Шум, вібрація, електричний струм: негативні фактори

Основні джерела та характеристики шуму. Нормування та вимірювання шумів. Ультразвук: сфери застосування, дія на людину, засоби захисту. Параметри та нормування вібрації. Фактори, що впливають на тяжкість ураження електричним струмом. Види електротравм.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык украинский
Дата добавления 28.08.2010
Размер файла 70,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РЕФЕРАТ

З дисципліни Безпека життєдіяльності

З теми: «Шум, вібрація, електричний струм: негативні електричні та електромагнітні фактори»

2010 р.

1. Основні джерела та характеристики шуму. Нормування шуму

Шум це будь-який небажаний звук, якій наносить шкоду здоров'ю людини, знижує його працездатність, а також може сприяти отриманню травми в наслідок зниження сприйняття попереджувальних сигналів. З фізичної точки зору - це хвильові коливання пружного середовища , що поширюються з певної швидкістю в газоподібній, рідкій або твердій фазі.

Звукові хвилі виникають при порушенні стаціонарного стану середовища в наслідок впливу на них сили збудження и поширюючись у ньому утворюють звукове поле. Джерелами цих порушень бути механічні коливання конструкцій або їх частин, нестаціонарні явища в газоподібних або рідких середовищах

Основними характеристиками таких коливань служить амплітуда звукового тиску(р,Па), частота (f,Гц). Звуковий тиск - це різниця між миттєвим значенням повного тиску у середовищі при наявності звуку та середнім тиском в цьому середовищі при відсутності звуку. Поширення звукового полю супроводжується переносом енергії, яка може бути визначена інтенсивністю звуку J(Вт/м2 ).У вільному звуковому полі інтенсивність звуку і звуковий тиск зв'язати між собою співвідношенням

J =p2 /с·C,

де J -інтенсивність звуку , Вт/м2

p- звуковий тиск, Па,

с- щільність середовища,кг/м3

С - швидкість звукової хвилі в даному середовищі, м/с.

За частотою звукові коливання поділяються на три діапазони: інфразвукові з частотою коливань менше 20 Гц, звукові (ті, що ми чуємо) від 20 Гц до 20 кГц та ультразвукові більше 20 кГц . Швидкість поширення звукової хвилі C ( м/с) залежить від властивостей середовища і насамперед від його щільності. Так, в повітрі при нормальних атмосферних умовах C~344 м/с; швидкість звукової хвилі в воді ~1500 м/с , у металах ~ 3000-6000 м/с.

Людина сприймає звуки в широкому діапазоні інтенсивності (від нижнього порога чутності до верхнього -больового порога ) . Але звуки різних частот сприймаються неоднаково. Найбільша чутність звуку людиною відбувається у діапазоні 800-4000 Гц. Найменша - в діапазоні 20-100 Гц.

Залежність рівня звукового тиску, що сприяється людиною від частоти звуку (криві рівної гучності)

В зв'язку з тим, що слухове сприйняття пропорційне логарифму кількості звукової енергії були використані логарифмічні значення - рівні звукової інтенсивності (Li) та звукового тиску(Lp), які виражаються у децибелах (дБ). Рівень інтенсивності та рівень тиску звука виражаються формулами:

Li = 101g J /J0 , дБ;

Lр = 201g р /р0 , дБ;

де J0,- значення інтенсивності на нижньому порозі чутності його людиною при

частоті 1000 Гц, J0 = 10-12 Вт/м2 ;

р0 - порогові значення на нижнього порозі чутності звукового тиску людиною на частоті

1000 Гц, р0 =2*10-5 Па.

На порозі больового відчуття (верхнього порога) на частоті 1000 гц значення інтенсивності Jп =102Вт/м2, а звукового тиску рп=2·10 Па.

Спектр шуму залежність рівнів інтенсивності від частоти. Розрізняють спектри суцільні (широкосмугові), у яких спектральні складові розташовані по шкалі частот безперервно, і дискретні (тональні), коли спектральні складові розділені ділянками нульової інтенсивності. На практиці спектральну характеристику шуму звичайно визначають як сукупність рівнів звукового тиску (інтенсивності) у частотних октавних смугах. Ширина таких смуг відповідає співвідношенню fв /fн =2, де fв- верхня частота смуги, fн - нижня частота смуги . Кожну смугу визначають за ії середньо геометричної частоті fср=fв *fн .Оскільки сприйняття звуку людиною різниця за частотою, для вимірів шуму, що відповідає його суб'єктивному сприйняттю вводять поняття коректованого рівня звукового тиску. Корекція здійснюється за допомогою поправок, які додаються у частотних смугах. Стандартні значення корекції в частотних смугах наведені у таблиці. Значення загального рівня шуму з урахуванням вказаної корекції по частотним смугам називають рівнем звука ( дБА)

Таблиця. Стандартні значення корекції рівнів звукового тиску у частотних смугах.

