Защитное заземление и зануление

Обозначения системы заземления. Защитная функция заземления. Разновидности систем заземления. Принцип работы зануления. Нулевые защитные проводники. Меры против ослабления контактного соединения и коррозии. Расчет нулевых защитных проводников по нагреву.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 23.05.2012
Размер файла 28,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия - защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с «землей», а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.

1. Заземление

Заземление - преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды - используя множество стержней, повышая содержание солей в земле и т.д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ

Терминология

· Глухозаземлённая нейтраль - нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

· Изолированная нейтраль-нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

· T - непосредственное соединения нейтрали источника питания с землёй;

· I - все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

· T - открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

· N - непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи - функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

· S - функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

· C - функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Защитная функция заземления

Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения - УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ч сотые доли секунды - время срабатывания УЗО).

Защитное заземление применяется в сетях напряжением до 1000 В переменного тока - трёхфазные трехпроводные с глухозаземленной нейтралью; однофазные двухпроводные, изолированные от земли; двухпроводные сети постоянного тока с изолированной средней точкой обмоток источника тока; в сетях выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Заземление обязательно во всех электроустановках при напряжении 380 В и выше переменного тока, 440 В и выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках при напряжении 42 В и выше переменного тока, 110 В и выше постоянного тока; при любых напряжениях во взрывоопасных помещениях.

В зависимости от места размещения заземлителей относительно заземляющего оборудования различают два типа заземляющего устройств - выносное и контурное.

При выносном заземляющем устройстве заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование.

При контурном заземляющем устройстве электроды заземлителя размещают по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки.

В открытых электроустановках корпуса присоединяют непосредственно к заземлителю проводами. В зданиях прокладывается магистраль заземления, к которой присоединяют заземляющие провода. Магистраль заземления соединяют с заземлителем не менее чем в двух местах.

В качестве заземлителей в первую очередь следует использовать естественные заземлители в виде проложенных под землёй металлических коммуникаций (за исключением трубопроводов для горючих и взрывчатых веществ, труб теплотрасс), металлических конструкций зданий, соединённых с землёй, свинцовых оболочек кабелей, обсадных труб артезианских колодцев, скважин, шурфов и т.д.

В качестве естественных заземлителей подстанций и распределительных устройств рекомендуется использовать заземлители опор отходящих воздушных линий электропередачи, соединённых с заземляющим устройством подстанций или распределительным устройством с помощью грозозащитных тросов линий.

Если сопротивление естественных заземлителей Rз удовлетворяет требуемым нормам, то устройство искусственных заземлителей не требуется. Но это можно только измерить. Посчитать сопротивление естественных заземлителей нельзя.

Когда естественные заземлители отсутствуют или использование их не даёт нужных результатов, применяют искусственные заземлители - стержни из угловой стали размером 50Х50, 60Х60, 75Х75 мм с толщиной стенки не менее 4 мм, длиной 2,5-3 м; стальные трубы диаметром 50-60 мм, длиной 2,5-3 м с толщиной стенки не менее 3,5 мм; прутковая сталь диаметром не менее 10 мм, длиной до 10 м и более.

Заземлители забивают в ряд или по контуру на такую глубину, при которой от верхнего конца заземлителя до поверхности земли остаётся 0,5 - 0,8 м. Расстояние между вертикальными заземлителями должно быть не менее 2,5-3 м.

Для соединения вертикальных заземлителей между собой применяют стальные полосы толщиной не менее 4 мм и сечением не менее 48 кв. мм или стальной провод диаметром не менее 6 мм. Полосы (горизонтальные заземлители) соединяют с вертикальными заземлителями сваркой. Место сварки обмазывается битумом для влагоизоляции.

Магистрали заземления внутри зданий с электроустановками напряжением до 1000 В выполняют стальной полосой сечением не менее 100 кв. мм или сталью круглого сечения той же проводимости. Ответвления от магистрали к электроустановкам выполняют стальной полосой сечением не менее 24 кв. мм или круглой сталью диаметром не менее 5 мм.

