параметров состояния среды в помещении для любого момента развития пожара), зонные (прогноз размеров характерных пространственных зон, возникающих при пожаре в помещении и средних значений параметров состояния среды в этих зонах для любого момента развития пожара. Примеры зон - припотолочная область, восходящий на очагом горения поток нагретых газов и область незадымленной холодной зоны) и полевые (дифференциальные) модели пожара (прогноз пространственно-временного распределения температур и скоростей газовой среды в помещении, концентраций компонентов среды, давлений и плотностей в любой точке помещения).

Для проведения расчетов, необходимо проанализировать следующие данные:

- объемно-планировочных решений объекта;

- теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;

- вида, количества и расположения горючих материалов;

- количества и вероятного расположения людей в здании;

- материальной и социальной значимости объекта;

- систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.

При этом учитывается:

- вероятность возникновения пожара;

- возможная динамика развития пожара;

- наличие и характеристики систем противопожарной защиты (СППЗ);

- вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;

- соответствие объекта и его СППЗ требованиям противопожарных норм.

Далее необходимо обосновать сценарий развития пожара. Формулировка сценария развития пожара включает в себя следующие этапы:

- выбор места расположения первоначального очага пожара и закономерностей его развития;

- задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);

- задание параметров окружающей среды и начальных значений параметров внутри помещений.

1.2 Критерии выбора моделей пожара для расчетов

В соответствии с проектом документа «Методика оценки рисков для общественных зданий» для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.

Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:

интегральный метод:

? для зданий и сооружений, содержащих развитую систему помещений малого объема простой геометрической конфигурации

? проведении имитационного моделирования для случаев, когда учет стохастического характера пожара является более важным, чем точное и детальное прогнозирование его характеристик;

? для помещений, где характерный размер очага пожара соизмерим с характерным размером помещения;

зональный метод:

? для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой;

? для помещений большого объема, когда размер очага пожара существенно меньше размеров помещения;

? для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д);

полевой метод:

- для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);

- для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и.т.д.);

- для иных случаев, когда применимость или информативность зонных и интегральных моделей вызывает сомнение (уникальные сооружения, распространение пожара по фасаду здания, необходимость учета работы систем противопожарной защиты, способных качественно изменить картину пожара, и т.д.).

1.3 Интегральная математическая модель расчета газообмена в здании, при пожаре

Для расчета распространения продуктов горения по зданию составляются и решаются уравнения аэрации, тепло и массообмена как для каждого помещения в отдельности, так и для всего здания в целом.

Уравнения движения, связывающие значения перепадов давлений на проемах с расходами газов через проемы имеют вид:

, (П6.3)

где Gji - расход газов через проем между двумя (j-м и i-м) смежными помещениями, кг/с;

- коэффициент расхода проема ( = 0,8 для закрытых проемов и
= 0,64 для открытых);

F - площадь сечения проема, м2;

- плотность газов, проходящих через проем, кг/м3;

Pji - средний перепад полных давлений между j-м и i-м помещением, Па.

Направление (знак) расхода определяется знаком разности давлений Pji. В зависимости от этого плотность принимает различные значения.

Знак расхода газов (входящий в помещение расход считается положительным, выходящий - отрицательным) и значение зависят от знака перепада давлений:

.(П6.4)

Для прогнозирования параметров продуктов горения (температуры, концентраций токсичных компонентов продуктов горения) в помещениях многоэтажного здания на этажах, расположенных выше этажа, на котором может возникнуть пожар, рассматриваются процессы распространения продуктов горения в вертикальных каналах (лестничные клетки, шахты лифтов, вентканалы и т.п.).

Вертикальную шахту по высоте разделяют на зоны, которые представляют узлы в гидравлической схеме здания. Зона по высоте может охватывать несколько этажей здания. В этом случае расход газа между зонами можно выразить формулой вида:

, (П6.5)

где - характеристика гидравлического сопротивления на границе зон;

F - площадь поперечного сечения шахты;

k - коэффициент (допускается принимать равным 0,05 с2/м);

g = 9,81 м/с2 - ускорение свободного падения;

- перепад давлений между узлами.

Здание представляют в виде гидравлической схемы, узлы которой моделируют помещения, а связи - пути движения продуктов горения и воздуха. Каждое помещение здания описывается системой уравнений, состоящей из уравнения баланса массы, уравнения сохранения энергии и уравнения основного газового закона (Менделеева-Клайперона).

Уравнение баланса массы выражается формулой:

, (П6.6)

где Vj - объем помещения, м3;

t - время, с;

- скорость выгорания пожарной нагрузки, кг/c.