Середньо геометричні частоти октавних смуг, Гц

31,5

63

125

250

500

1000

2000

4000

8000

Корекція, дБ

-42

-26,3

-16,1

-8,6

-3,2

0

1,2

1,0

-1,1

За часовими характеристиками шуми поділяють на постійні і непостійні. Постійними вважають шуми, у яких рівень звуку протягом робочого дня змінюється не більше ніж на 5 дБА. Непостійні шуми поділяються на переривчасті, з коливанням у часі, та імпульсні. При переривчастому шумі рівень звуку може різко падати до фонового рівня, а довжина інтервалів, коли рівень залишається постійним і перевищує фоновий рівень, досягає 1 с та більше. При шумі з коливаннями у часі рівень звуку безперервно змінюється у часі. До імпульсних відносять шуми у вигляді окремих звукових сигналів тривалістю менше 1 с кожний, що сприймаються людським вухом як окремі удари.

Джерело шуму характеризують звуковою потужністю W(Вт), під якою розуміють кількість енергії у ватах, яка випромінюється цим джерелом у вигляді звуку в одиницю часу.

Рівень звукової потужності(дБ) джерела визначають за формулою:

Lw = 10 lg W/W0 ,

де W0 порогові значення звукової потужності, яке дорівнює 10-12 Вт.

В випадку, коли джерело випромінює звукову енергію в усі сторони рівномірно, середня інтенсивність звуку в будь-якій точці простору буде дорівнювати:

Jср = W/4r2 ,

де r відстань від центра джерела до поверхні сфери, що віддалена на таку достатньо велику відстань, щоб джерело можна було вважати точковим.

Якщо випромінювання відбувається не в сферу, а в обмежений простір, вводиться кут випромінювання , який вимірюється в стерадіанах. Тоді

Jср = W/r2

Якщо джерело шуму являє собою пристрой, розташований на поверхні землі, то =2, у двогранному куті =, у тригранному =/2.

Фактором направленості джерела називають відношення інтенсивності звуку, який випромінюється в даному напрямі, до середньої інтенсивності

Ф = J/Jср

Шумові характеристики обов'язково встановлюють в стандартах або технічних умовах на машини і вказують у їх паспортах. Значення шумових характеристик встановлюють, виходячи з вимог забезпечення на робочих місцях, житловій території і в будинках допустимих рівнів шуму.

Розрахунок очікуваної шумової характеристики є необхідною складовою частиною конструювання машини або транспортного засобу.

Здатність слухового аналізатора сприймати широкий діапазон звукових тисків пояснюється тим, що він вирізняє не різницю, а стислість змін абсолютних величин, які характеризують звук (східчастість сприйняття). Тому вимірювати інтенсивність звуку і звуковий тиск в абсолютних (фізичних) одиницях важко і незручно.

В акустиці для вимірювання інтенсивності звуків або шуму застосовують спеціальну систему, яка враховує логарифмічну залежність між подразненням і слуховим сприйняттям, - шкалу бел і децибел. Вона відповідає фізіологічному сприйняттю і уможливлює різке скорочення діапазону значень вимірюваних величин. За цією шкалою кожний наступний ступінь звукової енергії перевищує попередній у 10 разів. Наприклад, якщо інтенсивність звуку більша у 10, 100, 1000 разів, то за логарифмічною шкалою вона відповідає збільшенню на 1, 2, 3 одиниці. Логарифмічна одиниця, яка відбиває десятиразовий ступінь збільшення інтенсивності звуку над рівнем моря, називається белом (Б), тобто є десятковим логарифмом відношення інтенсивностей звуків.

Отже, при вимірюванні інтенсивності звуків використовують не абсолютні величини звукової енергії або тиску, а відносні, які виражають відношення енергії або тиску звуку до порогових для слуху значень енергії або тиску. Діапазон енергії, який сприймається слухом як звук, становить 13-14 Б. Для зручності використовують не бел, а одиницю, що в 10 разів менша - децибел (дБ). Децибел приблизно відповідає мінімальному приросту інтенсивності звуку, який розрізняє вухо. Вимірювані в такий спосіб величини називаються рівнями інтенсивності звуку, або рівнями звукового тиску.

Інтенсивність звуку суб'єктивно відчувається як гучність. Характеристика шуму в децибелах не дає повного уявлення про його гучність. Це залежить від різної чутливості вуха до різних акустичних частот. Звуки однієї інтенсивності, але різних частот сприймаються на слух як неоднаково гучні. Слуховий аналізатор по-різному сприймає різні частоти. При рівнях інтенсивності звуку до 70 дБ максимальна чутливість слухового аналізатора становить 1-5 кГц і зменшується з підвищенням і зниженням частоти. Тому звуки (тони) однакової інтенсивності на різних частотах здаються на слух різними за гучністю. При великих рівнях інтенсивності (80 дБ і вище) із збільшенням інтенсивності звуку вухо реагує майже однаково на звуки різних частот чутного діапазону.

