Чернобыльская катастрофа
Производство электроэнергии на энергоблоках атомной электростанции. Система регулирования мощности реактора. Виды ксенонового отравления. Обеспечение ядерной безопасности. Аварийная защита реактора. Выбег турбогенератора. Хронология событий на ЧАЭС.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.04.2011 |
Размер файла | 411,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Чернобыльская катастрофа
Введение
Авария на 4-ом энергоблоке Чернобыльской АЭС, ставшая одной из величайших техногенных катастроф в истории человечества, произошла 26 апреля 1986 г. И вот уже четверть века не утихают страсти при объяснении её причин [1].
Вокруг чернобыльской аварии сразу же сложилось множество мифов и главный из них это образ расхлябанного, безответственного эксплуатационного персонала, который грубейшим образом нарушал регламент и инструкции по эксплуатации, самовольно проводил опасный эксперимент, не согласовав его ни с кем, отключил и заблокировал все мыслимые защиты и системы безопасности, потому всё и произошло. Этот миф был сразу же подхвачен журналистами и вошёл в массовое общественное сознание, где он господствует до сих пор. На этом фоне особенности физики и дефекты конструкции реактора РБМК-1000, взорвавшегося на Чернобыльской АЭС, без которых авария не могла бы произойти, представляются некой второстепенной мелочью, не говоря уже о качестве регламентирующей документации, правила которой нарушил эксплуатационный персонал. Отражением этой точки зрения являются наиболее известное художественное произведение о Чернобыльской аварии (выдаваемое за документальный репортаж) [2] и наиболее популярная статья в интернете (претендующая на научный анализ) [3].
Существует и прямо противоположная точка зрения, отрицающая все эти обвинения в адрес эксплуатационного персонала и возлагающая главную вину за произошедшую аварию на создателей реактора РБМК-1000, его Главного конструктора и Научного руководителя. Согласно этой точке зрения причиной аварии являются ошибки в конструкции реактора и при обосновании его физических характеристик, а также нарушения правил ядерной безопасности, допущенные при его проектировании. А неправильные действия персонала, создавшего аварийную ситуацию, объясняются плохим качеством регламента эксплуатации, которые при этом никак не нарушались. Эта точка зрения детально отражена в книгах-воспоминаниях, написанных с изложением максимума технических подробностей непосредственными участниками и свидетелями аварии: А.С. Дятловым [4] и Н.В. Карпаном [5]. Оба автора работали в это время на чернобыльской АЭС заместителями главного инженера.
Как же так получилось, что за 20 с лишним лет «авторитетные каждый в своей области люди, изучали, фактически, одни и те же аварийные материалы, а пришли к диаметрально противоположным выводам»? Такое стало возможным, только потому, что первичные материалы по аварии не были опубликованы полномочной и авторитетной комиссией специалистов в виде какого-либо официального документа, имеющего юридическую силу. Это породило ещё один миф, усиленно муссируемый в [3], откуда и взята вышеприведённая цитата. Миф состоит в утверждении, что ничего толком неизвестно о том, как протекала авария, точных данных нет, а то что предлагают в качестве таковых, это в лучшем случае вольное изложение, а то и домыслы отдельных заинтересованных лиц и групп или, ещё того хуже, сознательная дезинформация.
Оставляя в стороне явно конспирологические теории, проясним ситуацию. Реактор РБМК-1000 и энергоблок в целом были оснащены большим количеством (несколько тысяч) датчиков внутриреакторного и технологического контроля. Их показания зарегистрированы показывающими и самопишущими приборами Блочного Щита Управления (БЩУ) и (или) записаны на магнитной ленте информационно-управляющего вычислительного комплекса СКАЛА специальной программой Диагностической РЕГистрации ДРЕГ. Все эти данные рассекречены только в 1990 г. Но к этому времени расследование причин аварии было уже закончено, и специалисты, непосредственно в нём участвовавшие, были давно с этими данными знакомы, а остальным, как считалось, «лишнюю» информацию знать не обязательно. Эти данные так и не были опубликованы в их первичном виде, а широкая общественность вообще не знает об их существовании. Но из этого отнюдь не следует, что нельзя доверять тем источникам, где такие данные приводятся. Во всех этих публикациях, как бы ни были различны взгляды их авторов, а порой даже диаметрально противоположны [6...9], фактические данные по аварии практически полностью совпадают. Дело не в отсутствии первичной информации, а в нежелании признать объективную реальность, когда она противоречит собственным убеждениям.
Сущность чернобыльской аварии невозможно понять, не получив сначала представления о реакторе РБМК-1000 и некоторых деталях протекающих в нём ядерно-физических процессов.
1. Реактор РБМК-1000
Производство электроэнергии на энергоблоках атомной электростанции с реактором РБМК принципиально в общих чертах не отличается от того, как это происходит на энергоблоке тепловой электростанции ТЭС, оснащённом паровым котлом определённого типа, с многократной принудительной циркуляцией.
Рис. 1. Контур многократной принудительной циркуляции КМПЦ
В случае РБМК контур многократной принудительной циркуляции (КМПЦ) состоит из двух одинаковых петель, охлаждающих каждая свою половину реактора (на рис. 1 изображена одна из них). В обоих случаях пар генерируется в вертикальных трубах, являющихся частью КМПЦ. В котельной установке это экранные трубы, устилающие внутреннюю поверхность топочной камеры и обогреваемые тепловым излучением факела горящего органического топлива и горячими газами - продуктами сгорания. В реакторе РБМК это топливные (технологические) каналы (ТК), пронизывающие графитовую кладку реактора, а нагрев осуществляется тепловыделяющими элементами (твэл), собранными в тепловыделяющие сборки (ТВС), находящиеся внутри этих каналов.
2. Ядерное топливо
Сами твэл представляют собой стержни, набранные из таблеток ядерного топлива (двуокись урана 2% обогащения по урану-235), заключённые в герметичную металлическую оболочку. Тепло выделяется как результат высвобождения внутренней энергии связи при делении ядер урана-235 в результате их взаимодействия с нейтронами в самоподдерживающейся цепной реакции (СЦР). Огромность этой энергии (при сгорании, т.е. делении 1 г урана выделяется 0,95 МВт·сутки тепловой энергии) создаёт ряд принципиальных отличий в использовании ядерного и органического топлива, из которых принципиально важны два.