Уравнение сохранения энергии выражается формулой:

, (П6.7 )

где Сv, Сp - удельная изохорная и изобарная теплоемкости, кДж/(кгK);

Ti, Tj - температуры газов в i- м и j-м помещениях, K;

QГ - количество тепла, выделяемого в помещении при горении, кВт;

Qw - тепловой поток, поглощаемый конструкциями и излучаемый через проемы, кВт.

Для помещения очага пожара величина QГ определяется по формуле:

,

где - коэффициент полноты горения;

Qн - низшая теплота сгорания, кДж/кг;

I - энтальпия газифицированной горючей нагрузки.

Для остальных помещений QГ = 0.

Коэффициент полноты горения определяется по формуле:

, (П6.8)

где a - коэффициент полноты горения в режиме пожара, регулируемом горючей нагрузкой, определяемый формулой:

.(П6.9)

Коэффициент K рассчитывается по формуле:

,(П6.10)

где ;

Xox,a - начальная концентрация кислорода в помещении очага пожара;

Xox,m -текущая концентрация кислорода в помещении очага пожара.

Уравнение Менделеева-Клайперона выражается формулой:

, (П6.11)

где Pj - давление газа в j-м помещении, Па;

Tj - температура газа в j-м помещении, K;

R = 8,31 - универсальная газовая постоянная, Дж/(мольК);

M - молярная масса газа, моль.

Параметры газа в помещении определяются из уравнения баланса масс отдельных компонентов продуктов горения и кислорода и уравнения баланса оптической плотности дыма.

Уравнение баланса масс отдельных компонентов продуктов горения и кислорода:

,(П6.12)

где XL,i, XL,j - концентрация L-го компонента продуктов горения в i- м и j-м помещениях, кг/кг;

LL - количество L-го компонента продуктов горения (кислорода), выделяющегося (поглощающегося) при сгорании одного килограмма пожарной нагрузки, кг/кг.

Уравнение баланса оптической плотности дыма:

,(П6.13)

где i, j - оптическая плотность дыма в i- м и j-м помещениях, Нпм-1;

Dm - дымообразующая способность пожарной нагрузки, Нпм2/кг.

Оптическая плотность дыма при обычных условиях связана с расстоянием предельной видимости в дыму формулой:

lпр = 2,38/ .(П6.14)

Для помещений без источника тепла система уравнений (П6.6), (П6.7) и (П6.8) упрощается и представляется в виде:

,(П6.15)

где .

Первое уравнение связывает перепады давлений на соединяющих помещение проемах с расходом газа через эти проемы. Второе - выражает постоянство объема для данного помещения. Таким образом, для всего здания требуется решать систему, состоящую из (mгс + mвс)nэт нелинейных уравнений вида (П6.12) и nуnэт линейных уравнений вида (П6.13). Здесь mгс и mвс - соответственно число горизонтальных и вертикальных связей на этаже; nу - число узлов; nэт - число этажей.

Система уравнений включающая в себя уравнения (П6.6), (П6.7) для помещения очага пожара и (П6.12), (П6.13) для остальных помещений и уравнение (П6.11), описывающая гидравлическую схему здания, решается численно методом итерации в совокупности с методом секущих.

Основные уравнения для определения температуры газа и концентрации продуктов горения в помещениях здания получены из уравнений сохранения энергии и массы.

Температура газа в помещении, где отсутствует очаг пожара определяется из уравнения теплового баланса, которое можно получить из уравнения сохранения энергии (П6.7). Формула для определения температуры газа в j-м помещении здания в «n»-ый момент времени:

, (П6.16)

где Qj - сумма источников (стоков) тепла в объеме j-го помещения и тепла, уходящего в ограждающие конструкции;

- приведенный коэффициент теплоотдачи;

T0 - начальная температура в помещении;

Fjст - площадь поверхности ограждающих конструкций в j-м помещении.

Коэффициент теплоотдачи может быть рассчитан по эмпирической формуле:

.(П6.17)

Концентрация отдельных компонентов газовых смесей в помещениях здания вычисляются из уравнения баланса массы данного компонента (П6.12). Концентрация L-го компонента продуктов горения в j-м помещении в «n»-ый момент времени определяется уравнением:

(П6.18)

Оптическая концентрация дыма в помещениях определяется из балансового уравнения (П6.19). Натуральный показатель ослабления среды в j-ом помещении в «n»-ый момент времени определяется уравнением:

. (П6.19)

Аналитические соотношения для определения критической
продолжительности пожара

Для одиночного помещения высотой не более 6 м, удовлетворяющего условиям применения интегральной модели, при отсутствии систем противопожарной защиты, влияющих на развитие пожара, допускается определять критические времена по каждому из опасных факторов пожара с помощью аналитических соотношений:

по повышенной температуре

,(П6.20)

по потере видимости

, (П6.21)

