Особенности развития пожара после полного охвата помещения пламенем

Опасные факторы, формирующиеся на пожаре после полного охвата помещения пламенем. Характерные фазы процессов развития пожара. Горение как основной процесс на пожаре. Особенности развития пожара до и после полного охвата пламенем закрытого помещения.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 19.09.2012
Размер файла 715,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Опасные факторы пожара, формирующиеся на этапе развития пожара после полного охвата помещения пламенем

1.1 Общие сведения

1.2 Фазы пожара

1.3 Развитие пожара до и после полного охвата пламенем закрытого помещения

Заключение

Список литературы

пожар горение закрытый помещение

Введение

Практика показывает, что абсолютно пожаробезопасных объектов не существует. Пожар возможен под водой и под землей, на воде, на земле, в воздухе и даже в космическом корабле.

При таком подходе к вопросу все материальные элементы объекта, включая и элементы конструкций зданий, необходимо рассматривать не с точки зрения их функционального назначения, их материальной или духовной ценности, а как пожарную нагрузку данного объекта, т.е. как вещество и материалы, способные гореть в случае возникновения пожара.

Пожар - комплекс физико-химических явлений, в основе которых лежит нестационарные (изменяющиеся во времени и пространстве) процессы горения, тепло - и массообмена. Пожаром считается неконтролируемое горение, приводящее к ущербу.

Для специалистов пожарной охраны можно дать развернутое определение: “Пожаром называется процесс горения, возникший непроизвольно (или по злому умыслу), который будет развиваться, и продолжаться до тех пор, пока либо не выгорят все горючие вещества и материалы, либо не возникнут условия, приводящие к самопотуханию (случай весьма редкий, но возможный), либо пока не будут приняты активные специальные меры по его локализации и тушению”.

Из этого определения можно сделать три вывода:

1. Горение есть главный и основной процесс на пожаре, так как без горения никакой пожар невозможен. С точки зрения пожарного специалиста горением называется сложный физико-химический процесс превращения горючих веществ и материалов в продукты сгорания, сопровождаемый интенсивным выделением тепла, дыма и световым излучением, структурными изменениями, в основе которых лежат быстротекущие химические реакции окисления в атмосфере кислорода воздуха.

2. Особенностями горения на пожаре от других видов горения являются: склонность к самопроизвольному распространению огня до максимальных размеров, сравнительно невысокая степень полноты сгорания, интенсивное выделение дыма, содержащего продукты полного и неполного окисления.

3. Поскольку процесс горения возникает непроизвольно или по злому умыслу, то никакие предварительные меры не могут полностью исключить вероятность его возникновения.

Для уменьшения степени опасности пожара и величины материального ущерба от него, необходимо применять весь накопленный арсенал конструктивных предварительных и профилактических средств и методов по его предотвращению, локализации и ограничению интенсивности развития, а в случае его возникновения принимать активные меры по его локализации и ликвидации.

1. Опасные факторы пожара, формирующиеся на этапе развития пожара после полного охвата помещения пламенем

1.1 Общие сведения

В начальной стадии развития пожара опасными для человека факторами являются: пламя, высокая температура, интенсивность теплового излучения, токсичные продукты горения, дым, снижение содержания кислорода в воздухе, поскольку при достижении определённых уровней они поражают его организм, особенно при синергическом воздействии.

Исследованиями отечественных и зарубежных учёных установлено, что максимальная температура, кратковременно переносимая человеком в сухой атмосфере, составляет 149 0С, во влажной атмосфере вторую степень ожога вызывало воздействие температуры 55 0С в течение 20с и 70 0С при воздействии в течение 1с; а плотность лучистых тепловых потоков 3500 вт/м2 вызывает практически мгновенно ожоги дыхательных путей и открытых участков кожи; концентрации токсичных веществ в воздухе приводят к летальному исходу: окиси углерода (СО) в 1,0% за 2-3 мин, двуокиси углерода (СО2) в 5% за 5 мин., цианистого водорода (HCN) в 0,005% практически мгновенно; при концентрации хлористого водорода (HCL) 0,01- 0,015% останавливается дыхание; при снижении концентрации кислорода в воздухе с 23% до 16% ухудшаются двигательные функции организма, и мускульная координация нарушается до такой степени, что самостоятельное движение людей становится невозможным, а снижение концентрации кислорода до 9% приводит к смерти через 5 минут.

Совместное действие некоторых факторов усиливает их воздействие на организм человека (синергический эффект). Так токсичность окиси углерода увеличивается при наличии дыма, влажности среды, снижении концентрации кислорода и повышении температуры. Синергетический эффект обнаруживается и при совместном действии двуокиси азота и понижении концентрации кислорода при повышенной температуре, а также при совместном воздействии цианистого водорода и окиси углерода.