1. Органическое топливо непрерывно поступает в топочную камеру парового котла и сразу же целиком сгорает, продукты сгорания также непрерывно удаляются, не оказывая влияния на процесс горения дальнейших порций топлива. В случае ядерного топлива всё обстоит наоборот. Весь запас топлива на три года вперёд находится в реакторе, и необходимо принудительно поддерживать очень медленный процесс его сгорания. А продукты сгорания (изотопы, образовавшиеся в результате ядерной реакции деления) остаются в составе топлива и участвуют вредным образом в процессе его дальнейшего горения (отравляют его).
2. Всё управление паропроизводительной (тепловой) мощностью парового котла осуществляется регулированием подачи топливовоздушной смеси через форсунки котельной установки в объём топочной камеры. Система регулирования непосредственно воздействует на материальные параметры (расход топлива, расход воздуха и т.д.) и этим определяет текущий уровень мощности котельной установки. В случае ядерного реактора управление его тепловой мощностью осуществляется сильно опосредованно, через влияние на нейтронно-физические процессы, сопровождающие ядерную реакцию деления. А протекание этих процессов помимо регулирования зависит и ещё от многих других факторов.
3. Реактивность
Система регулирования мощности реактора непосредственно воздействует на некую обобщённую характеристику физического состояния реактора, которая описывается теоретическим понятием - реактивность - отличие эффективного коэффициента размножения нейтронов от единицы. Если величина реактивности равна нулю (критический реактор), мощность реактора не меняется, если реактивность больше нуля, т.е. положительна (надкритический реактор), то мощность растёт, если реактивность отрицательна (подкритический реактор), то мощность падает. При этом уровень мощности может быть любым, реактивность определяет только относительную скорость его изменения, независимо от величины самого уровня.
Регулируется мощность стержнями из поглощающего нейтроны материала, погружаемыми в активную зону реактора. Стержни перемещаются в каналах, аналогичных топливным, и тоже охлаждаются водой. На каждые 14 топливных каналов приходится 2 канала системы управления и защиты (СУЗ). Погружение стержня в реактор уменьшает его реактивность, или, иначе говоря, вводит отрицательную реактивность, извлечение - положительную. Регулирование (т.е. поддержание) мощности осуществляется небольшим перемещением стержней около положения равновесия при малейшем отклонении мощности от заданного значения. Это выполняется автоматически одним из трёх регуляторов АР1, АР2, АР3, управляющих каждый группой из 4-х стержней, либо 12-ю одиночными стержнями системы ЛАР (локальное автоматическое регулирование). Возможно и непосредственное управление электроприводами всех стержней вручную.
Реактивность может меняться и сама за счёт различных физических процессов в реакторе: изменение температуры топлива, замедлителя (графита), температуры и плотности теплоносителя. Больше всего влияет на реактивность выгорание урана и отравление ксеноном-135, сильным поглотителем нейтронов. Выгорание урана непрерывно действующий фактор. При работе на постоянном номинальном уровне мощности реактивность в реакторе РБМК-1000 уменьшается со скоростью примерно 1% в месяц. Это изменение реактивности компенсируется заменой топливных сборок (ТВС) с выгоревшим топливом на свежие. В реакторе РБМК эта замена производится на ходу, без остановки реактора, с помощью специальной перегрузочной машины.
4. Запас реактивности
Стержни СУЗ помимо регулирования мощности внесением малых изменений реактивности выполняют ещё и другую функцию - компенсация больших изменений реактивности, возникающих в реакторе. Эту функцию выполняют все остальные (кроме автоматических регуляторов) стержни, погружаемые в реактор. Выгорание топлива идёт непрерывно, а его перегрузка (хотя её и называют непрерывной) выполняется дискретно во времени, поэтому в реакторе должно постоянно присутствовать некоторое избыточное количество урана, создающее положительную реактивность. Она и компенсируется между перегрузками. То есть, создаётся запас реактивности, который расходуется по мере выгорания топлива.
Первоначально при загрузке реактора, когда все ТВС в активной зоне содержат свежее топливо, запас реактивности чрезмерно велик, и тогда он компенсируется дополнительными поглотителями (ДП), размещаемыми вместо ТВС в топливных каналах. Эти ДП постепенно извлекаются и заменяются на ТВС так что, в конце концов, наступает стационарный режим перегрузок, когда ДП больше не извлекаются, и перегрузка состоит только в замене выгоревших ТВС на свежие, а положительная реактивность компенсируется стержнями СУЗ. Запас реактивности, остающийся при этом, называется оперативным. Поскольку оперативный запас реактивности (ОЗР) играет важную роль в чернобыльской аварии, остановимся на нём несколько подробней.
Запас реактивности в практике эксплуатации реактора принято измерять в эффективных стержнях РР (ручного регулирования). 1 ст. РР - это реактивность, которая, которая в среднем вносится в реактор при полном перемещении одного стержня из одного крайнего положения в другое. В этих же единицах измеряться может и сама реактивность, но, вообще говоря, реактивность это безразмерная величина, измеряемая в абсолютных единицах (а.е.р.), в процентах (%) или в долях некоторой пороговой величины ?. Для реактора РБМК, работающего в режиме стационарной перегрузки топлива, 1 ст. РР = 0,13 ? = 0,063% = 0,00063 а.е.р. [10].
Под оперативным запасом реактивности понимается любая появляющаяся в реакторе положительная реактивность, скомпенсированная стержнями СУЗ. Расходуется этот ОЗР на компенсацию любой отрицательной реактивности, появляющейся в процессе работы реакторе, и это без сомнения в первую очередь ксеноновое отравление.
5. Ксеноновое отравление
Различают два вида отравления: 1) стационарное отравление, когда имеет место равновесие между образованием ксенона и его радиоактивным распадом и выгоранием на стационарном уровне мощности; 2) нестационарное отравление, когда изменение мощности реактора нарушает это равновесие. Стационарное отравление (отрицательная реактивность) может компенсироваться избыточным количеством топлива в реакторе. Но при остановке реактора произойдёт в конце концов его полное разотравление (радиоактивный распад ксенона), и возникает положительная реактивность, которая компенсируется органами регулирования, и тем самым появляется (или увеличивается, если он уже имелся) ОЗР.
Рис. 2. Нестационарное ксеноновое отравление. Йодная яма
При быстром снижении мощности реактора отравление сначала растёт, так как сразу прекращается выгорание ксенона, а образование его ещё продолжается из распада предшественника ксенона изотопа йод-135 (в цепочке радиоактивного распада продуктов деления), и скорость образования ксенона-135 превышает скорость его распада. Когда эти скорости сравняются, концентрация ксенона и соответственно отравление достигнет максимума, а затем начнёт уменьшаться, в конце концов, ксенон полностью распадётся и наступит полное разотравление. Если окажется, что ОЗР на момент перед началом снижения мощности меньше чем отравление в максимуме (см. рис. 2), то запаса реактивности для поддержания мощности реактора не хватит, и он заглохнет. Все стержни регулирования будут полностью извлечены, и реактор нечем удержать в критическом состоянии. Остаётся только ждать, когда распадётся ксенон, и можно будет снова выводить реактор на мощность. Такая ситуация называется йодной ямой.
