Характеристика ионизирующих излучений

Теоретические основы понятия об ионизирующих излучениях, их видах и источниках. Поток излучений и его плотность, поток энергии как основные характеристики ионизирующих излучений, их единицы измерения. Факторы, влияющие на изменение радиационного фона.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 12.11.2011
Размер файла 18,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1 Характеристика ионизирующих излучений

2 Основные характеристики ионизирующих излучений

3 Единицы измерения

4 Радиационный фон

Список используемой литературы

ВВЕДЕНИЕ

Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий - 40 и рубидий - 87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

1 ХАРАКТЕРИСТИКА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Ионизирующее излучение - это потоки фотонов или частиц, взаимодействие которых со средой приводит к ионизации ее атомов или молекул. Различают фотонное (электромагнитное) и корпускулярное ионизирующее излучение. К фотонному излучению относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и других ядерных радиациях и при торможении заряженных частиц в электрическом или магнитном поле - тормозное рентгеновское излучение, синхротронное излучение. К корпускулярному излучению относят потоки б и В-частиц, ускоренных ионов и электронов, нейтронов, осколков деления тяжелых ядер и др. Заряженные частицы ионизируют атомы или молекулы среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом электроны обладают достаточной кинетической энергией, они также могут ионизировать атомы или молекулы среды при столкновениях (вторичная ионизация); такие электроны называются d-электронами. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде электроны (косвенная ионизация); вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки нейтронов ионизируют среду лишь косвенно, преим. ядрами отдачи. Пространственно-временное распределение заряженных частиц или квантов, составляющих ионизирующее излучение, называется его полем.

При прохождении ионизирующих излучений в среде возможно упругое рассеяние частиц, составляющих излучение, и неупругие процессы. При упругом рассеянии кинетическая энергия относительно движения частиц остается постоянной, но меняется направление их движения, т.е. поток излучений рассеивается; при неупругих процессах кинетическая энергия ионизирующих излучений расходуется на ионизацию и возбуждение частиц среды. Для потока электронов характерны упругое рассеяние на ядрах атомов среды и неупругие процессы - ионизация и возбуждение атомов и молекул при взаимодействии с их электронными оболочками (ионизационные потери) и генерация тормозного излучения при взаимодействии с атомными ядрами (радиационные потери). Если энергия электронов не превышает 10 МэВ, во всех средах преобладают ионизационные потери. Для потока ускоренных ионов ионизационные потери доминируют при всех энергиях. Энергия, передаваемая заряженной частицей данному веществу на единице длины ее пути, называется тормозной способностью вещества

sm = dE / dl

где dE - энергия, теряемая частицей при прохождении элементарного пути dl.

Значение sm снижается с увеличением энергии заряженных частиц и растет с повышением ат. номера элемента, из которого состоит вещество среды.

Ионизирующие излучения имеют место упругое рассеяние (классическое рассеяние) и неупругие процессы, основные из которых фотоэффект, эффект Комптона и образование пар электрон-позитрон. При фотоэффекте фотон поглощается атомом среды с испусканием электрона, причем энергия фотона за вычетом энергии связи электрона в атоме передается освобожденному электрону.

Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.

Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.

Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

2 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

ионизирующий излучение радиационный фон

Поток излучений

Фn = dN / dt,

где dN - число частиц, падающих на данную поверхность за интервал времени dt; плотность потока

jn = dФn / dS,

где dФn - поток, приходящийся на площадь поперечного сечения dS поглощающего объема; поток энергии

Ф = dE / dt,

где dE - суммарная энергия излучения (за исключением энергии массы покоя); энергетический спектр ионизирующих излучений - распределение составляющих его частиц и фотонов по энергиям.

Количество энергии, переданной единице массы среды, называется поглощенной дозой излучения. Все виды ионизирующих излучений характеризуются так называемой линейной передачей энергии (ЛПЭ) - энергией, переданной среде ионизирующей частицей в заданной окрестности ее траектории на единицу длины. ЛПЭ может принимать значения от 0,2 (высокоэнергетические фотоны и электроны) до 104 эВ / нм.

В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют б, в и г-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц.