Особое воздействие на людей оказывает дым. Дым представляет собой смесь несгоревших частиц углерода с размерами частиц от 0,05 до 5,0 мкм. На этих частицах конденсируются токсичные газы. Поэтому воздействие дыма на человека также имеет, по-видимому, синергический эффект.

В действительности при пожаре выделяется значительно больше токсинов, воздействие которых достаточно хорошо изучено. Максимально допустимый уровень опасных (основных) факторов пожара, воздействие которого не приносит вреда человеку нормирован. Вырываясь из помещения, опасные факторы пожара, прежде всего дым, стремительно распространяются по коммуникационным путям здания.

Для прогнозирования опасных факторов пожара в настоящее время используются интегральные (прогноз средних значений параметров состояния среды в помещении для любого момента развития пожара), зонные (прогноз размеров характерных пространственных зон, возникающих при пожаре в помещении и средних значений параметров состояния среды в этих зонах для любого момента развития пожара. Примеры зон - припотолочная область, восходящий на очагом горения поток нагретых газов и область незадымленной холодной зоны) и полевые (дифференциальные) модели пожара (прогноз пространственно-временного распределения температур и скоростей газовой среды в помещении, концентраций компонентов среды, давлений и плотностей в любой точке помещения).

Для проведения расчетов, необходимо проанализировать следующие данные:

- объемно-планировочных решений объекта;

- теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;

- вида, количества и расположения горючих материалов;

- количества и вероятного расположения людей в здании;

- материальной и социальной значимости объекта;

- систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.

При этом учитывается:

- вероятность возникновения пожара;

- возможная динамика развития пожара;

- наличие и характеристики систем противопожарной защиты (СППЗ);

- вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;

- соответствие объекта и его СППЗ требованиям противопожарных норм.

Далее необходимо обосновать сценарий развития пожара. Формулировка сценария развития пожара включает в себя следующие этапы:

- выбор места расположения первоначального очага пожара и закономерностей его развития;

- задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);

- задание параметров окружающей среды и начальных значений параметров внутри помещений.

1.2 Фазы пожара

Процессы развития пожара можно разделить на несколько характерных фаз.

В I фазе пожара при повышении среднеобъемной температуре до 200°С и более расход приточного воздуха увеличивается, а затем постепенно снижается. Одновременно понижается уровень нейтральной зоны (плоскости равных давлений), сокращается площадь приточной части проемов в ограждениях и, соответственно, увеличивается площадь вытяжной части. С такой же примерно скоростью снижается уровень объемной доли кислорода, поступающего в зону горения (до 8 %), и повышается объемная доля диоксида углерода в уходящих газах (до 13 %). Этот процесс объясняется тем, что при температуре 150-200°С бурно проходят экзотермические реакции разложения горючих материалов, растет скорость их выгорания под влиянием теплоты, выделяющейся на пожаре. Количество теплоты, выделяющейся на пожаре в единицу времени, зависит от низшей теплоты сгорания материалов, площади поверхности горения, массовой скорости выгорания материалов с единицы поверхности и полноты сгорания.

При пожаре в помещении нагрев горючих материалов и ограждающих конструкций происходит как конвективным, так и лучистым теплообменом. При открытых пожарах теплота в окружающую среду передается излучением.

Независимо от механизма передачи теплоты продолжительность I фазы пожара полностью зависит от скорости выгорания материалов и скорости распространения пламени. В зависимости от условий газообмена, состава и способа распределения пожарной нагрузки в помещении или на открытом пространстве, время развития пожара в I фазе колеблется от 2 до 30 % общей его продолжительности.

К концу I фазы пожара резко возрастает температура в зоне горения, пламя распространяется на большую часть горючих материалов и конструкций, стремительно увеличивается высота факела, значительно уменьшается концентрация кислорода и соответственно увеличивается концентрации оксида и диоксида углерода.

Затем начинается второй этап развития пожара (II фаза пожара). Весь описанный выше процесс повторяется, но уже с большей интенсивностью. Быстрее растет объем зоны горения, еще интенсивнее конвективный тепловой, газовый и лучистый потоки, увеличивается площадь пожара, в том числе и за счет увеличения скорости распространения пожара, круче растет температура в помещении. Этот второй этап длится примерно 5-10 мин. Начинается III этап пожара - бурный процесс нарастания всех рассмотренных выше параметров. Среднеобъемная температура в помещении поднимается до 250 - 300°С. Начинается так называемая стадия объемного развития пожара, когда пламя заполняет практически весь объем помещения, а процесс распространения пламени происходит уже не по поверхности твердых горючих материалов, а дистанционно, через разрывы в пожарной нагрузке, под действием конвективных и лучистых потоков тепла воспламеняются отдельно отстоящие от зоны горения предметы и горючие материалы.