Шум як професійний фактор спостерігається у промисловості, на транспорті, у сільському господарстві тощо. З кожним роком збільшується кількість професій, пов'язаних із шумом, а зростаюча спеціалізація праці веде до збільшення тривалості його впливу на людину.

У машинобудуванні високий рівень шуму спостерігається при обробці металів різанням. Найвищий рівень шуму - у цехах холодного висаджування (101-105 дБ), цвяхівних (104-110 дБ), полірування швів (115-117 дБ), токарно-револьверних (84-88 дБ), фрезерних верстатів (93-95 дБ). На робочих місцях ковалів-штампувальників рівень шуму становить 110-115 дБ. Інтенсивний шум з'являється при обрубуванні та очищенні лиття, роботі пневматичних трамбівок, вибивних решіток тощо. У гірничорудній і вугільній промисловості шум, що утворюється відбійними молотками, за рівнем інтенсивності досягає 92-109 дБ, під час роботи пневматичних перфораторів - 114-127 дБ. У текстильній промисловості найвищий рівень шуму у ткацьких цехах (94-104 дБ), на робочих місцях швачок-мотористок швейних фабрик він становить 90-95 дБ.

Отже, експлуатація різноманітних машин і механізмів у різних галузях промисловості супроводжується виробничим шумом, що різниться інтенсивністю і спектральним складом.

Нормування та вимірювання шумів

Шкідливість шуму як фактора виробничого середовища і середовища життєдіяльності людини приводить до необхідності обмежувати його рівні. Санітарно-гігієнічне нормування шумів здійснюється, в основному, двома способами - методом граничних спектрів (ГС) і методом рівня звуку.

Метод граничних спектрів, який застосовують для нормування постійного шуму, передбачає обмеження рівнів звукового тиску в октавних смугах із середніми геометричними частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000 і 8000 Гц. Сукупність цих граничних октавних рівнів називають граничним спектром. Позначають той чи інший граничний спектр рівнем його звукового тиску на частоті 1000 Гц. Наприклад, “ГС-75” означає, що даний граничний спектр має на частоті 1000 Гц рівень звукового тиску 75 дБ.

Метод рівнів звуку застосовують для орієнтовній гігієнічний оцінки постійного шуму та визначення непостійного шуму, наприклад, зовнішнього шуму транспортних засобів, міського шуму. При цьому методі вимірюють коректований по частотам у відповідності з чутливістю вуха загальний рівень звукового тиску у всьому діапазоні частот, що відповідає перерахованим вище октавним смугам. Виміряний таким чином рівень звуку дає змогу характеризувати величину шуму не дев'ятьма цифрами рівнів звукового тиску, як у методі граничних спектрів, а однією. Вимірюють рівень звуку в децибелах А (дБ А) шумоміром із стандартною коректованою частотною характеристикою, в якому за допомогою відповідних фільтрів знижена чутливість на низьких та високих частотах.

Непостійний шум характеризують також еквівалентним (за енергією) рівнем звуку, тобто рівнем звуку постійного широкосмугового не імпульсного шуму, що має такий самий вплив на людину, як і даний непостійний шум. Еквівалентний рівень - це рівень постійного шуму, дія якого відповідає дії фактичного шуму із змінними рівнями за той же час, виміряного по шкалі “А”. Для непостійного та імпульсного шуму нормованим параметром є еквівалент-ний рівень шуму у дБАекв. Для імпульсного шуму нормується також максимальний рівень шуму - у дБА.

Порядок вимірювання рівнів звуку шумомірами та розрахунок еквівалентного рівня регламентовано ДСН 3.36.037-99. Звичайний шумомір складається з мікрофону, підсилювача, фільтрів (корегуючих, октавних) та приладу, що показує . Існують прилади - акустичні дозиметри, за допомогою яких безпосередньо вимірюють еквівалентний рівень звуку. Вимірювання шуму можна також здійснювати за допомогою сучасних компьютерів.

Вимірювання шуму проводиться на постійних робочих місцях у приміщеннях, на території підприємств, на промислових спорудах та машинах (в кабінах, на пультах управління і т. п.).Результати вимірювань повинні характеризувати шумовий вплив за час робочої зміни (робочого дня).

При проведенні вимірювань мікрофон слід розташовувати на висоті 1,5 м над рівнем підлоги чи робочого майданчика (якщо робота виконується стоячи) чи на висоті і відстані 15 см від вуха людини, на яку діє шум (якщо робота виконується сидячи чи лежачи). Мікрофон повинен бути зорієнтований у напрямку максимального рівня шуму та віддалений не менш ніж на 0,5 м від оператора, який проводить вимірювання.

Тривалість вимірювання непостійного шуму:

- для переривчастого шуму, за час повного робочого циклу з урахуванням сумарної тривалості перерв з рівнем фонового шуму;

- для шуму, що коливається у часі, допускається загальна тривалість вимірювання - 30 хвилин безперервно або вимірювання складається з трьох десятихвилиних циклів ;

- для імпульсного шуму тривалість вимірювання - 30 хвилин.