Заземление учитывает свойство Земли проводить электричество. Электроды для заземления делают обычно из стали. Сталь со временем ржавеет и разрушается, и заземление пропадает. Процесс этот необратим, но можно использовать стальные стержни, покрытые цинком. Цинк тоже металл, но он плохо подвержен ржавлению до тех пор, пока слой цинка есть.

Когда со временем цинк вымывается или стирается механическими способами, например, при забивании электродов в твердую почву камни могут ободрать покрытие, тогда скорость коррозии увеличится вдвое. Иногда используют специальные электроды с покрытием из меди.

Стержни для заземления можно брать те, которые использовались как арматура для бетона фундамента. Красить или покрывать смолистыми составами их нельзя - смола выступит как изолятор и заземления не будет вообще. Чем длиннее стержни, тем меньше их понадобится для заземления, но тем труднее их забить в почву. Поэтому вначале нужно выкопать траншею глубиной 1 метр. Забить в траншею кусок арматуры, предварительно заточенный, чтобы он выглядывал из дна траншеи не более 20 сантиметров. Следом через 2 метра забивают следующую арматуру и так далее по расчету. Следом на дно траншеи кладут арматуру и приваривают ее ко всем забитым штырям. Место сварки необходимо обмазать битумом для влагоизоляции. Это делается потому, что арматуру толщиной 12 миллиметров будет гнить в земле очень долго, а вот место сварки по площади относительно небольшое, но самое ответственное.

После забивания всех электродов можно провести эксперимент. Из дома вытягиваем удлинитель. Источник напряжения должен приходить со столба от подстанции. Использовать для проверки автономный источник типа генератора нельзя - не будет замкнутой цепи. На удлинителе находим фазу и подключаем один провод от лампочки, а вторым проводом прикасаемся к обваренным электродам. Если лампочка светится, то измеряем напряжение между фазным проводом и заземленными электродами, напряжение должно быть 220 В, а вот светиться лампочка должна достаточно ярко. Также можно измерить ток через лампочку в 100 Вт. Если ток примерно 0,45 А, все в порядке, но если ток значительно меньше - следует добавить заземляющих стержней.

Нужно добиться нормального свечения лампочки и тока в пределах нормы. После этого места сварки заливают битумом и выводят кусок арматуры из траншеи, прикрепив его к дому. После этого траншею можно засыпать. Выведенный кусок арматуры нужно приварить к электрическому распределительному щиту в коттедже. От щита уже развести медными кабелями все точки.

2. Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

TN-C в 1930-х годах была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция - электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи - отдельный нулевой защитный проводник (PE).

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

3. Зануление

Зануление - это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке - это, например, третья жила провода или кабеля. Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли «фаза-ноль» должно быть небольшим, что, в свою очередь, накладывает на все соединения и монтаж сети жесткие требования качества, иначе зануление может оказаться неэффективным. Помимо быстрого отключения неисправной линии от электроснабжения, благодаря тому, что нейтраль заземлена, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека.

Зануление применяется с целью отключить при пробое на корпус поврежденный электроприемник в возможно короткий срок и тем самым ограничить до возможного минимума время, в течение которого поврежденный объект будет представлять опасность для персонала. При занулении отключение поврежденного электроприемника производится под действием тока замыкания на корпус в линии, питающей поврежденный электроприемник.

Для быстрого и надежного срабатывания защиты максимального тока кратность тока замыкания на корпус по отношению к току уставки защиты должна быть как можно больше.

ПУЭ требует (пункт 1.7.79): чтобы ток однофазного замыкания на корпус

1. превосходил - не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя;

2. не менее чем в 3 раза ток уставки расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику;

3. не менее чем в 1,1 Кр раза ток мгновенного срабатывания автомата, имеющего только расцепитель без выдержки времени, где Кр - коэффициент, учитывающий разброс токов срабатывания (по заводским данным). При отсутствии заводских данных о величине разброса кратность тока короткого замыкания относительно величины уставки следует принимать 1,4 для автоматов до 100 А и 1,25 для автоматов с номинальным током более 100 А.

Во взрывоопасных установках (ПУЭ, пункт 7.3.139) указанные выше кратности тока однофазного замыкания на корпус должны быть повышены до 4 в цепи, защищенной плавким предохранителем; до 6 в цепи, защищенной автоматическим выключателем с обратно зависимой от тока характеристикой. В цепях, защищенных автоматическим выключателем, имеющим только электромагнитный (мгновенный) расцепитель, кратность тока однофазного замыкания на корпус определяется как для невзрывоопасных установок.