Начинается "объемная фаза" развития пожара и фаза объемного распространения пожара. При температуре газовой среды в помещении 300°С происходит разрушение остекления, догорание продуктов сгорания может при этом происходить и за пределами помещения (огонь вырывается из проемов наружу). Скачком изменяется интенсивность газообмена: она резко возрастает, интенсифицируется процесс оттока горячих продуктов горения и приток свежего воздуха в зону горения (IV этап пожара). При этом температура в помещении может кратковременно несколько снизиться. Но, в соответствии с изменением условий газообмена, резко возрастают такие параметры пожара, как полнота сгорания, скорость выгорания и скорость распространения процесса горения. Соответственно резко возрастает удельное и общее тепловыделение на пожаре. Температура, несколько снизившаяся в момент разрушения остекления из-за притока холодного воздуха, резко возрастает, достигая 500 - 600°С. Процесс развития пожара бурно интенсифицируется, увеличивается численное значение всех параметров пожара, рассмотренных выше. Площадь пожара, среднеобъемная температура в помещении (800 - 900°С), интенсивность выгорания пожарной нагрузки и степень задымления достигают максимальных величин.

Параметры пожара стабилизируются. Эта V фаза наступает обычно на 20 - 25 мин и длится в зависимости от величины и характера пожарной нагрузки еще 20 - 30 мин и более.

Затем (при условии свободного развития пожара) начинает постепенно наступать VI фаза пожара, характерная постепенным снижением его интенсивности, так как основная часть пожарной нагрузки уже выгорела.

Толщина обугленного слоя на поверхности горючего материала, составляющая 5 - 10 мм, препятствует дальнейшему проникновению тепла вглубь и выходу летучих фракций из горючего материала. Кроме того, наиболее летучие фракции под действием высокой температуры в помещении уже выделились. Интенсивность их поступления в зону горения снижается. Верхний слой угля начинает гореть беспламенным горением по механизму гетерогенного окисления, поглощая значительную часть кислорода воздуха, поступающего в зону горения. В помещении накопилось большое количество продуктов горения. Среднеобъемная концентрация кислорода в помещении снизилась до 16 - 17%, а концентрация продуктов горения, препятствующих интенсивному горению, возросла до предельного значения. Интенсивность лучистого переноса тепла к горючему материалу уменьшилась из-за снижения температуры в зоне горения и повышения оптической плотности среды. По причине большого задымления среда стала менее прозрачной даже для теплового излучения.

Интенсивность горения медленно снижается, что влечет за собой понижение всех остальных параметров пожара (вплоть до площади горения). Площадь пожара не сокращается, она может расти или стабилизироваться, а площадь горения сокращается. Наступает VII стадия пожара - догорание в виде медленного тления, после чего через некоторое, иногда весьма продолжительное время, пожар догорает и прекращается. В настоящее время большинство объектов оборудуются автоматическими системами пожарной сигнализации и тушения пожара. Автоматические системы пожарной сигнализации должны сработать на I стадии развития пожара. Автоматические системы тушения пожара должны включаться на I или II фазе его развития. В этой фазе пожар еще не достиг максимальной интенсивности развития. Тушение пожара передвижными средствами начинается, как правило, через 10-15 мин после извещения о пожаре, т.е. через 15--20 мин после его возникновения (3-5 мин до срабатывания системы сигнализации о пожаре; 5--10, а то и более, мин -- следование на пожар; 3--5 мин разведка и боевое развертывание). То есть, тактико-технические действия, как правило, начинаются на III-- IV фазе, а иногда и на V фазе развития пожара, когда его параметры достигли наибольшей интенсивности своего развития или максимального значения.

1.3 Развитие пожара до и после полного охвата пламенем закрытого помещения

Понятие пожара в закрытом помещении используется для описания пожара, который ограничен комнатой или аналогичным закрытым помещением внутри здания. Безусловно, важную роль в развитии рассматриваемого явления играют общие размеры помещения. Характер пожара в вытянутых помещениях или в весьма значительных пространствах (>1000 м?) будет зависеть в большей мере от геометрии ограждения.

В начальный период, следующий за зажиганием, характер пожара будет аналогичен характеру пожара в условиях открытого пространства. При наличии возможности нарастания огня, что может быть обусловлено либо распространением пламени над вспыхнувшим предметом, либо распространением пламени на соседние объекты, пожар достигнет этапа, на котором на развитие пожара начнет влиять ограничение, накладываемое конечностью пространства помещения. При достаточной вентиляции помещения, позволяющей обеспечивать дальнейшее разрастание масштаба пожара, его дальнейший характер может быть описан с помощью схемы зависимости средней температуры внутри помещения от времени (рис.2.7.). (Полезнее и более реальным оказался бы график зависимости полной скорости горения от времени, хотя форма его была бы подобной форме графика, представленного на рис. 1.).