3 ЕДИНИЦЫ ИЗМЕРЕНИЯ

По механизму взаимодействия с веществом выделяют непосредственно (потоки заряженных частиц) и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц - фотонов и нейтронов). По механизму образования - первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Ионизирующее излучение (проникающая радиация) - поток гамма лучей и нейтронов из зоны ядерного взрыва. За единицу измерения излучения (экспозиционной дозы) принят кулон на 1 кг (Кл / кг) в единицах СИ. В практике в качестве единицы экспозиционной дозы излучения часто пользуются внесистемной единицей рентген (Р).

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электрон-вольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015-1020 и выше электрон-вольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

В зависимости от типа частиц и их энергии сильно различаются длина пробега и проникающая способность ионизирующего излучения - от долей миллиметра в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (Гр), численно равный отношению 1 Дж к 1 кг. Ранее широко применялась также экспозиционная доза излучения - величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Наиболее часто применяющейся единицей экспозиционной дозы был рентген (Р), численно равный 1 СГСЭ-единицы заряда к 1 смі воздуха.

Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах / час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена / час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена / час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Мерой ионизационного воздействия излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген-довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы - микроРентген / час.

Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).

5 РАДИАЦИОННЫЙ ФОН

На Земле существуют населенные области с повышенным радиационным фоном. Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря. Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория - в Индии (штат Керала) и Бразилии (штат Эспириту-Санту). Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер). Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности. Кроме того, даже для конкретной местности не существует «нормального фона» как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.

В любом месте, даже для неосвоенных территорий, где «не ступала нога человека», радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать типичные значения фона на улице (открытой местности) - 8-12 мкР / час, в помещении - 15-20 мкР / час.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Пикаев А.К., «Современная радиационная химия. Основные положения. Экспериментальная техника и методы», М., 1985.

2. www.xumuk.ru.

Размещено на Allbest.ru


Подобные документы

  • Воздействие ионизирующих излучений на неживое и живое вещество, необходимость метрологического контроля радиации. Экспозиционная и поглощенная дозы, единицы размерности дозиметрических величин. Физико-технические основы контроля ионизирующих излучений.

    контрольная работа [54,3 K], добавлен 14.12.2012

  • Природа ионизирующего излучения. Генерация ионизирующего излучения в природе обычно происходит в результате спонтанного радиоактивного распада радионуклидов. Биологическое действие ионизирующих излучений. Гигиеническое нормирование ионизирующих излучений.

    реферат [4,6 M], добавлен 19.11.2010

  • Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.

    реферат [24,6 K], добавлен 13.09.2009

  • Основные виды ионизирующих излучений. Основные правовые нормативы в области радиационной безопасности. Обеспечение радиационной безопасности. Радиационное воздействие и биологические эффекты. Последствия облучения людей ионизирующим излучением.

    реферат [28,0 K], добавлен 10.04.2016

  • Прямое и косвенное действие ионизирующего излучения. Действие больших доз ионизирующих излучений на биологические объекты. Генетические последствия радиации. Внутреннее облучение населения. Основные методы и средства защиты от ионизирующих излучений.

    презентация [1,1 M], добавлен 25.12.2014

  • Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.

    презентация [981,6 K], добавлен 18.02.2015

  • Виды ионизирующих излучений. Механизм их действия на живую клетку. Характеристика повреждения человеческого организма в зависимости от дозы. Использование индивидуальных средств защиты. Дозиметрический контроль внешней среды и продуктов питания.

    презентация [1,0 M], добавлен 17.12.2016

  • Экологическая экспертиза техники и технологий. Опасность включения человека в электрические сети. Виды ионизирующих излучений. Действие ионизирующих излучений на людей. Пожарная опасности. Обучение охране труда. Лица, подлежащих обязательному обучению.

    контрольная работа [601,0 K], добавлен 27.05.2008

  • Основные типы радиоактивных излучений, их негативное воздействие на человека. Радионуклиды как потенциальные источники внутреннего облучения. Способы защиты от источников ионизирующих излучений. Пути поступления радитоксичных веществ в организм.

    реферат [516,1 K], добавлен 24.09.2013

  • Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.

    курсовая работа [40,8 K], добавлен 14.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.