Нулевые защитные проводники. В качестве нулевых защитных проводников могут служить:

1. отдельные (в том числе нулевые) жилы многожильных проводов и кабелей;

2. специально проложенные проводники;

3. элементы металлических конструкций зданий, стальные трубы электропроводок, металлические конструкции производственного назначения, трубопроводы всех назначений (кроме трубопроводов горючих и взрывоопасных смесей) проложенные открыто;

4. алюминиевые оболочки кабелей.

Заземляющие и нулевые защитные проводники должны быть защищены от коррозии. Места соединения стыков после сварки должны быть окрашены. В сухих помещениях для этого следует применять асфальтовый лак, масляные краски или нитроэмали. В сырых помещениях и помещениях с едкими парами окраска должна быть выполнена красками, стойкими в отношении химических воздействий (например поливинилхлоридными эмалями).

Запрещается использовать металлические оболочки трубчатых проводов, несущие тросы при тросовой электропроводке, металлические оболочки изоляционных трубок, металлорукава, броню и свинцовую оболочку проводов и кабелей в качестве заземляющих или нулевых защитных проводников.

При использовании алюминиевых оболочек кабелей в качестве заземляющих или нулевых защитных проводников присоединение их к корпусам электрооборудования, к соединительным или концевым кабельным муфтам должно выполняться гибкими медными перемычками сечением не менее приведенных в табл. 1.

Таблица 1. Сечение гибких медных перемычек

Сечение жил кабеля, мм2

Сечение перемычек, мм2

До 10

6

16-35

10

50-120

16

150 и выше

25

В электроустановках напряжением до 1000 В с глухозаземленной нейтралью нулевые защитные проводники с целью уменьшения индуктивного сопротивления цепи фаза-нуль следует прокладывать совместно с фазными или в непосредственной близости к ним.

Ответвления от магистрали к электроприемникам до 1 кВ допускается прокладывать скрыто непосредственно в стене, под чистым полом и т.п. с защитой их от воздействия агрессивных сред. Такие ответвления не должны иметь соединений.

Прокладка заземляющих и нулевых защитных проводников через стены должна выполняться в открытых проемах, в неметаллических трубах или иных жестких обрамлениях.

В помещениях сухих, без агрессивной среды, заземляющие и нулевые защитные проводники допускается прокладывать непосредственно по стенам. Во влажных, сырых и особо сырых помещениях и в помещениях с агрессивной средой заземление и нулевые защитные проводники следует прокладывать на расстоянии от стен не менее чем 10 мм. Расстояние между опорами для крепления заземляющих и нулевых защитных проводников должны быть не более 1000 мм.

В наружных установках заземляющие и нулевые защитные проводники допускается прокладывать в земле, в полу или по краю площадок, фундаментов технологических установок и т.п.

Использование неизолированных алюминиевых проводников для прокладки в земле в качестве заземляющих или нулевых защитных проводников запрещается.

Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки не допускается.

Заземлители надлежит соединять с магистралями заземления не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не относится к повторному заземлению нулевого провода и металлических оболочек кабелей.

Соединение частей заземлителя между собой, а также заземлителя с заземляющими проводниками следует выполнять сваркой; при этом длина нахлеста должна быть равна ширине проводника при прямоугольном сечении и шести диаметрам при круглом сечении. При Т-образном соединении внахлестку двух полос длина нахлестки определяется шириной полосы.

Использование специально проложенных заземляющих или нулевых защитных проводников для каких-либо целей не допускается.

Открыто проложенные заземляющие и нулевые защитные проводники должны иметь отличительную окраску: желтые полосы по зеленому фону.

При использовании строительных или технологических конструкций в качестве заземляющих или нулевых защитных проводников на перемычках между ними, а также в местах присоединений и ответвлений проводников должны быть нанесены две полосы желтого цвета по зеленому фону на расстоянии 150 мм одна от другой.

Присоединение заземляющих и нулевых защитных проводников к частям оборудования, подлежащим заземлению или занулению, должно быть выполнено сваркой или болтовым соединением. Присоединение должно быть доступно для осмотра.