Рис. 1 Развитие пожара в помещении, выраженное в виде зависимости средней температуры газа от времени. Пунктирной линией обозначено уменьшение горючего материала перед достижением полного охвата помещения пламенем

1 - период нарастания;

2 - полный охват помещения пламенем;

3 - полностью развитый пожар;

4- период затухания пожара

Чисто схематически рис.1. показывает, что пожар в помещении можно представить тремя этапами.

Этап нарастания или начальный этап пожара до полного охвата помещения пламенем; на этом этапе средняя температура незначительна, и пламя существует в окрестности очага.

Этап полностью развитого пожара или пожара, полностью охватившего помещение; на этом этапе горят все горючие предметы в помещении, пламя заполняет весь объем.

Этап затухания, на этом этапе пожара средняя температура снижается до уровня, который составляет 80 % пикового значения.

Несмотря на низкую среднюю температуру на первом этапе пожара, внутри и вокруг зоны горения местные температуры достигают значительного уровня. В течение периода нарастания, пожар увеличивает свои размеры, сначала достигая, а затем, проходя момент, при котором значительную роль начинает играть взаимодействие с границами помещения. Переход к полностью развитому пожару (этап 2) назван этапом полного охвата помещения пламенем, при этом пламя быстро распространяется от области местного горения на все горючие поверхности внутри помещения (объема). В обычных условиях переход этот непродолжителен по сравнению с длительностью основных этапов пожара, но он часто рассматривается как поворотное событие, подобное тому явлению, каким является зажигание.

На этапе полностью развитого пожара интенсивность тепловыделения достигает максимума и угроза соседним помещениям и объектам наибольшая. Пламя может вырываться через окна, двери и технологические проемы, что приводит к распространению пожара на остальную часть здания. Это распространение может носить внутренний (через открытые дверные проемы), либо внешний характер (через окна). Кроме очевидной угрозы жизни оставшимся в здании людям на данном этапе может произойти разрушение конструкций, что в свою очередь может привести либо к частичному, либо полному обрушению здания. В период охлаждения (этап 3) интенсивность горения уменьшается по мере того, как в составе горючих веществ все меньше и меньше будет оставаться летучих продуктов. Это приведет к тому, что пламя прекратится, образовав после себя массу тлеющих в золе углей, которые будут продолжать гореть в течение некоторого времени, в результате чего будут поддерживаться высокие местные температуры.

Понимание характера этапа пожара до полного охвата пламенем помещения имеет прямое отношение к обеспечению безопасности людей, находящихся в здании. Если пожаром полностью охвачено одно помещение, то создается непосредственная угроза для тех людей, которые находятся в остальной части здания. Значение различных событий последовательно происходящих во время пожара, можно представить в форме неравенства:

Где: - время, прошедшее с момента воспламенения до момента, когда пожар был обнаружен; - длительность задержки, т.е. время от момента, когда пожар был замечен, до момента начала эвакуации людей; -- время, необходимое для перехода в безопасное место; - время (от момента воспламенения), за которое пожар принимает такие размеры, которые делают условия пребывания человека в рассматриваемом месте неприемлемыми.

Время до момента автоматического обнаружения пожара () можно уменьшить, причем в некоторых случаях весьма значительно, тогда успех эвакуации зависит от нарастания параметров опасных факторов пожара, т.е. от .

Таким образом, время полного охвата помещения пламенем является важным фактором определения пожароопасности данного помещения. Чем больше это время, тем больше шансов для своевременного обнаружения пожара и принятия мер по его ликвидации (как вручную, так и с помощью автоматических средств), а также для эвакуации людей в безопасное место.

После того, как локальное воспламенение перешло в устойчивое горение, дальнейший процесс может пойти по одному из трех направлений.

Загоревшийся предмет сгорит полностью, и пожар прекратится, не распространившись на другие изделия из горючего материала, это имеет место, в частности, при условии, если первый загоревшийся предмет находится в изолированном положении.

При недостаточной вентиляции пожар может автоматически прекратиться, или горение будет происходить с такой малой скоростью, которая диктуется поступлением кислорода.

При достаточном количестве горючего материала и притоке свежего воздуха, пожар может полностью охватить пламенем помещение (объем) комнаты, когда горят все поверхности горючих материалов.