Поддержание достаточно большого ОЗР, работая на постоянной мощности, гарантирует от попадания реактора в йодную яму, следовательно, от простоев и недовыработки электроэнергии. Но с другой стороны большой ОЗР это больше вредного поглощения в активной зоне реактора, которое можно компенсировать только снижением выгорания (или повышением обогащения урана). Т.е. поддержание как слишком малого, так и слишком большого ОЗР приведёт к неэффективному использованию ядерного топлива и соответственно к потере экономичности АЭС с реактором РБМК-1000. При создании реактора РБМК-1000 оптимальным, видимо, считался ОЗР в диапазоне 1...2% ([10], стр. 34...35).
6. Ядерная безопасность
атомный реактор ядерный электроэнергия
Работа ядерного реактора основана на том же самом физическом явлении, что и действие ядерного оружия. Но в отличие от атомной бомбы, сброшенной на Хиросиму, СЦР в ядерном реакторе находится под контролем, и вместо ядерного взрыва представляет собой медленное «горение». Такое оказалось возможным только благодаря тому, что при делении урана не все рождающиеся нейтроны, вылетают мгновенно, а некоторая малая их доля ? рождается с запаздыванием в несколько секунд (запаздывающие нейтроны). Такой реактор на одних мгновенных нейтронах всегда подкритичен и становится надкритическим только при учёте запаздывающих нейтронов. Быстродействия системы управления реактором вполне хватает для того, чтобы держать СЦР под контролем, если реактивность реактора заметно меньше ?.
7. Аварийная защита реактора
Самое страшное, что в принципе может произойти с ядерным реактором, это его неконтролируемый разгон на мгновенных нейтронах, или, проще говоря, неорганизованный ядерный взрыв. Для этого нужно чтобы в реакторе по какой-то причине появилась большая положительная реактивность, больше значения ?, и система регулирования не успевает и не может её скомпенсировать. Такого развития событий нельзя допустить ни в коем случае, поэтому на всех реакторах, начиная с самого первого, построенного в 1942 г, помимо системы регулирования имеется аварийная защита, единственное назначение которой - введение в реактор как можно быстрее большой отрицательной реактивности и прекращение тем самым СЦР (заглушение реактора).
Тогда же эта функция аварийной защиты получила специальное название SCRAM, чтобы выделить её среди всех прочих технических средств и защитных функций, обеспечивающих безопасную работу реактора. Аббревиатура SCRAM расшифровывается обычно, как Safety Control Rod Axe Man или Simulated Chicago Reactor Axe Man. В любом случае это ассоциация с образом человека с топором, перерубающего канат, на котором висят стержни, падающие в реактор. Что, собственно в большинстве случаев, и заложено в механизм работы аварийной защиты, только вместо перерубания каната, происходит разъединение электромагнитной муфты, удерживающей стержни в поднятом положении. Как только снимается питание электромагнита, стержни свободно падают вниз. Иногда для увеличения быстродействия стержни выстреливаются сжатой пружиной.
Считается, что быстродействие в 4 секунды (т.е. время, в течение которого стержни погружаются на полную длину) и эффективность в 2% (т.е. вносимая отрицательная реактивность) достаточны для обеспечения ядерной безопасности реактора. В реакторе РБМК-1000 (до 1986 г.) аварийная защита была значительно менее быстродействующей (полное перемещение стержней за 18 с), но зато значительно более эффективной (вносимая отрицательная реактивность 9,5%). Если поделить одно на другое, то получатся требуемые величины - 2% за 4 с. Т.е. таким нетрадиционным способом, как бы выполняются требования по ядерной безопасности. Но чернобыльская авария показала, что это не так.
Защита от неконтролируемого разгона реактора (SCRAM) автоматически срабатывает при превышении мощности реактора или скорости её роста выше заданного предела. Никогда никому не придёт в голову отключать эту защиту на работающем реакторе. Да это и невозможно без взлома. Эта защита является автономной частью Системы Управления и Защиты (СУЗ) реактора. Помимо всего прочего её высокая надёжность достигается за счёт многократного дублирования и логической защиты от ложных срабатываний. Аварийный сигнал SCRAM (в реакторе РБМК он называется АЗ-5) вырабатывают по показаниям нейтронных датчиков независимо две разные электронные схемы: аварийная защита по мощности (АЗМ) и по скорости её роста (АЗСР).
8. Коэффициенты реактивности
Как бы ни была надёжна аварийная защита, она срабатывает, когда мощность реактора уже растёт. Но ещё безопасней будет, если в реакторе при росте мощности сама собой возникает отрицательная реактивность без всякого вмешательства СУЗ, т.е. когда имеется отрицательная обратная связь между мощностью и реактивностью. Тогда реактор способен к саморегулированию, и никакой ядерный взрыв в нём в принципе невозможен. И такое требование в стандартах и правилах по ядерной безопасности существует. Другое дело, что выполнение этого требования связано с тонкими вопросами нейтронной физики, и проверить на стадии проектирования выполняются ли эти требования в данной конструкции реактора, не просто.
Обратные связи описываются в понятиях эффектов и коэффициентов реактивности. Эффект это изменение реактивности при заданном изменении какого либо параметра, характеризующего состояние активной зоны реактора, например, температуры топлива, замедлителя и др. (температурный эффект). Коэффициент реактивности это отношение изменения реактивности к изменению параметра (при малых изменениях), т.е. производная от эффекта. В реакторе РБМК особую роль с точки зрения безопасности играет паровой (иначе пустотный) эффект и паровой коэффициент реактивности ??. С ростом паросодержания уменьшается количество воды в активной зоне (увеличивается количество пустоты), и если вода действует как замедлитель, то реактивность падает и ?? отрицателен, так как ухудшается замедление нейтронов. Если же вода действует как поглотитель (на фоне графита, практически не поглощающего нейтроны) то ?? положителен, так как уменьшается вредное поглощение, и реактивность растёт.
При изменении мощности реактора изменяются все параметры в активной зоне и проявляются все эффекты реактивности. Динамика реактора определяется суммарным действием этих эффектов, как отрицательных, так и положительных, и, в конечном счете, важен результат - мощностной коэффициент реактивности ?w (приращение реактивности на единицу приращения мощности). Реактор способен к саморегулированию, если ?w отрицателен, а если он положителен, то такой реактор неустойчив и ядерноопасен. Но здесь есть одна тонкость.