Для болтового соединения следует предусматривать меры против ослабления контактного соединения (контрогайки, разрезные пружинные шайбы и т.п.) и коррозии (смазка тонким слоем вазелина зачищенных до металлического блеска контактных поверхностей и т.п.).

Сопротивление нулевых защитных проводников оказывает решающее влияние на общее сопротивление цепи зануления и, следовательно, на величину тока замыкания на корпус. Из перечисленных выше нулевых защитных проводников аналитическому расчету поддается только сопротивление жил проводов и кабелей.

Расчет нулевых защитных проводников по нагреву. Нулевые защитные проводники должны пропускать, не повреждаясь, ток однофазного замыкания на корпус. Считается, что это требование выполняется, если проводимость нулевого защитного проводника в любой точке составляет не менее 50% проводимости фазных проводников.

Ток двухфазного короткого замыкания может протекать по нулевым защитным проводникам только в случае одновременного замыкания на корпус у различных электроприемников и в различных фазах. При выборе сечения нулевых защитных проводников этот случай не принимается во внимание.

Элементы металлоконструкций зданий, стальные трубы электропроводки, конструкции производственного назначения и трубопроводы, используемые в качестве нулевых защитных проводников, не проверяются на устойчивость при замыканиях на корпус.

Поперечное сечение алюминиевой оболочки кабелей практически во всех имеющих место случаях превышает сечение фазного провода, поэтому ее можно считать устойчивой при токах короткого замыкания на корпус.

Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 2.

заземление зануление проводник коррозия

4. Нулевые рабочие проводники

Для питания электроприемников с однофазной или неравномерной трехфазной нагрузкой должен быть проложен рабочий нулевой провод, по которому протекает геометрическая сумма фазных токов. Нулевой рабочий провод присоединяется к нейтрали генератора или вторичной обмотке трансформатора, и он может быть использован для зануления корпуса приемника. По рабочему нулевому проводу длительно протекает рабочий ток, создающий в нем падение напряжения, и поэтому он должен быть изолирован на всей длине, когда используется для зануления (как защитный).

Если нулевой рабочий провод используется как защитный, на него распространяются требования, относящиеся к нулевым защитным проводникам.

Нулевые рабочие проводники должны быть рассчитаны на длительное протекание рабочего тока.

Рекомендуется в качестве нулевых рабочих проводников применять проводники с изоляцией, равноценной изоляции фазных проводников. Такая изоляция обязательна как для нулевых рабочих, так и для нулевых защитных проводников в тех местах, где применение неизолированных проводников может привести к образованию электрических пар или к повреждению изоляции фазных проводников в результате искрения между неизолированным нулевым проводником и оболочкой или конструкцией (например, при прокладке проводов в трубах, коробах, лотках).

Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофазного и постоянного тока. Для зануления переносных электроприемников должен быть применен отдельный третий провод, присоединенный во втычном соединителе (разъеме) к нулевому рабочему или нулевому защитному проводнику.

5. Типы систем зануления

Различают зануление систем TN-C, TN-C-S и TN-S:

Система зануления TN-С

Простая система зануления, в которой нулевой проводник N и нулевой защитный PE совмещены на всей своей длине. Совместный проводник обозначается аббревиатурой PEN. Имеет существенные недостатки, главный из которых - высокие требования к системам уравнивания потенциалов и сечению PEN-проводника. Применяется для электроснабжения трехфазных нагрузок, например асинхронных двигателей. Применение данной системы в однофазных групповых и распределительных сетях запрещено:

Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. (ПУЭ-7)

Система зануления TN-С-S

Усовершенствованная система зануления, предназначенная для обеспечения электробезопасности однофазных сетей электроустановок. Она состоит из совмещенного PEN-проводника, который соединен с глухозаземленной нейтралью питающего электроустановку трансформатора. В точке, где трехфазная линия разветвляется на однофазные потребители (например в этажном щите многоквартирного дома или в подвале такого дома) PEN-проводник разделяется на PE- и N-проводники, непосредственно подходящие к однофазным потребителям.