2. Охарактеризувати дію шуму на людину. Виробничий шум

Вплив шуму на організм людини часто посилюється й іншими виробничими факторами: вібрацією, інфра- і ультразвуком, несприятливим мікрокліматом, токсичними речовинами, випромінюванням тощо. На сучасному виробництві шум часто є причиною зниження рівня працездатності, підвищення рівня загальної і професійної захворюваності, частоти виробничих травм.

Шум як стрес-фактор є загальнобіологічним подразником, який негативно впливає на всі органи і системи організму. У разі тривалого систематичного впливу шуму може виникнути патологія з переважним ураженням слуху, центральної нервової і серцево-судинної систем. В основі змін лежить складний механізм нервово-рефлектор-них і нейрогуморальних порушень, які можуть призвести до порушення регуляторних процесів з боку центральної нервової системи.

Вплив шуму на організм умовно поділяють на специфічний, що викликає зміни в органі слуху, і неспецифічний, який викликає зміни в інших органах і системах. Шум є однією з найчастіших причин зниження слуху нейросенсорного характеру, приглухуватості - поширеного виду патології.

Шум як звуковий подразник впливає не лише на слуховий аналізатор, а й на інші органи, зокрема переддверно-завитковий. Це відбувається внаслідок того, що потік акустичної енергії великої інтенсивності викликає коливання рідини не тільки у завитку, а й у переддвер'ї і напівкруглих каналах.

Тривалий шум через провідні шляхи слухового аналізатора впли-ває на відділи головного мозку, порушуючи процеси вищої нервової діяльності людини. Спостерігаються зміни функціонального стану нервової системи у вигляді астенічних реакцій та астено-вегетативного синдрому з характерними скаргами на головний біль, швидку стомлюваність, подразливість, порушення сну, загальне нездужання, зниження працездатності тощо.

У працівників з невеликим стажем роботи зміни з боку нервової системи спостерігаються частіше, ніж у слуховому аналізаторі. У них з'являється головний біль, апатія, підвищуються стомлюваність, подразливість. У працівників із стажем роботи 10 років і більше ці зміни посилюються, виявляються стійкі ознаки астено-вегетативного синдрому за гіпертонічним, гіпотонічним і кардіальним типами. В окремих випадках спостерігаються зміни психомоторної працездатності, емоційної сфери і розумової діяльності працівників, сповільнюється швидкість психічних реакцій, послаблюється пам'ять, знижується темп розумової праці, її якість і продуктивність; порушуються концентрація уваги, точність і координація рухів; змінюються секреторна і моторна функції травного каналу; порушується обмін речовин (основний, білковий, вуглеводний, жировий, електролітний тощо); змінюється функціональний стан серцево-судинної системи. Ступінь вираженості гіпертензивної дії шуму і порушень гемодинаміки залежить від інтенсивності, тривалості, спектра дії, а також від індивідуальних особливостей людини і супутніх факторів виробничого середовища.

За санітарними нормами шум класифікується так:

за характером спектра - широкосмуговий з безперервним спектром більш як одна октава і тональний, у спектрі якого спостерігаються значні дискретні тони;

за характеристикою часу - постійний, рівень звуку якого за 8-годинний робочий день змінюється щонайбільше на 5 дБ, і непостійний, рівень звуку якого за робочий день такої самої тривалості змінюється більш як на 5 дБ.

Непостійний шум, у свою чергу, поділяється на:

коливний, рівень звуку якого безперервно змінюється;

переривчастий, рівень звуку якого східчасто змінюється (на 5 дБ і більше), причому тривалість інтервалів, протягом яких рівень зву-ку залишається постійним, становить 1 с і більше;

імпульсний, що складається з одного або кількох звукових сигналів, кожний тривалістю менше 1 с.

За санітарними нормами 80 дБ - допустимий рівень шуму на постійних робочих місцях у виробничих приміщеннях і на території підприємства.

3. Характеристика методів захисту від побутового та виробничого шуму

Захист від шуму на виробництві

Боротьба з шумом на виробництві є однією з найскладніших проблем, оскільки джерела шуму різноманітні й потребують комплексу заходів технічного, організаційного і медичного характеру на всіх стадіях проектування, будівництва, експлуатації машин і устаткування. Відомі три основні напрямки боротьби з шумом:

Зменшення рівня шуму у джерелі виникнення, застосування раціональних конструкцій, нових матеріалів і технологічних процесів.

Звукоізоляція устаткування за допомогою глушників, резонаторів, кожухів, захисних конструкцій, оздоблення стін, стелі, підлоги тощо.

3. Використання засобів індивідуального захисту.

Дуже часто як супутній фактор шуму на робочих місцях виникає вібрація, тому система профілактичних засобів зниження шуму є комплексною проблемою загального захисту працюючих від механічних коливань.