по пониженному содержанию кислорода

,(П6.22)

по каждому из газообразных токсичных продуктов горения

, (П6.23)

где - размерный комплекс, зависящий от теплоты сгорания материала и свободного объема помещения, кг;

t0 - начальная температура воздуха в помещении, °С;

n - показатель степени, учитывающий изменение массы выгорающего материала во времени;

А - размерный параметр, учитывающий удельную массовую скорость выгорания горючего материала и площадь пожара, кг/сn;

Z - безразмерный параметр, учитывающий неравномерность распределения ОФП по высоте помещения;

Qн - низшая теплота сгорания материала, МДж/кг;

Ср - удельная изобарная теплоемкость газа, МДж/кг;

- коэффициент теплопотерь (принимается по данным справочной литературы, при отсутствии данных может быть принят равным 0,3);

- коэффициент полноты горения (определяется по формуле П6.9);

V - свободный объем помещения, м3;

a - коэффициент отражения предметов на путях эвакуации;

Е - начальная освещенность, лк;

lпр - предельная дальность видимости в дыму, м;

Dm - дымообразующая способность горящего материала, Нпм2 /кг;

L - удельный выход токсичных газов при сгорании 1 кг материала, кг/кг;

Х - предельно допустимое содержание токсичного газа в помещении, кг м-3 (ХСО2 =0,ll кг/м3; ХСО = 1,1610-3 кг/м3; ХHCL=2310-6 кг/м3);

LО2 - удельный расход кислорода, кг/кг.

Если под знаком логарифма получается отрицательное число, то данный ОФП не представляет опасности.

Параметр z вычисляют по формуле:

,(П6.24)

где h - высота рабочей зоны, м;

Н - высота помещения, м.

Определяется высота рабочей зоны:

,(П6.25)

где hпл - высота площадки, на которой находятся люди, над полом помещения, м;

- разность высот пола, равная нулю при горизонтальном его расположении, м.

Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. Поэтому, например, при определении необходимого времени эвакуации людей из партера зрительного зала с наклонным полом значение h следует находить, ориентируясь на наиболее высоко расположенные ряды кресел. Параметры А и n вычисляют так:

для случая горения жидкости с установившейся скоростью:

n=1,

где - удельная массовая скорость выгорания жидкости, кг/(м2с);

для кругового распространения пожара:

n=3,

где V - линейная скорость распространения пламени, м/с;

для вертикальной или горизонтальной поверхности горения в виде прямоугольника, одна из сторон которого увеличивается в двух направлениях за счет распространения пламени (например, распространение огня в горизонтальном направлении по занавесу после охвата его пламенем по всей высоте):

n=2,

где b - перпендикулярный к направлению движения пламени размер зоны горения, м.

При отсутствии специальных требований значения a и Е принимаются равными 0,3 и 50 лк соответственно, а значение lпр=20 м.

Заключение

Опасности и угрозы всегда указывают на взаимодействие двух сторон:

- той, которая выступает источником и носителем опасности (явление, процесс, субъект, объект);

- той, на которую направлена опасность или угроза - объект, субъект;

Источники опасности - это условия или факторы, которые таят в себе и при определенных условиях сами по себе (либо в различной совокупности) проявляют или обнаруживают враждебные намерения, реальные или потенциально вредные действия. Источники опасности по своей сути имеют естественно-природное (земное), космическое, техническое и социально- экономическое происхождение.

Известно, что объект - философская категория, выражающая то, что противостоит субъекту в его предметно-практической или познавательной деятельности, т.е. обладает нулевым значением суверенитета.

Субъект же - это носитель предметно-практической деятельности и познания (индивид, социальная группа, государство и т.д.), источник активности, направленной на объект и обладает максимальным суверенитетом;

Объектом угроз и опасностей являются человек, общество, государство. Эта триада представляет собой целостную систему.

Человек в системе (и, прежде всего, личность - творец) является высшей целью общественно-политического и социально-экономического развития страны.

Общество - это социальная среда, включающая реальные условия всестороннего развития творчества личности в системе общественных отношений.

Государство представляет собой организационно-политический механизм реализации общественных отношений и обеспечения гарантии и прав граждан в определенных рамках морали и нравственности. Государство должно возвышаться над личностью, так как его задача - создать механизм, чтобы творческое развитие личности на самом деле было высшей национальной целью, с одной стороны, но с другой - государство является владельцем (носителем) живого капитала.

Объектами угроз в государственном масштабе являются практически все сферы жизнедеятельности общества. В любой из них существуют специфические особенности опасности и угроз.

Человек выступает как объект и субъект опасностей и угроз. Диапазон проявлений человеческой сущности многообразен и противоречив. В ней необъяснимо уживаются эгоизм, иррациональность, агрессивность с отрицающими их подвижничеством, жертвенностью, благодеянием. Современный человек не торопится расставаться со своими пороками, выйти за рамки субъективного, индивидуально-алчного мира.