Для большинства горючих веществ и материалов приблизительно 30 % выделяемого пламенем тепла приходится на излучение в окружающую среду, а остальная часть тепла рассеивается за счет конвекции в восходящей струе газа или дыма. Если объект горит в помещении, это тепло не полностью теряется средой, окружающей горючий материал, так как поток дыма и газов отклоняется и скапливается под потолком, который в результате этого нагревается. Если размер площади пожара возрастает настолько, что высота пламени превысит высоту помещения, произойдет расширение пламени до припотолочной струи, что приведет к резкому увеличению теплоотвода к потолку. Это в свою очередь вызовет все возрастающий обратный лучистый тепловой поток от потолка к горючему, так как температура потолка увеличивается. Но слой раскаленного дыма и газов, образовавшихся на раннем этапе пожара, будет накапливаться под потолком и излучать тепло на расположенные внизу объекты со все возрастающей интенсивностью, так как концентрация дыма, толщина слоя и температура будут увеличиваться. В результате этого скорость горения начнет увеличиваться, нарастающая интенсивность лучистого теплового потока, исходящего от припотолочного слоя, будет способствовать распространению пламени за пределы первоначального загоревшегося объекта; рядом расположенные предметы в свою очередь расширят область горения. Максимальная интенсивность горения в ограждениях в три раза превышает значение этой величины при пожаре на открытом месте. При этом время достижения максимума в три раза меньше срока достижения минимума интенсивности при горении на открытом месте. Например, интенсивность горения при пожаре спирта в малом ограниченном пространстве может достигать восьмикратного увеличения по сравнению со значением аналогичной величины для пожара на открытом пространстве.

Принимая во внимание, что ряд признаков определяют начало полностью развитого пожара, понятие полного охвата помещения пламенем можно сформулировать следующим образом:

- переход от локального пожара, к пожару по всему помещению, когда горят все горючие поверхности (пожар, регулируемый пожарной нагрузкой);

- переход от пожара, который регулируется расходом горючего к пожару, который регулируется интенсивностью вентиляции помещения (пожар, регулируемый его вентиляцией);

- внезапное проникание пламени через незагоревшиеся газы и пары, скопившиеся под потолком.

Следует подчеркнуть, что явление полного охвата помещения пламенем надо рассматривать как переход от одного состояния к другому, а не как точное обозначенное изолированное событие.

Во время начального этапа пожара, предшествующего полному охвату помещения пламенем, пожар развивается от места его зарождения, причем процесс горения первоначально проходит так, как это имеет место на открытом месте, но постепенно на ход этого процесса все больше и больше начинает влиять обратный тепловой поток, исходящий из верхних областей помещения. Увеличение интенсивности лучистого теплового потока, действующего на нижние области помещения, в конце концов вызывают быстрое распространение пламени по всем воспламеняющимся поверхностям, и как только это случится, принято считать, что наступил полный охват помещения (ограждения) пламенем.

Длительность начального этапа пожара до полного охвата помещения пламенем обуславливает обеспечение безопасности людей, поэтому существенное внимание должно уделяться параметрам горючих веществ и материалов и условиям вентиляции, которые влияют на скорость нарастания опасных факторов пожара.

Вот некоторые из них:

1. Влияние формы помещения на значение величины незначительно.

- время, находимое для того, чтобы пламя охватило верхнюю поверхность горючей нагрузки в ограждении.

2. несколько зависит от размера вентиляционного проема и непрерывности (в геометрическом смысле) очагов пожара.

3. В большей степени зависит от положения и площади сечения источника зажигания, высоты очага пожара и свойств материала облицовки стен и потолка.

Рассмотрим факторы, имеющие влияние первого порядка на процессы, протекающие на пожаре:

а. Источник зажигания. Время охвата помещения пламенем уменьшается при центральном расположении источника зажигания, так как площадь, охваченная пожаром, на начальном его этапе в этом случае нарастает быстрее. Подобно этому, большая площадь сечения источника зажигания сокращает время , так как в момент зарождения пожара в процессе горения вовлечена и большая площадь очага пожара.

б. Высота очага горючего материала. При высоком расположении очага пожара, пламена достигают потолка быстрее, тем самым, способствуя распространению пожара на раннем этапе по возгораемым поверхностям.

в. Средняя плотность горючего материала. По штабелям с большим шагом расположения брусьев в рядах, пожар распространяется быстрее, так как диаметр пожара увеличивается с большей скоростью и полный охват помещения пламенем наступает гораздо раньше. Применительно к реальному пожару это соответствует распространению пламени между соседними предметами с низкой теплоемкостью.

г. Материал облицовки стен и потолка. Хотя возгораемый облицовочный материал уменьшает время, необходимое для полного охвата помещения пламенем, но это не самая важная переменная. При полномасштабном пожаре в помещении при центральном расположении источника зажигания горючая облицовка стен не охватывается пламенем до тех пор, пока пламя пожара не коснется потолка.

Важно знать факторы взаимного влияния. Самым важным из таких факторов является взаимное влияние положения источника зажигания и характера облицовочного материала. Время полного охвата помещения пламенем резко уменьшается, если облицовочный материал является возгораемым и охватывается огнем в результате непосредственного зажигания от источника воспламенения, расположенного в углу. Аналогично этому имеет место взаимодействие, хотя менее ярко выраженное, между двумя другими переменными: между высотой очага и его средней плотностью.