Технологічні заходи охоплюють характеристику і розміщення устаткування і машин, вимоги до розрахунку характеристик шуму на стадії проектування, обмеження шуму звукопоглинаючих конструкцій і екранів, фільтровентиляційних установок, заміну технологічних процесів і механізмів на менш шумні, обладнання звукоізолюючих кабін операторів, дистанційне керування обладнанням, автоматизацію виробничих процесів зі зменшенням кількості операторів тощо.

Планувальні заходи передбачають ізоляцію шумних цехів від тихих приміщень, збільшення відстані між ними (на стадії проектування виробництва), розташування шумних цехів з підвітряного боку і торцем до фасаду інших будівель. Зелені насадження навколо шумних цехів і шумозахисна зона так само сприяють поглинанню шуму.

У виробничих умовах поряд із звукоізоляцією широко застосовують засоби звукопоглинання. З метою поглинання шуму приміщеннями цехів малого об'єму (400-500 м3) їх оздоблюють пористими матеріалами. Позитивний ефект звукопоглинання дає застосування мінеральних плит, матів з базальтового волокна, штукатурки пінистої або зернистої структури тощо. У приміщеннях великого об'єму ефективні звукопоглинаючі бар'єри і об'ємні поглиначі (куби, конуси тощо), які підвішують над шумними агрегатами для зниження рівня шуму на 5-12 дБ. Застосування звукопоглинаючих матеріалів у комплексі із заміною устаткування в окремих випадках знижує рівень шуму до нормативного (ткацькі цехи).

У боротьбі з аеродинамічним шумом (вихлопи і всмоктування повітря пневматичними інструментами, компресорами, вентиляторами тощо) застосовують глушники різної конструкції, які поглинають шум вихлопу або всмоктування повітря, газів і парів. Вибір типу глушника залежить від рівня і спектрального складу шуму. Для гасіння високочастотного шуму застосовують активні глушники, в основу яких покладено принцип звукової енергії, для гасіння низькочастотного шуму - реактивні глушники, що працюють як акустичний фільтр. Якщо немає змоги забезпечити дотримання вимог технічного характеру, важливого значення набувають організаційно-профілактичні заходи - застосування індивідуальних засобів захисту органів слуху.

Засоби індивідуального захисту від шуму - пропишу ми - використовують тоді, коли технічні засоби не забезпечують його зниження до безпечного рівня. Тип засобу протишуму вибирають за рівнем і спектром шуму. Застосовують десятки варіантів вкладишів (втулки, тампони тощо), навушники і шоломи для ізоляції зовнішнього слухового ходу від шуму різного спектрального складу. До протишумових вкладишів, які вставляють у слуховий хід, належать заглушки у вигляді тампонів, гумові ковпачки, циліндри із спеціального пінопласту, пластичні вкладиші (виготовлені індивідуально за формою слухового ходу), а також вкладиші одноразового використання. Ефективними вважаються вкладиші із суміші волокон органічної бактерицидної вати і ультратонких полімерних волокон - беруши.

Зручними щодо експлуатації і гігієни є протишумові навушники. Протишумові шоломи - громіздкі й дорогі, їх використовують при дуже високих рівнях шуму в комбінації з навушниками і протишумовими костюмами. Використання засобів протишуму дає змогу уникнути не тільки зниження слуху, а й порушення функцій нервової системи.

Зменшення тривалості контакту з шумом, застосування раціонального режиму праці та відпочинку, періодичного короткочасного відпочинку від шуму протягом робочого дня, суміщення професій в умовах шуму і його відсутності значно знижують негативний вплив шуму. Для профілактики несприятливого впливу імпульсного шуму рекомендується заповнювати паузи між імпульсами рівним фоновим шумом. При цьому різниця між рівнями фону та імпульсного шуму не повинна перевищувати 20 дБ. З метою підготовки працівника до чер-гового імпульсу шуму використовують світлові застережні сигнали.

Заходи медичної профілактики професійних захворювань

Особи, яких приймають для роботи в умовах шуму, проходять попередній медичний огляд з урахуванням протипоказань щодо прийняття на роботу в умовах шуму. Для профілактики професійних захворювань працівники, що працюють в умовах шуму, проходять періодичні медичні огляди. Медичні огляди здійснюють лікарі-спеціалісти: отоларинголог, невропатолог, терапевт з обов'язковим дослідженням крові й аудіометрією. На підставі даних періодичних медичних оглядів працівників у разі потреби переводять на роботу, не пов'язану з впливом шуму. Крім того, дані оглядів є матеріалом для розробки додаткових заходів щодо захисту працівників від впливу шуму.

Важливе значення у боротьбі з шумом має санітарно-просвітницька робота серед науково-технічних працівників, майстрів і робітників.