При изменении мощности реактора разные эффекты проявляются с разной степенью инерционности, так например, температура графита меняется очень медленно, а разогрев топлива, дальнейшая передача тепла воде и увеличение парообразования происходит достаточно быстро. Различают два мощностных эффекта реактивности: полный, который проявляется при переходе с одного стационарного уровня мощности на другой, и быстрый, определяемый только температурой топлива (доплер-эффект при захвате резонансных нейтронов в топливе) и парообразованием (??). Отрицательность полного мощностного эффекта, обеспечивает саморегулирование реактора при медленных переходных процессах (с чем главным образом и имеют дело при эксплуатации АЭС). Тогда как отрицательность быстрого мощностного коэффициента исключает опасность самопроизвольного неконтролируемого возрастания мощности, и гарантирует ядерную безопасность реактора. В реакторе РБМК, как выяснилось после Чернобыльской аварии, быстрый мощностной коэффициент при работе на малой мощности был положительным. Это произошло в результате ошибки в расчётах величины ?? при проектировании реактора ([8], стр. 556). Кроме неконтролируемого роста мощности реактора, существует ещё ряд различных аварийных ситуаций, при которых требуется срочно остановить реактор, чтобы не произошли разрушения пусть много меньшего масштаба, но способные на длительный срок вывести из строя энергоблок АЭС или загрязнить радиоактивностью окружающую среду. Для срочной остановки реактора в таких случаях используется тот же исполнительный механизм аварийной защиты, что и для предотвращения неконтролируемого разгона. То есть электронные схемы, отслеживающие и распознающие эти аварийные ситуации, вырабатывают тот же самый аварийный сигнал АЗ-5, что и схемы АЗМ и АЗСР. Такие аварийные ситуации обычно связаны с какими-либо опасными отклонениями параметров технологического процесса в энергоблоке, грозящими серьёзными нарушениями режима охлаждения активной зоны реактора или потерей целостности контора циркуляции, но не авариями масштаба катастрофы. Эти электронные схемы, называются технологическими защитами, и они в отличие от АЗМ и АЗСР могли блокироваться с пультов управления, чтобы избежать излишних остановок энергоблока, когда на самом деле необходимости в этом нет. Вот такими защитами и манипулировал оперативный персонал 26-го апреля 1986 г.
9. Остаточное тепловыделение и радиационная безопасность
Принципиальное отличие ядерного реактора от котельной установки ТЭС ещё и в том, что в нём нельзя полностью «выключить» тепловыделение. Не всё тепло, обязанное своим происхождением делению ядер, выделяется в реакторе сразу, около 7% этого тепла выделяется при последующем радиоактивном распаде продуктов деления. В остановленном реакторе ещё долго продолжается выделение тепла, пока не распадутся образовавшиеся продукты деления, и всё это время его активную зону надо охлаждать. Это остаточное тепловыделение вначале довольно быстро спадает, но даже через сутки после остановки оно составляет около 0,5% от номинальной мощности, т.е. порядка 10...15 МВт тепловой мощности. И всё это выделяемое тепло необходимо отводить, иначе разрушение активной зоны реактора неминуемо и оно грозит аварией, сравнимой с чернобыльской.
В нормальных условиях при остановке реактора отвод этого остаточного тепловыделения не представляет проблемы. Сначала циркуляцию теплоносителя через активную зону обеспечивают ГЦН, продолжая работать так же, как они работали на мощности, а затем, если это потребуется, включается специальная система расхолаживания реактора. Опасность возникает только в аварийных ситуациях, когда почему-либо оказываются неработоспособными ГЦН или, если из-за разрушений в КМПЦ, активная зона реактора может остаться без охлаждения. На этот случай предусматриваются проектом системы безопасности. Две самые тяжёлые аварийные ситуации были рассмотрены в проекте.
1. «Потеря собственных нужд», т.е. исчезновение электропитания насосов и вообще всего вспомогательного оборудования обслуживающего энергоблок. Это может произойти только при полном обесточивании АЭС, когда невозможно взять питание ниоткуда, не только от собственного генератора, но и от соседнего энергоблока, и от резервного трансформатора из внешней линии электропередач, на которую работал энергоблок. На этот случай предусмотрен свой собственный автономный источник энергии резервная дизельная электростанция (РДЭС), которая запускается автоматически и подаёт питание на шины собственных нужд. Время, в течение которого РДЭС включалась в работу и набирала полную мощность, не превышает 1 мин. А в течение этого времени ГЦН качают воду по инерции, за счёт механической энергии, запасённой в массивном маховике, установленном на этот случай на валу каждого ГЦН.
2. Разрыв напорного коллектора ГЦН полным сечением (его внутренний диаметр 900 мм). Мгновенно остаётся без охлаждения половина активной зоны реактора, это «максимальная проектная авария» (МПА). На этот случай предусмотрена специальная Система Аварийного Охлаждения Реактора (САОР). Она включает в себя насосы аварийного охлаждения, обеспечивающие вместо ГЦН циркуляцию теплоносителя через активную зону реактора, и гидроёмкости с большим запасом воды, откуда она под большим давлением газовой подушки может поступать в каналы реактора, минуя ГЦН и разрушенную часть КМПЦ. Гидроёмкости это быстродействующая, но краткосрочная часть САОР, она работает не более 2-х минут пока запускаются аварийные насосы САОР, которые могут вести длительное расхолаживание. Соответствующая технологическая защита распознаёт такую аварию и вырабатывает аварийные сигналы: МПА для запуска САОР и АЗ-5 для заглушения реактора.
10. Выбег турбогенератора
Итак, безопасность обеспечена при каждой из двух перечисленных аварий, в одном случае с помощью САОР, в другом с помощью РДЭС. Но, если эти две аварии произойдут одновременно по общей, причине, то в этом случае аварийные насосы САОР не смогут включиться в работу, пока не заработает РДЭС, т.е. образуется зазор по времени примерно 1 мин., в течение которого охлаждение активной зоны реактора остаётся под угрозой. В 1976 г в связи с созданием реакторов РБМК второй очереди, было предложено (главным конструктором реактора) использовать в этом случае выбег турбогенератора. Механической энергии запасённой в роторе турбогенератора достаточно для электроснабжения аварийных насосов, пока не заработает РДЭС.