Дополнительный фактор, который может влиять на время перехода к полному охвату помещения пламенем, является тепловая инерция пола, потолка и стен помещения. Время, необходимое для полного охвата помещения пламенем зависит от плотности материала облицовки стен, как это видно по данным, приведенным в табл. 1.

Таблица 1.

Материал поверхности стен

Плотность, кг/м?

T охв, мин

Кирпич

1600

23,5

Легкий бетон А

1360

23

Легкий бетон Б

800

17

Асбестовое покрытие

320

8,0?

Волокнистая теплоизоляционная плита

~ 300

6,75

Если предмет, загоревшийся первым, будет не в состоянии выделить (и некоторое время поддерживать) необходимое тепло для обеспечения перехода к полному охвату помещения пламенем, то для доведения пожара до полного охвата помещения пламенем потребуется вовлечение в процесс других очагов пожара. Только таким путем может быть увеличена скорость горения. Процесс возгорание рядом находящегося предмета будет зависеть от расстояния до уже загоревшегося предмета. Он может располагаться достаточно близко и иметь подходящую для непосредственного воздействия пламени конфигурацию, но если это невозможно, то пожар может перекинуться на соседний предмет только за счет теплоизлучения.

Лучистый тепловой поток, рожденный огнем, охватившим обычное обитое кресло, может вызвать возгорание хлопчатобумажной ткани на расстоянии 0,15 м, в то время как горящий гардероб может вызвать возгорание такой же ткани на расстоянии 1,2 м. Огонь не перебросится от изолированного обитого кресла к соседнему, если они будут удалены друг от друга на расстояние более 30 см.

Лучистый тепловой поток, действующий на определенном расстоянии, зависит от интенсивности горения. Быстро горящие предметы могут обеспечить значительные лучистые тепловые потоки на расстоянии до 1 м от передней кромки пламени.

Рис. 2. Нарастание пожара от момента окончания начального периода зарождения пожара () для двух коэффициентов нарастания пожара: 0,1 и 0,01

Однако нарастание пожара от первоначально возгоревшего предмета может произойти путем непосредственного распространения огня на соседние предметы. Скорость нарастания пожара частично увеличится, если пожар перекинется на вертикальные поверхности помещения или если существует конфигурация, которая способствует сохранению тепла в окрестности горящих поверхностей, например при перекрестном тепловом излучении. Примерами такой ситуации могут быть возгорание под кроватью, или в углу, или между двумя близко расположенными предметами мебели, такими, как кровать или гардероб. Важную роль могут играть и другие факторы: термопластики могут плавиться и течь, создавая пожары жидких продуктов, которые могут распространиться на другие возгораемые предметы. При определенных условиях загоревшиеся потолочные плиты, изготовленные из расширяющегося полистирола, могут расплавиться и потечь, образуя дождь из горящих капель расплавленного полимерного материала, падающих на поверхности, расположенные ниже. Эти явления вполне понятны, но количественную оценку дать им трудно.

Несмотря на эти неопределенности, было установлено, что скорости развития многих пожаров от первоначального периода зарождения пожара аппроксимируются законом параболы:

где- коэффициент нарастания пожара, кВт/с2; - длительность первоначального периода зарождения пожара, с.

Схематическое представление об этом можно получить по рис. 2.8. Коэффициент лежит в диапазоне от для очень медленно развивающихся пожаров, до 1 кВт/с2 для очень быстро развивающихся пожаров. Длительность начального периода зарождения будет зависеть от характера источника зажигания и его расположения.

После наступления полного охвата помещения пламенем внешние поверхности всех горючих предметов в помещении, где возник пожар, будут охвачены огнем, интенсивность тепловыделения будет нарастать, достигая максимума, что приведет к высоким температурам, которые могут достигать 1100°С. Высокие температуры будут поддерживаться до тех пор, пока интенсивность образования воспламеняемых летучих продуктов не начнет уменьшаться в результате истощения горючих веществ. Именно в этот период полностью развитого пожара может произойти обрушение элементов здания, обусловленное значительными термическими напряжениями. Обрушение элементов конструкций может вызвать местное или общее разрушение конструкции здания. Термин «разрушение» относится также к ограждениям помещения, и их разрушение означает возможность переброса пожара в соседние пространства путем проникновения в них пламени или мощных тепловых потоков. По этой причине обоснована концепция разделения здания на пожарные отсеки. Цель такого разделения- удержание пожара в пределах, позволяющих ликвидировать его прибывающими пожарными подразделениями. При таком подходе здание делится на пожарные отсеки, разделенные обычными стенами или противопожарными перегородками, обладающими соответствующей огнестойкостью.