Оцінка втрати слуху під впливом виробничого шуму

Параметр

Ступінь втрати слуху, дБ, на частотах

мовних

4000 Гц

Ознаки впливу шуму на орган слуху

Зниження слуху:

(легке) І

(помірне) II

(значне) III

< 10

(500 Гц- 5;

1000 Гц- 10;

2000 Гц- 10)

10-20

21-30

31 і більше

< 40

60±20

65±20

70±20

4. Ультразвук: сфери застосування, дія на людину, засоби захисту

Ультразвук - це механічні пружні коливання і хвилі, які відрізняються від звуку вищою частотою коливань (понад 20 кГц) і не сприймаються вухом людини. Ультразвукові коливання, як і звукові, поширюються у вигляді змінних стиснень і розріджень і характеризуються довжиною хвилі, частотою і швидкістю поширення. Частотна характеристика і довжина хвилі визначають особливості поширення коливань у навколишньому середовищі (повітряному, рідинному і твердому) - від 1,12-104 до 1,0-109 Гц. Що вища частота ультразвукових коливань, то більше вони поглинаються середовищем і менше заглиблюються у тканини людини. Поглинання ультразвуку супроводжується нагріванням середовища. Швидкість поширення ультразвуку залежить від властивостей середовища - його щільності, пружності, в'язкості та температури. Так, у воді, особливо при підвищенні її температури, ультразвукові коливання поширюються швидше, ніж у повітрі. При поширенні ультразвукових коливань у повітрі їх, як і звуки, характеризують в одиницях звукового тиску - децибелах.

Ультразвуковий діапазон частот поділяють на низькочастотні коливання (1,12 * 104 - 1,0 * 105 Гц), які поширюються через повітря і контактно,і високочастотні(1,0 * 105 1,0 * 109Гц), які поширюються тільки контактно.

Ультразвук застосовують у різних галузях народного господарства - металургії, машино- і приладобудуванні, радіотехнічній, хімічній і легкій промисловості, медицині тощо. Внаслідок поширення застосування ультразвуку збільшується кількість працюючих, які перебувають під його впливом.

Для технічних і медичних цілей ультразвук одержують за допомогою спеціальних пристроїв, де використовують п'єзоелектричний, магнітострикційний, електродинамічний, аеро- і гідродинамічний ефекти. Основними елементами ультразвукового устаткування є генератор і джерело ультразвукових коливань - акустичний перетворювач, вмонтований у ванну, верстат, машину тощо. Ультразвукові коливання до 120-130 дБ можуть виникати як супутні фактори при експлуатації технологічного і вентиляційного устаткування. Режим генерації ультразвуку може бути безперервним та імпульсним.

При поширенні в середовищах ультразвук зумовлює механічний, термічний і фізико-хімічні ефекти. Так, при поширенні ультразвуку в

повітрі виникає термічний ефект, що зумовлюється механічною дією ультразвуку (хвильовий рух газоподібних, рідких і твердих частинок приводить до перетворення механічної енергії на теплову). Механічний ефект супроводжується зміною акустичного тиску під час стиснення і розрідження середовища силами, які розвиваються внаслідок великих прискорень частинок. Цими властивостями визначається диспергуюча дія ультразвуку. Фізико-хімічні ефекти пов'язані з кавітацією, виникненням зон стиснень і розриву внаслідок руху пружних хвиль, які викликають утворення бульбашок, заповнених парами рідини і розчиненим у ній газом. Під час проходження хвиль бульбашки зникають, підвищуються температура і тиск у рідині, виникають місцеві ударні явища, іонізація, утворюються гідроксильні радикали, атомарний кисень.

Механічний, термічний і фізико-хімічні ефекти, властиві для ультразвукових коливань, широко використовують у різних галузях народного господарства для адекватного впливу на речовини і технологічні процеси, структурного аналізу і контролю фізико-механічних властивостей речовин і матеріалів, у дефектоскопії і медицині для діагностики й лікування при багатьох захворюваннях. Завдяки високій біологічній активності в медицині найчастіше застосовують високочастотні ультразвукові коливання.

У промисловості й техніці широко застосовують низькочастотний ультразвук (18-44 кГц) великої інтенсивності (0,5-20 Вт/см2 і більше) для активного впливу на речовини і прискорення технологічних процесів, для очищення і знежирювання деталей, емульгації, подрібнення твердих речовин у рідинах, механічної обробки твердих матеріалів (різання), зварювання металів і пластмас, паяння, прискорення хімічних реакцій тощо. У медицині ультразвук застосовують для розтину і з'єднання біологічних тканин, стерилізації інструментів, рук.

Вплив ультразвуку на організм людини

У виробничих умовах можливий вплив низькочастотного ультразвуку на працюючих як через повітря, так і при безпосередньому контакті з рідким або твердим середовищем зі збудженими коливаннями. Контактна дія спостерігається при утримуванні інструмента, чи оброблюваної деталі (при лудінні та паянні), при завантажуванні виробів в ультразвукові ванни і розвантажуванні їх, зварюванні та інших операціях. Розрізняють короткочасну та періодичну контактну дію.