Система зануления TN-S

Наиболее совершенная, дорогая и безопасная система зануления, получившая распространение, в частности, в Великобритании. В этой системе нулевой защитный и нулевой проводники разделены на всей своей длине, что исключает вероятность ее выхода из строя при аварии на линии или ошибке в монтаже электропроводки.

Заключение

Обеспечение безопасности жизнедеятельности - задача первостепенного приоритета для личности, общества и государства. С момента своего появления на Земле человек перманентно живёт и действует в условиях постоянно изменяющихся потенциально опасностей. Реализуясь в пространстве и времени, опасности причиняют вред здоровью человека, который проявляет в нервных потрясениях, болезнях, инвалидных и летальных исходах и др. Профилактика опасности и защита от них - актуальнейшая гуманная, социально-экономическая и юридическая проблема, в решении которой государство не может быть не заинтересованным. Для обеспечения электробезопасности необходимо строгое выполнение ряда организационно-технических мероприятий установленных правилами устройства электроустановок, правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей. Опасное и вредное воздействие на людей электрического тока, электрической дуги и электромагнитных полей проявляется в виде электротравм и профессиональных заболеваний. Электробезопасность в помещении обеспечивается техническими способами и средствами защиты, а так же организационными и техническими мероприятиями.

Размещено на Allbest.ru


Подобные документы

  • Опасность воздействия на людей электрического тока. Защитное заземление как основная мера защиты металлоконструкции. Состав заземления, обозначения системы заземления на схемах. Виды систем заземления. Принцип действия зануления, системы зануления.

    реферат [150,0 K], добавлен 19.11.2010

  • Теоретическое обоснование проведения защитных заземлений и занулений. Необходимость проведения защитного заземления и зануления. Расчет защитного заземления подстанций, зануления двигателя. Устройства, применяемые в данных процессах, их применение.

    курсовая работа [451,7 K], добавлен 28.03.2011

  • Функциональное назначение заземления делится на три вида — рабочее, защитное, заземление молниезащиты. Заземление нейтралей силовых трансформаторов и генераторов, глухое или через дугогасящий реактор. Назначение защитного заземления, принцип действия.

    реферат [389,4 K], добавлен 24.03.2009

  • Сущность защитного заземления, его применение для защиты человека от опасности поражения электрическим током. Устройство и выполнение заземления, нормирование его параметров, расчет и определение числа заземлителей и длины соединительной полосы.

    практическая работа [821,2 K], добавлен 18.04.2010

  • Опасные и вредные факторы производства. Система "человек – машина – среда" с выделением доминирующего вредного фактора. Расчет одиночного заземления и искусственного освещения. Схема пожароэвакуации, оснащение средствами предупреждения и тушения пожаров.

    контрольная работа [76,7 K], добавлен 27.08.2010

  • Разработка системы "Человек-Машина-Среда" в условиях действия вредного производственного фактора – повышенного напряжения в сети. Расчет повторного заземления нулевого провода либо расчет зануления, сечения провода. Правильное размещения рабочих мест.

    контрольная работа [365,8 K], добавлен 28.04.2011

  • Анализ опасных и вредных производственных факторов. Методы и этапы составления системы ЧМС с выделением доминирующего фактора. Расчет повторного заземления и кондиционирования. Правила оснащения помещений средствами пожаропредупреждения и пожаротушения.

    контрольная работа [63,6 K], добавлен 04.09.2010

  • Способы предупреждения и защиты от поражения электрическим током: защитное зануление, заземление и отключение. Устройства и типичные схемы молниезащиты систем электроснабжения. Конструктивные отличия молниеотводов. Понятие статического электричества.

    курсовая работа [48,6 K], добавлен 13.04.2012

  • Условия труда человека и описаниен системы "человек – машина – среда". Повторное заземление нулевого защитного проводника, уменьшающее опасность поражения людей током. Расчет заземляющего устройства исходя из его максимально допустимого сопротивления.

    контрольная работа [167,3 K], добавлен 23.08.2010

  • Принцип работы и расчет вытяжной вентиляционной установки для удаления запыленного воздуха от фасовочной машины. Определение защитного заземления. Расчет равномерного искусственного освещения помещения лампами накаливания, установленными в светильнике.

    контрольная работа [101,3 K], добавлен 21.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.