Направление распространения пламени на пожаре

Наибольшая скорость распространения пламени достигается, если пламя распространяется вверх, по направлению ветра (вентиляционного потока), по горючей нагрузке с наибольшим коэффициентом поверхности горения.

Таблица 3. Скорость распространения пламени по полоскам фильтровальной бумаги

Ориентация, град

Скорость распространения пламени, мм/с

0 (горизонтально)

3,6

+ 22,5

6,3

+45

11,2

+75

29,2

+90 (вертикально вверх)

46-74 (неустойчивый режим)

С другой стороны, при распространении пламени вниз по колоде перфокарт, скорость распространения пламени менее чувствительна к изменению ориентации поверхности. По мере изменения угла ориентации ? от -30 до 90° (вертикально вниз) скорость распространения пламени оставалась приблизительно постоянной (~1,3 мм/с). Но при изменении ? от -30 до 0°, скорость возросла в 3 раза. Увеличение скорости распространения при изменении ? от -90 до +90° (вертикально вверх) приводит к пятикратному увеличению скорости распространения пламени для тонких слоев горючих материалов данного типа. Аналогичное поведение установлено для толстых слоев горючих веществ.

Причина такого поведения кроется в изменении характера физического взаимодействия между пламенем и зажженным материалом при изменении ориентации. Пламя стремится распространиться на ближнюю вертикальную поверхность, так как захват воздушных масс ограничен одним направлением.

Угол наклона поверхности ?, град.

Рис.3. График зависимости скорости распространения пламени по колоде перфокарт от угла наклона ? (? = -90° соответствует распространению пламени вертикально вниз).

Следовательно, при вертикальном горении установившееся пламя будет удлиняться, и заполнять пограничный слой на поверхности. При распространении пламени вниз по наклонной поверхности (? < 0°) указанное выше обстоятельство не повлияет на скорость распространения пламени. При ? > 18°, это обстоятельство существенно сказывается на скорости распространения пламени. По мере того, как пламя и раскаленные продукты сгорания путем конвективного и лучистого теплообмена будут подвергать предварительному нагреву свежее горючее, вклад указанного выше обстоятельства будет возрастать при увеличении ориентации в направлении вертикального распространения пламени вверх (? = +90°). Таким образом, в то время как при распространении пламени вертикально вниз (-90°) достигается почти мгновенно медленная скорость распространения пламени, при распространении пламени вертикально вверх (+90°) скорость распространения быстро нарастает до квазистационарных значений. Это наблюдалось для вертикальных пластин и для свободно подведенных полос ткани. Вслед за зажиганием нижнего края наступал короткий период времени ламинарного режима горения, который быстро переходил в турбулентный режим по мере увеличения размера пламени. Было установлено, что для полос материи длиной 1,5 м (при максимальной ширине 0,6 м), скорость распространения пламени зависит от длины зоны пиролиза, т.е. зоны, из которой в окружающую среду поступают летучие продукты.

Заключение

Опасности и угрозы всегда указывают на взаимодействие двух сторон:

- той, которая выступает источником и носителем опасности (явление, процесс, субъект, объект);

- той, на которую направлена опасность или угроза - объект, субъект;

Источники опасности - это условия или факторы, которые таят в себе и при определенных условиях сами по себе (либо в различной совокупности) проявляют или обнаруживают враждебные намерения, реальные или потенциально вредные действия. Источники опасности по своей сути имеют естественно-природное (земное), космическое, техническое и социально- экономическое происхождение.

Известно, что объект - философская категория, выражающая то, что противостоит субъекту в его предметно-практической или познавательной деятельности, т.е. обладает нулевым значением суверенитета.

Субъект же - это носитель предметно-практической деятельности и познания (индивид, социальная группа, государство и т.д.), источник активности, направленной на объект и обладает максимальным суверенитетом;

Объектом угроз и опасностей являются человек, общество, государство. Эта триада представляет собой целостную систему.

Человек в системе (и, прежде всего, личность - творец) является высшей целью общественно-политического и социально-экономического развития страны.

Общество - это социальная среда, включающая реальные условия всестороннего развития творчества личности в системе общественных отношений.

Государство представляет собой организационно-политический механизм реализации общественных отношений и обеспечения гарантии и прав граждан в определенных рамках морали и нравственности. Государство должно возвышаться над личностью, так как его задача - создать механизм, чтобы творческое развитие личности на самом деле было высшей национальной целью, с одной стороны, но с другой - государство является владельцем (носителем) живого капитала.

Объектами угроз в государственном масштабе являются практически все сферы жизнедеятельности общества. В любой из них существуют специфические особенности опасности и угроз.

Человек выступает как объект и субъект опасностей и угроз. Диапазон проявлений человеческой сущности многообразен и противоречив. В ней необъяснимо уживаются эгоизм, иррациональность, агрессивность с отрицающими их подвижничеством, жертвенностью, благодеянием. Современный человек не торопится расставаться со своими пороками, выйти за рамки субъективного, индивидуально-алчного мира.