Ультразвукові коливання, які генеруються промисловим устаткуванням, несприятливо впливають на організм людини. При тривалій систематичній дії ультразвуку, який поширюється через повітря, можуть виникати порушення нервової, серцево-судинної і ендокринної систем, слухового аналізатора, системи крові.

Характерним є розвиток вегетосудинної дистонії і астенії. Ступінь вираженості змін, що відбуваються в організмі людини під впливом ультразвуку, залежить від інтенсивності й тривалості його дії і може посилюватися за рахунок наявності у спектрі високочастотного шуму і можливості контакту із середовищем, яке озвучується.

Біологічна дія ультразвуку на організм при контактному його передаванні залежить від потужності ультразвукових коливань, їх частоти, тривалості дії, способу випромінювання ультразвукової енергії (безперервного, імпульсного), чутливості тканин, інтенсивності кровопостачання і стану метаболізму у тканинах. Поширюючись у тканинах організму, ультразвукові хвилі впливають на фізико-хімічні та біологічні процеси, що відбуваються в цих тканинах. Найчутливіші до дії контактного високочастотного ультразвуку вегетативна і пе-риферична нервові системи.

В осіб, які працюють в умовах інтенсивного ультразвуку, що супроводжується шумом, поряд із змінами функцій нервової системи спостерігається зниження судинного тонусу, особливо в місцях контакту з джерелами ультразвуку. Загальноцеребральні порушення часто поєднуються з помірним вегетативним поліартритом рук, парезом пальців, кистей і передпліччя. Іноді у працівників спостерігаються вестибулярні розлади, підвищення температури тіла тощо.

Залежно від інтенсивності ультразвукових хвиль розрізняють три види ультразвуку і впливу його на живі тканини:

Ультразвук малої інтенсивності (т 1,5Вт/см2). Викликає зміни фізико-хімічних реакцій організму, прискорення обмінних процесів, слабке нагрівання тканини, мікромасаж і не призводить до морфологічних порушень всередині клітин.

Ультразвук середньої інтенсивності (1,5-3 Вт/см2). Викликає реакцію пригнічення у нервовій тканині. Швидкість відновлення функцій залежить від інтенсивності і тривалості впливу ультразвуку.

Ультразвук великої інтенсивності. Викликає незворотне пригнічення аж до повного руйнування тканини.

Ультразвук високочастотного діапазону викликає підвищення проникності судин шкіри, що виражається гіперемією аж до крововиливів на поверхні шкіри (петехій).

Під час контактної дії ультразвуку підвищується серцевий ритм, помітно змінюється ЕКГ; при збільшенні його інтенсивності виникає аритмія, а в окремих випадках - зупинка серця (у піддослідних тварин). Аналогічні реакції спостерігаються і в людей: виникають неприємні відчуття при озвучуванні грудної клітки, згодом розвиваються тахікардія та стенокардія.

Високочастотний ультразвук малої інтенсивності (0,2-1,0 Вт/см2) викликає судинорозширювальний ефект, великої (3,0 Вт/см2 і більше) -судинозвужувальний. При цьому змінюється тонус артерій: ультразвук малої інтенсивності дає гіпотензивний ефект, при збільшенні його інтенсивності виникає артеріальна гіпертензія.

Зміни в нирках, печінці, статевих органах, ендокринних залозах відбуваються внаслідок впливу ультразвуку на гіпоталамус, який регулює діяльність внутрішніх органів рефлекторним і нейрогуморальним шляхами. Спостерігається зміна морфологічної картини крові; зменшується кількість еритроцитів та лейкоцитів. Зміни нагадують такі, що відбуваються під впливом радіоактивного випромінювання. Виявляються вегетативно-судинні ураження рук (парез пальців, кистей і передпліччя, вегетативний поліневрит). Ступінь вираженості патології залежить від рівня ультразвукового тиску. Негативні наслідки більшою мірою виражаються у працівників, які зазнають одночасного впливу ультразвуку через повітря і контактно. Істотно підвищує негативний вплив ультразвуку шум чутного діапазону.

Профілактика негативного впливу ультразвуку

При обслуговуванні ультразвукового обладнання профілактичні заходи передбачають попередження контактного озвучування через тверді та рідкі середовища і боротьбу з поширенням ультразвуку й шуму в повітрі робочої зони. Ультразвукове устаткування слід обладнувати звукоізолюючими кожухами, конструкції ультразвукових верстатів і устаткування для зварювання та паяння повинні мати екрани з органічного скла, які забезпечують зниження рівнів звукового тиску на робочих місцях. Забороняється контакт з робочими поверхнями устаткування у процесі його роботи, з оброблюваними рідинами і деталями. Для боротьби з контактним озвучуванням слід застосовувати дистанційне керування, автоблокування, тобто автоматичне вимкнення устаткування і приладів при завантажуванні та розвантажуванні продукції, нанесенні контактних мастил, а також спеці-альні пристрої для завантажування і виймання деталей, затискачі, щипці, ручки яких повинні мати еластичне покриття, що поглинає ультразвук.