Предложение было поддержано проектировщиком АЭС и научной общественностью. Оно было отражено в учебных пособиях по электротехнике АЭС и даже в проектной документации, но в очень общем виде, и оно не было внедрено. Дважды или даже трижды проведённые испытания в 1982, 1984 и в 1985 гг. показали, что совместный выбег турбогенератора с механизмами собственных нужд, это не такой простой режим, и чтобы он осуществлялся, необходима дополнительная доработка штатной системы возбуждения генератора. Это было сделано, и при очередной остановке 4-го блока ЧАЭС на ППР в 1986 г такие испытания были проведены. На этот раз сами по себе испытания прошли успешно, но произошла Чернобыльская авария, и эти испытания оказались в центре событий, как чуть ли не одна из главных причин аварии.
11. Авария
Авария произошла во время, когда выполнялась программа испытаний выбега турбогенератора, поэтому скажем несколько слов об этой программе.
Эксперимент
Целью испытаний была проверка возможности использования выбега для поддержания производительности механизмов собственных нужд пока включатся в работу и наберут полную нагрузку дизель-генераторы (ДГ). Для запуска режима выбега была собрана специальная схема выдачи сигнала МПА в электрическую часть схемы ступенчатого набора нагрузки ДГ и в схему выбега генератора. Сам запуск выполнялся от кнопки, установленной на панели безопасности в БЩУ. Одновременно с нажатием этой кнопки должна быть прекращена подача пара на турбину закрытием стопорно-регулирующих клапанов (СРК).
При реальной МПА закрытие СРК происходит автоматически от срабатывания защитных устройств турбины, а в данном случае это действие выполняет СИУТ (старший инженер управления турбиной). При этом должна автоматически сработать аварийная защита АЗ-5 по отключению 2-х турбогенераторов (один отключён заранее), и реактор должен быть остановлен. Для обеспечения надёжного охлаждения реактора независимо от исхода эксперимента, оборудование собственных нужд было поделено на две группы: оборудование, подключённое к рабочим шинам, на которых напряжение падает в процессе выбега, и оборудование в выбеге не участвующее и подключённое к шинам, сохраняющим постоянное питание. Хотя сигнал на запуск механизмов САОР (гидроёмкостей и аварийных насосов) от кнопки МПА не подавался, во избежание случайностей и заброса воды в КМПЦ, программой предусматривалось отключение ёмкостей на время эксперимента закрытием ручных задвижек на линии подачи воды.
Согласно программе, реактор должен был перед началом эксперимента находиться на мощности 700...1000 МВт.
12. Хронология событий
Остановка энергоблока на ППР и испытания выбега были запланированы на 25.04.1986 г. Снижение мощности реактора с номинала (3100 МВт) начато в 01:06, и в течение 3-х часов мощность была снижена до уровня 1600 МВт (50%). В эту же ночную смену выполнялись регламентные, а также другие специальные работы, запланированные по турбинам №7 и №8. По окончании этих работ, уже в дневную смену предполагалось выполнять программу испытания выбега турбогенератора ТГ-8. На выполнение всех работ в программе отводилось 4 часа, из них сам эксперимент занимает от силы 1,5 минуты, остальное подготовительные работы. Но жизнь ломает любые планы.
Поступил запрет от дежурного диспетчера Киевэнерго на дальнейшее снижение мощности энергоблока, сначала до 14:00, а потом вообще на неопределённый срок (на Южноукраинской АЭС произошла авария, и нужно возместить потерю генерируемой мощности в энергосистеме). В связи с этим, подготовительные работы по программе выбега были начаты на мощности 50%, и в 14:00 были заблокированы гидроёмкости САОР. Очевидно, предполагалось, что вот-вот поступит разрешение на снижение мощности, после чего подготовительных работ останется всего минут на 20. Однако разрешение было получено лишь к концу вечерней смены, и бригада испытателей весь день прождала в напряжённом ожидании. А испытания пришлись на ночную смену, которая к ним заранее не была готова.
Снижение мощности (с 50%) было начато 25.04.86 в 23:10, и требуемая по программе мощность (700 МВт) была достигнута 26.04.86. в 00:05, уже когда заступила ночная смена. Далее согласно программе испытаний необходимо было включить в работу два дополнительных ГЦН, и приступить к выполнению основной части программы. Однако, этого не произошло, и все дальнейшие действия оперативного персонала были сплошной импровизацией между программой и реальной обстановкой на энергоблоке.
А реальная обстановка такова. Кроме программы испытаний выбега турбогенератора должна была быть выполнена ещё одна работа: измерение вибраций турбины на холостом ходу турбогенератора. Эти две работы, в общем-то, противоречат друг другу. Обе они требуют разгрузки турбогенератора, т.е. отключения его от внешней сети, но в одном случае разгрузка полная, до холостого хода (т.е. без выработки какой-либо электроэнергии), а в другом случае разгрузка только до уровня собственных нужд. В первом случае обороты холостого хода поддерживаются за счёт (небольшой) подачи пара на турбину, и реактор для этого нужен (чтобы не падало давление в БС), во втором случае пар не подаётся, и реактор не нужен, а обороты под нагрузкой собственных нужд сравнительно быстро падают. В программе испытаний выбега такая коллизия не была предусмотрена.
Для поддержания турбогенератора на холостом ходу и измерения вибраций турбины мощность 720 МВт, достигнутая в 00 ч.05 мин., слишком велика и её, видимо, стали снижать дальше (до уровня собственных нужд). Но могло быть и так: ночная смена А.Ф. Акимова приняла реактор на ходу, во время быстрого снижения мощности с уровня 1600 МВт, при наличии сильного нестационарного ксенонового отравления. Только что пришедший на смену оператор реактора (СИУР) Л.Ф. Топтунов не успел войти в быстро меняющуюся обстановку и без какого-либо определённого умысла просто не сумел стабилизировать мощность на требуемом уровне. Как бы то ни было, мощность снижалась, и во время этого снижения при переходе с одной системы автоматического регулирования (ЛАР) на другую (АР) в 00 ч. 28 мин. Топтунов по оплошности допустил провал мощности реактора практически до нуля. Как именно выходили из провала, и было ли это нарушением технологического регламента - вопрос дискуссионный, но факт остаётся фактом, по выходе из провала была установлена мощность реактора 200 МВт (вместо 700, указанных в программе).