Известно, что мир представляется человеку в виде объективной и субъективной реальности. Человек преобразует природу и изменяет ее сам. Отсюда вывод, что человек одновременно является и субъектом толкования мира и его объектом.

Известное стремление человека жить лучше не получило еще необходимого приложения. Человек пока остается носителем различных по виду опасностей и угроз, регулятором "безопасности".

Таким образом, человек прямо или опосредованно включен в разнообразную, сложноорганизованную систему отношений и процессов, выполняя в них активно-созидательную, пассивно-созерцательную или разрушительную роль.

Список литературы

ГОСТ 12.1.004-91 Пожарная безопасность. Общие требования. -М.: Издательство стандартов, 1992.-78 с.

Драйздел Д. Введение в динамику пожара.-М.: Стройиздат, 1990. - 420 с.

Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении: Учебное пособие. - М.: Академия ГПС МВД России, 2000. 118 с.

Кошмаров Ю.А., Зотов Ю.С. и др. Лабораторный практикум по курсу “Прогнозирование опасных факторов пожара в помещениях”. - М., МИПБ МВД РФ, 1997.- 68 с.

Методические указания к выполнению курсовой работы про прогнозированию опасных факторов пожара в помещении. - М.: МИПБ МВД РФ, 1997. - 62 с.

Моделирование пожаров и взрывов. (Под ред. Брушлинского Н.Н. и Корольченко А.Я.) - М.: Из-во “Пожнаука”, 2000, 492 с.

Чешко И.Д. Экспертиза пожаров (объекты ,методы, методики исследоания). - СПб.: СПбИПБ МВД РФ, 1997. - 55 с.

Размещено на Allbest.ru


Подобные документы

  • Расчет сил и средств, необходимых для тушения пожара. Виды и особенности пожара в гаражах. Прогнозирование возможной обстановки на пожаре на момент введения первых сил и средств на тушение пожара. Рекомендации должностным лицам по тушению пожара.

    курсовая работа [203,3 K], добавлен 19.04.2012

  • Условия возникновения пожара: образование горючего вещества, наличие окислителя, появление источника зажигания. Расчет параметров источников пожара. Оценка необходимого времени эвакуации людей из помещения. Основные меры по предотвращению пожара.

    контрольная работа [454,3 K], добавлен 26.02.2012

  • Описание математической модели развития пожара в помещении. Прогнозирование обстановки на пожаре к моменту прибытия первых подразделений на его тушение. Определение критической продолжительности пожара и времени блокирования эвакуационных путей.

    курсовая работа [887,4 K], добавлен 21.11.2014

  • Состав основных компонентов древесины и их поведение при термическом воздействии. Визуальные признаки термических поражений на конструкциях из древесины. Инструментальные методы и средства, применяемые для исследования после пожара древесных изделий.

    презентация [311,3 K], добавлен 26.09.2014

  • Описание интегральной математической модели свободного развития пожара в складском помещении. Расчет динамики опасных факторов для уровня рабочей зоны с помощью компьютерной программы Intmodel. Расчет времени, необходимого для эвакуации из помещения.

    методичка [343,2 K], добавлен 09.06.2014

  • Понятие осмотра, должностные лица, уполномоченные проводить осмотр, стадии расследования пожара, на которых он проводится. Фиксация развития пожара и действий по тушению. Осмотр окружающей территории и тех частей объекта, на которых не происходит горение.

    реферат [34,0 K], добавлен 01.06.2013

  • Расчет параметров пожара до момента введения сил и средств первым подразделением. Определение параметров пожара по установленному расчетом сил и средств повышенному рангу пожара. Совмещенный график изменения параметров развития и тушения пожара.

    курсовая работа [126,5 K], добавлен 31.08.2019

  • Оперативно-тактическая характеристика коврового комбината. Обстановка на пожаре к моменту прибытия РТП, оценка его действий. Прогнозирование возможной обстановки, расчет сил и средств для ограничения развития и тушения пожара. Организация боевого участка.

    курсовая работа [138,8 K], добавлен 17.07.2012

  • Оперативно-тактическая характеристика здания торговой оптовой базы. Прогнозирование возможной обстановки, определение формы и площади пожара. Расчет материального баланса процесса горения. Тепловой баланс и температура горения. Параметры развития пожара.

    курсовая работа [88,6 K], добавлен 18.10.2011

  • Интегральная математическая модель развития пожара. Результаты компьютерного моделирования. Время достижения пороговых и критических значений опасных факторов. Расчет времени эвакуации людей из помещения. Расчет динамики ОФП для уровня рабочей зоны.

    курсовая работа [460,6 K], добавлен 24.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.