Известно, что мир представляется человеку в виде объективной и субъективной реальности. Человек преобразует природу и изменяет ее сам. Отсюда вывод, что человек одновременно является и субъектом толкования мира и его объектом.

Известное стремление человека жить лучше не получило еще необходимого приложения. Человек пока остается носителем различных по виду опасностей и угроз, регулятором "безопасности".

Таким образом, человек прямо или опосредованно включен в разнообразную, сложноорганизованную систему отношений и процессов, выполняя в них активно-созидательную, пассивно-созерцательную или разрушительную роль.

Список литературы

ГОСТ 12.1.004-91 Пожарная безопасность. Общие требования. -М.: Издательство стандартов, 1992.-78 с.

Драйздел Д. Введение в динамику пожара.-М.: Стройиздат, 1990. - 420 с.

Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении: Учебное пособие. - М.: Академия ГПС МВД России, 2000. 118 с.

Кошмаров Ю.А., Зотов Ю.С. и др. Лабораторный практикум по курсу “Прогнозирование опасных факторов пожара в помещениях”. - М., МИПБ МВД РФ, 1997.- 68 с.

Методические указания к выполнению курсовой работы про прогнозированию опасных факторов пожара в помещении. - М.: МИПБ МВД РФ, 1997. - 62 с.

Моделирование пожаров и взрывов. (Под ред. Брушлинского Н.Н. и Корольченко А.Я.) - М.: Из-во “Пожнаука”, 2000, 492 с.

Чешко И.Д. Экспертиза пожаров (объекты ,методы, методики исследоания). - СПб.: СПбИПБ МВД РФ, 1997. - 55 с.

Размещено на Allbest.ru


Подобные документы

  • Описание интегральной математической модели свободного развития пожара в складском помещении. Расчет динамики опасных факторов для уровня рабочей зоны с помощью компьютерной программы Intmodel. Расчет времени, необходимого для эвакуации из помещения.

    методичка [343,2 K], добавлен 09.06.2014

  • Описание интегральной математической модели свободного развития пожара в помещении. Динамика опасных факторов пожара в помещении. Определение времени от начала пожара до блокирования эвакуационных путей опасными факторами пожара на примере канцелярии.

    курсовая работа [286,6 K], добавлен 16.02.2016

  • Описание математической модели развития пожара в помещении. Прогнозирование обстановки на пожаре к моменту прибытия первых подразделений на его тушение. Определение критической продолжительности пожара и времени блокирования эвакуационных путей.

    курсовая работа [887,4 K], добавлен 21.11.2014

  • Разработка схемы эвакуации учащихся школы. Инструкция по мерам пожарной безопасности и эвакуации, порядок действий в случае пожара. Расчет продолжительности пожара по повышенной температуре и по концентрации кислорода. Расчет времени на эвакуацию.

    курсовая работа [216,6 K], добавлен 13.01.2011

  • Интегральная математическая модель развития пожара. Результаты компьютерного моделирования. Время достижения пороговых и критических значений опасных факторов. Расчет времени эвакуации людей из помещения. Расчет динамики ОФП для уровня рабочей зоны.

    курсовая работа [460,6 K], добавлен 24.08.2011

  • Расчет сил и средств, необходимых для тушения пожара. Виды и особенности пожара в гаражах. Прогнозирование возможной обстановки на пожаре на момент введения первых сил и средств на тушение пожара. Рекомендации должностным лицам по тушению пожара.

    курсовая работа [203,3 K], добавлен 19.04.2012

  • Условия возникновения пожара: образование горючего вещества, наличие окислителя, появление источника зажигания. Расчет параметров источников пожара. Оценка необходимого времени эвакуации людей из помещения. Основные меры по предотвращению пожара.

    контрольная работа [454,3 K], добавлен 26.02.2012

  • Концентрации и действие летучих токсичных веществ, выделяющихся при пожаре. Влияние опасных факторов, удельный выход газов при горении. Задание и табличные данные для выполнения расчета времени эвакуации и степени опасности горючих веществ при пожаре.

    методичка [58,7 K], добавлен 27.01.2012

  • Расчет времени эвакуации от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара. Определение величин потенциального риска для работников, которые находятся в здании на территории объекта.

    контрольная работа [107,1 K], добавлен 27.03.2019

  • Оперативно-тактическая характеристика здания торговой оптовой базы. Прогнозирование возможной обстановки, определение формы и площади пожара. Расчет материального баланса процесса горения. Тепловой баланс и температура горения. Параметры развития пожара.

    курсовая работа [88,6 K], добавлен 18.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.