После выхода из провала началась работа (в 00 ч. 41 мин) по измерению вибраций турбины, которая закончилась в 01 ч.16 мин, и только после этого можно было приступить, к испытанию выбега. Работа реактора на малом уровне мощности при малом ОЗР сопровождалась неустойчивостью теплогидравлических параметров и возможно неустойчивостью нейтронного поля. Об этом свидетельствуют многократные аварийные сигналы по уровню в барабане сепараторе (БС), срабатывания БРУ-К (Быстродействующая Редукционная Установка, отводящая пар в Конденсатор, минуя турбину), перерегулирования в расходе питательной воды, и выходы из строя автоматических регуляторов нейтронной мощности АР1 и АР2. Именно поэтому, видимо, в период с 00:35 по 00:45, чтобы сохранить реактор на мощности, были заблокированы аварийные сигналы по теплогидравлическим параметрам КМПЦ (и сигнал АЗ-5 по отключению 2-х ТГ). Насколько эти действия персонала согласуется с регламентом эксплуатации, мы позже обсудим. А сейчас прокомментируем рис. 3.
Рис. 3. Мощность реактора, аварийные сигналы и действия операторов
Мощность (точнее поток нейтронов, которому она пропорциональна) в реакторе РБМК-1000 измеряется двумя различными независимыми способами: интегрированием показаний более сотни датчиков системы внутриреакторного контроля (СФКРЭ) и по показаниям 4-х внешних (Боковых) Ионизационных Камер (БИК). Автоматические Регуляторы (АР) и оператор, управляя реактором в ручную, поддерживают мощность по показаниям БИК. Эти датчики безынерционны и мгновенно отслеживают все изменения интегральной мощности, но они не дают представления о распределении тепловыделения в активной зоне, от которого зависит абсолютный уровень мощности реактора. Поэтому тепловая мощность реактора в абсолютных единицах определяется по СФКРЭ. При нормальной работе реактора, когда распределение энерговыделения (нейтронного потока) по активной зоне устойчиво и мощность реактора постоянна и достаточно велика, обе системы контроля показывают одно и то же. Но в переходных режимах (из-за большой инерционности датчиков) и на малой мощности (из-за чувствительности датчиков к гамма-излучению) мощность, измеренная по СФКРЭ, недостоверна и отличается от показаний ИК.
Мощность реактора по показаниям БИК (на рис. 3) не менялась вплоть до нажатия кнопки АЗ-5, мощность же по СФКРЭ немного возросла за последние 5...10 минут. Это означает, что распределение нейтронного потока по активной зоне существенно менялось, но система регулирования с этим в целом справлялась. На рис. 3 также изображена работа автоматических регуляторов (их погружение в активную зону). Сигналы неисправности АР означают, что соответствующий регулятор извлёк (или погрузил) свои 4 стержня до предела и отключился. Чтобы этого не происходило, оператор должен вовремя отслеживать такие ситуации и проводить перекомпенсацию реактивности с помощью стержней ручного регулирования (РР). Сигналы ПК вверх-вниз это и есть предупреждения об этом. На протяжении всего времени вплоть до начала эксперимента стержни РР в основном только извлекались из реактора. Временные выключения ДРЕГ из работы не представляют ничего серьёзного, и связаны с какими-либо рутинными работами на вычислительном комплексе СКАЛы. Во всяком случае, последний перерыв в работе, это перезагрузка программы ДРЕГ с новыми установочными данными перед началом эксперимента.
Не меньше, а может быть даже и больше сложностей в управлении энергоблоком, чем описано выше для реактора, создавала нестабильность тепло-гидравлических параметров в КМПЦ. Тем не менее, работы по программе испытаний выбега решено было продолжить. В 01:00 была установлена в ДРЕГ регистрация основных наиболее существенных параметров (расходы питательной воды, уровни и давления в БС, расходы через каждый ГЦН, и др.) с интервалом 2 с и были включены в работу ещё два дополнительных ГЦН (в 01:02 и в 01:06 соответственно). При этом суммарный расход через активную зону более чем на 20% превысил регламентное значение. Состояние опасное с точки зрения вскипания теплоносителя на входе в активную зону, а также возможности кавитации на ГЦН и срыва циркуляции.
Но никакой опасности ядерной аварии эксплуатационный персонал не чувствовал и предполагать не мог. Все твёрдо знали, что быстрый мощностной коэффициент реактивности у реактора отрицателен, и вообще реактор находится под надёжной защитой «SCRAM» от любых случайностей. Эксперимент начался в 01:23:04, закрылись стопорные клапаны турбины, и начался совместный выбег турбогенератора ТГ-8 с четырьмя ГЦН (и другим электромеханическим оборудованием). Включение в работу дизель-генератора и ступенчатый набор нагрузки закончилось к 01:23:44 и в течение этого времени электроснабжение собственных нужд осуществлялось за счёт выбега турбогенератора.
Поведение параметров энергоблока за время выбега (исключая последние несколько секунд аварийного процесса) в целом не отличается от предыдущего и даже выглядит внешне более стабильным. Давление в барабанах-сепараторах растёт, уровень восстанавливается, расход через активную зону убывает, расход питательной воды удерживается с точностью ±50 т/час. Опасность кавитации и закипания на входе в активную зону уменьшается. Как показали последующие расчёты ([11], стр. 114), максимальной она была за 2 мин до начала выбега.
Незаглушение реактора с началом выбега являлось серьёзным нарушением программы эксперимента и в корне меняло его статус. Этим он превращался из работы, касающейся только различных переключений в электрических цепях энергоблока на остановленном реакторе, в ядерноопасную работу при работающем реакторе. Так как аварийная защита по отключению 2-х ТГ была ранее заблокирована, то заглушить реактор должны были кнопкой АЗ-5 одновременно с прекращением подачи пара на турбину. Однако этого не произошло, кнопка АЗ-5 была нажата спустя 35 с после закрытия СРК, в 01:23:40 (по времени ДРЕГ), что уже практически в конце, а не в начале выбега.
Далее в реакторной установке начался аварийный процесс, закончившийся полным разрушением реактора и значительной части здания энергоблока с выбросом раскалённых фрагментов активной зоны (графита и обломков твэл), последующими пожарами на крышах примыкающих зданий, в машинном зале и, что самое тяжёлое, пожаром в шахте реактора. Практически все свидетели, находившиеся как в здании, так и за его пределами, говоря о своих ощущениях, описывают это, как два последовательных взрыва с интервалом в несколько секунд (второй взрыв значительно мощнее первого).
Аварийный процесс от момента нажатия кнопки АЗ-5 до разрушения реактора протекал так быстро, что для его полноценного наблюдения оказалось недостаточным разрешение по времени, даваемое программой ДРЕГ, не говоря уже о самопишущих приборах БЩУ, настроенных на регистрацию со скоростью протяжки ленты 60 мм/час. Единственным документом регистрации с разрешением, достаточным для точной взаимной привязки по времени основных событий аварии, оказалась осциллограмма выбега.
Последовательность событий, зарегистрированных за последние 10 с, хорошо укладывается в определённую картину аварии. Детально схема развития аварийного процесса разрушения реактора очень мало проработана, но наиболее общепринята такая схема. В реакторе появилась большая (нескомпенсированная) положительная реактивность, и катастрофически быстро возрастает мощность. Увеличивается парообразование и растёт давление в технологических каналах реактора (ТК). За счёт большого положительного парового коэффициента реактивности ввод реактивности и рост мощности ещё более ускоряется. В некоторых наиболее тепло-напряжённых ТК топливо разогревается до чрезмерно высоких температур (близких или даже превышающих температуру плавления) и тепловыделяющие сборки (ТВС) разрушаются.
Разрушение ТВС и контакт топлива со стенкой ТК вызывает разрушение самого ТК. Пар получает выход в реакторное пространство (РП), герметически ограниченное цилиндрическим кожухом реактора и защитными плитами, сверху и снизу, в которых жёстко, на сварке, закреплены каналы. Обезвоживание каналов и рост реактивности ещё более ускоряется. Разрушение нескольких ТК (хватает двух) вызывает сильный рост давления в РП, достаточный для отрыва и подъёма верхней защитной плиты. Это в свою очередь (чисто механически) вызывает массовое разрушение технологических каналов и выход пара (под давлением ? 70 атм) в открытое пространство. Всё происходит практически мгновенно, и это есть первый (паровой) взрыв. Как взрыв парового котла. Вся активная зона реактора сразу и полностью обезвоживается, чем вносится положительная реактивность уже намного превышающая долю запаздывающих нейтронов ?. Происходит разгон реактора на мгновенных нейтронах и его полное разрушение. Это уже второй (ядерный) взрыв. Не взрыв атомной бомбы, но той же физической природы.
Ни одно зарегистрированное системой ДРЕГ и приборами БЩУ событие не противоречит вышеописанному сценарию и наоборот ни одна из других (хоть сколько-нибудь осмысленных) альтернативных схем развития аварийного процесса не удовлетворяет всей совокупности зарегистрированных данных. Эта схема согласуется также с физическими характеристиками реактора. Непримиримые дискуссии велись (и кое-кем ведутся до сих пор) вокруг двух вопросов: 1) что явилось причиной начального ввода положительной реактивности и какова её величина; 2) когда и как начался этот ввод положительной реактивности.
Ну а где же была аварийная защита реактора («человек с топором»), почему она не остановила аварийный процесс с самого его начала и не заглушила реактор?
Причины
Причины любой крупной аварии всегда ассоциируются в общественном сознании (и не только в нём) с вопросом «кто виноват», и это сильно затрудняет её техническое расследование. Гораздо продуктивнее другое значительно более точное понятие - исходное событие аварии. Так, например, можно ли считать причиной чернобыльской аварии нарушение в 07:00 25.04.86 эксплуатационным персоналом регламента эксплуатации, требовавшего срочно остановить энергоблок, а персонал продолжал работать, как ни в чём не бывало? Конечно можно. Если бы реактор остановили, никакой аварии не было бы. А можно ли считать это исходным событием аварии? Конечно, нет. Реактор продолжал после этого нормально работать ещё почти сутки, и работал бы дальше, если бы не произошли другие события. То же самое можно сказать и о провале мощности в 00:28 26.04.86. Если бы позволили реактору заглохнуть, и не стали его снова выводить на мощность, то не было бы аварии. Но исходным событием аварии это точно не было, реактор после этого ещё проработал почти час и при желании в любой момент мог бы быть остановлен без всякой аварии. И даже закрытие СРК турбины (т.е. эксперимент с выбегом ТГ) не является таким исходным событием. Если бы персонал знал, что реактор находится во взрывоопасном состоянии, чего не было видно ни по каким приборам или сигналам БЩУ, то он мог бы спокойно не спеша остановить реактор, не взрывая его. Для выбега работающий реактор был не нужен.
А можно ли считать исходным событием аварии нажатие кнопки аварийной защиты в 01:23:40? Оказывается, не только можно, но и нужно. Действительно, до момента нажатия кнопки АЗ-5 никаких признаков катастрофического возрастания мощности реактора не наблюдается, а через три секунды после этого момента мощность зашкаливает по всем приборам и на самописце даёт вертикальную линию (рис. 3). Как такое может быть («тормоза разгоняют автомобиль»)? Оказывается, может.
13. Особенности конструкции и физики реактора РБМК-1000
Всё дело в особенностях конструкции стержней регулирования и аварийной защиты. Стержни состоят из двух секций: секция поглотителя нейтронов из карбида бора, имеющая длину практически равную высоте активной зоны (7 м) и секция вытеснителя из графита (? 4,5 м), секции соединены между собой телескопической тягой. Стержни перемещаются в каналах СУЗ (аналогичных топливным каналам, в которых размещаются тепловыделяющие сборки ТВС) и охлаждаются водой.
Рис. 4. Перемещение стержней регулирования и аварийной защиты
Когда стержень находится в крайнем верхнем положении рис. 4a, в активной зоне размещается его графитовая часть. Графит, это замедлитель, почти не поглощающий нейтроны, в отличие от воды, которая тоже замедлитель, но нейтроны поглощает значительно сильнее. Если стержень находится в крайнем нижнем положении рис. 4d, то в активной зоне реактора расположен сильный поглотитель карбид бора. Тем самым перемещение стержня из крайнего верхнего в крайнее нижнее положение вносит в реактор большую отрицательную реактивность, способную заглушить реактор при любой аварийной ситуации.
Однако, посмотрим, как вносится эта отрицательная реактивность во времени. При перемещении стержня (рис. 4b), в верхней части активной зоны вносится отрицательная реактивность, за счёт погружения в зону сильного поглотителя (карбид бора). В это же время в нижней части активной зоны вода в канале СУЗ вытесняется графитом и это вносит положительную реактивность, так как графит значительно слабее поглощает нейтроны, чем вода. Это продолжается до тех пор, пока не будет вытеснен весь столб воды в нижней части активной зоны, после чего вносится только отрицательная реактивность (рис. 4b, с). Если отрицательная реактивность, вносимая в верхней части активной зоны, окажется меньше положительной, вносимой в нижней части, то получится, что стержень на каком-то этапе, погружаясь в активную зону, разгоняет реактор вместо того, чтобы его заглушать.
Величина реактивности, которую, перемещаясь, вносит стержень, зависит от величины потока нейтронов в том месте, где эта реактивность вносится (квадратично пропорциональна). Если распределение нейтронного потока равномерно по высоте активной зоны (как на рис. 4a), т.е. одинаково вверху и внизу, то, конечно, вверху вносится гораздо большая (примерно в 2 раза) отрицательная реактивность, чем внизу положительная, и общая вносимая реактивность отрицательна. Если же поток нейтронов внизу гораздо больше чем вверху, то ситуация противоположная, и общая вносимая реактивность положительна. Величина нейтронного потока в данном локальном месте в свою очередь зависит от наличия или отсутствия в этом месте поглотителя. Т.е. пространственное распределение нейтронного потока (нейтронное поле) меняется при перемещении стержней, в одном месте заваливается, зато в другом выпячивается.
Если стержни в активной зоне находятся в произвольных случайных положениях, то при одновременном движении всех стержней вниз (что и происходит при сбросе аварийной защиты) эти изменения нейтронного потока локальны и также случайны, так что в целом (в распределении нейтронов) по реактору как бы ничего не меняется. Происходит нормальный ввод отрицательной реактивности с постоянной скоростью движения стержней. Если же почти все стержни находятся в крайнем верхнем положении, то при их одновременном движении, распределение нейтронов будет сильно деформироваться по высоте активной зоны. Так как это показано на рис. a), b) и c), и так как это было тогда в Чернобыльской аварии. И в реактор несколько секунд, пока вытеснялся столб воды, по сигналу АЗ-5 от кнопки вводилась стержнями положительная реактивность.
Ничего бы подобного не происходило, будь графитовые вытеснители стержней на 1,3 метра длиннее, так что это большая ошибка проекта и конструкции реактора. Конечно, удлинение вытеснителей потребовало бы для их размещения в крайнем нижнем положении соответственно большей высоты подреакторного пространства (со всеми вытекающими последствиями для реакторного здания). Но нельзя же, ведь, оставлять реактор без аварийной защиты, а тем более превращать её в свою противоположность.
Другая роковая ошибка, сделавшая масштаб аварии катастрофическим, это ошибка в расчёте парового (пустотного) эффекта реактивности и неправильный первоначальный выбор физических характеристик реактора при его создании. Знак и величина парового эффекта зависят от соотношения количеств замедлителя (графита) и поглотителя в активной зоне. Если поглотителя относительно много, то вода (теплоноситель) на его фоне мало что добавляет к общему поглощению нейтронов (в процессе замедления), а замедляет нейтроны гораздо лучше, чем графит. Паровой эффект в этом случае отрицателен (чем больше пара, т.е. меньше воды, тем хуже замедление нейтронов). Если поглотителя относительно мало, то поглощающие свойства воды выступают на первый план по сравнению с её замедляющей способностью. В этом случае чем больше пара и меньше воды, тем меньше вредное поглощение, и эффект положительный.
Основной поглотитель нейтронов в реакторе, как вредный (уран-238), так и полезный (уран-335), это ядерное топливо. Реактор РБМК-1000 задумывался как очень экономичный (в смысле использования ядерного топлива) реактор, и именно из этих соображений в нём выбиралось соотношение количества ядер углерода (графита) и урана-235. Конструктивно это вылилось в решётку каналов в графитовой кладке, с шагом 250 мм, содержащих внутри себя твэлы с обогащением 2% по урану-235 (в реакторах первой очереди это было даже 1,8%). Паровой эффект в таком реакторе оказался положительным и большим. Здесь необходимо сделать несколько замечаний.
Подобные документы
Последовательность событий на четвертом энергоблоке Чернобыльской атомной электростанции 26 апреля 1986 года. Описание нескольких версий причин аварии. Недостатки реактора РБМК. Увеличение числа врождённых патологий в различных районах Белоруссии.
презентация [2,5 M], добавлен 13.01.2015День памяти погибших в радиационных авариях и катастрофах. Чернобыльская катастрофа – крупнейшая за всю историю ядерной энергетики в мире. Ущерб, нанесенный большей части территории Европы радиоактивным облаком. Срок разложения радиоактивных элементов.
презентация [4,2 M], добавлен 27.04.2013Схема ядерного реактора, принцип его действия. Режим аварийной защиты. Сервопривод ручного и автоматического управления. Биологическая защита установки от излучений. Бетонная шахта реактора и ее оборудование. Конструктивное исполнение гидрозатворов.
реферат [89,2 K], добавлен 15.11.2013Конструкция и принцип действия ядерного реактора. Основа ядерного реактора – это стержни, сделанные из урана или плутония (тепловыделяющие элементы, ТВЭЛы). Оценка ядерных инцидентов и событий на атомных станциях. Критерии безопасности по шкале INES.
реферат [266,4 K], добавлен 26.08.2015Чернобыльская катастрофа: как все было. Экологические последствия. Защитные меры в сельском хозяйстве. Меры, принятые государством для преодоления последствий чернобыльской катастрофы. Радиоактивное загрязнение воздушной и водной среды, животного мира.
контрольная работа [42,9 K], добавлен 21.12.2008Хронология аварии на Чернобыльской АЭС, ее влияние на мировую атомную энергетику. Замалчивание трагедии в СССР. Последовательность эвакуации населения. Влияние катастрофы на окружающую среду. Ликвидация последствий взрыва. Этапы создания саркофагов.
реферат [19,4 K], добавлен 12.10.2014История и этапы протекания, основные причины и предпосылки катастрофы на Чернобыльской атомной электростанции, оценка возможностей избежать ее. Последствия аварии для Украины и всего мира. Способы устранения негативных тенденций, оценка их эффективности.
реферат [32,3 K], добавлен 25.11.2013Понятие чрезвычайной ситуации техногенного характера. Авария на атомной электростанции. Облучение и последствия облучения. Принципы обеспечения безопасности населения в чрезвычайных ситуациях. Обеспечение безопасности на примере крупных аварий на АЭС.
курсовая работа [51,5 K], добавлен 26.11.2012Официальная хронология событий. Основные причины катастрофы. Предполагаемый сценарий аварии на Чернобыльской АЭС. Выводы комиссии Национальной академии наук Украины. Ликвидация последствий аварии. Работы по очистке территории и захоронению реактора.
реферат [25,1 K], добавлен 20.12.2010Предпосылки аварии, последовательность событий, которые привели к ней. Способы ликвидации и последствия аварии на Чернобыльской АЭС. Действие обучения и комплексных факторов, характерных для Чернобыльской катастрофы, на здоровье населения Украины.
реферат [28,7 K], добавлен 28.09.2011