Індивідуальний захист органу слуху досягається застосуванням протишумів. Для захисту рук від впливу ультразвуку в зоні контакту з твердим або рідким середовищем слід застосовувати захисні рукавички. До роботи з ультразвуковим устаткуванням допускаються особи віком понад 18 років.

5. Інфразвук: сфери застосування дія на людину, засоби захисту

Інфразвук

Під інфразвуком розуміють акустичні коливання з частотою до 20 Гц. Фізична природа чутного звуку, ультразвуку та інфразвуку однакова, їх поділ зумовлений особливостями сприйняття їх слуховим аналізатором людини. Для інфразвуку характерні дуже великі пороги слухового сприйняття, що робить його практично нечутним. Фізичні особливості інфразвукових коливань зумовлені їх малою частотою і великою довжиною хвиль. Характерною ознакою інфразвуку є його здатність поширюватися на значну відстань без істотної втрати енергії, огинати перепони внаслідок дифракції або проникати крізь них.

За характером спектра інфразвук поділяють на широкосмуговий з безперервним спектром завширшки понад октаву і гармонічний, у спектрі якого є виражені дискретні складові. Гармонічний характер інфразвуку встановлюють в октавних смугах частот за перевищенням рівня в одній смузі над сусідніми щонайменше на 10 дБ.

Джерелами інфразвуку можуть бути природні явища: вітер, грозові розряди, морські хвилі, процеси, що відбуваються в земній корі (обвали, землетруси, виверження вулканів тощо). При цьому в окремих випадках рівень звукового тиску в інфразвуковому діапазоні частот може досягати 140 дБ.

Інфразвукові складові, як правило, присутні у спектрі шуму, який генерується промисловими установками і транспортними засобами. Рівень інфразвукового тиску на робочих місцях операторів цехового устаткування становить 78-90 дБ, під час роботи автотранспорту -97-110 дБ, залізничного - 78-97 дБ, водного - 75-99 дБ, портового

устаткування - 79-91 дБ. Проте тенденція до збільшення потужності й габаритних розмірів машин і механізмів може призвести у найближчому майбутньому до істотного підвищення рівнів промислового інфразвуку. Вже зараз є джерела, які генерують рівень інфразвуку близько 95-150 дБ.

Біологічна дія інфразвуку на людину

Інфразвук сприймається слуховим аналізатором, однак пороги чутності його значно вищі, ніж звуку. При сприйнятті інфразвуку втрачається відчуття тональності, а сприймаються тільки окремі поштовхи звукового тиску. Крім слухового аналізатора інфразвукові коливання сприймають вестибулярний і шкірний аналізатори.

В осіб, які працюють в умовах дії інфразвуку з найпоширенішими у промисловості рівнями тиску 90-110 дБ, специфічної патології не виявлялося. Працівники скаржились на млявість, пригніченість, швидке стомлення. У них спостерігалися значні зміни функції вестибулярного і слухового аналізаторів, дихальної і серцево-судинної систем.

Інфразвук має подразнюючу дію, що найбільшою мірою виявляється при виконанні роботи у приміщеннях без джерел шуму. За цих умов інфразвук може призвести до швидкої втоми і знизити якість виконуваної роботи. Відомі дані і про маскуючий ефект інфразвуку, який призводить до зниження розбірливості мови. Клініко-фізіологічних даних про дію інфразвуку з великими рівнями звукового тиску у промислових умовах поки що немає, хоча в окремих випадках його рівень може сягати 150 дБ. Експериментальні дані, одержані під час короткочасного впливу інфразвуку цих рівнів на людину, свідчать про його виражену дію: підвищення слухового порога, погіршення функції рівноваги, зміну ритму серцевих скорочень і артеріального тиску, функціонального стану центральної нервової системи.

Експериментальні дані, одержані в результаті досліджень на тваринах, свідчать про те, що за тривалої дії інфразвуку з великими рівнями тиску виявляються патологічні зміни у біохімічних, імунологічних і морфологічних показниках. Встановлено, що рівні інфразвуку понад 180 дБ смертельні. Потенціальна небезпека інфразвукових коливань визначає необхідність нормування інфразвуку на робочих місцях.

Боротьба з несприятливим впливом виробничого інфразвуку охоплює комплекс заходів, які належать до технічної і медичної компетенції. Розглянемо окремі з них.

Ослаблення інфразвуку в межах джерела, усунення причин його виникнення, що є найрадикальнішим способом боротьби з низькочастотними коливаннями машин і механізмів.

Ізоляція інфразвуку. Важливе місце у боротьбі з інфразвуком належить методам будівельної акустики. Велике значення має раціональне планування і розміщення виробничого устаткування, ізоляція в окремих приміщеннях агрегатів - джерел шуму та інфразвуку. Водночас слід наголосити, що застосування звукопоглинаючого оздоблення звичайного типу практично не ослаблює енергії звукових коливань.

Поглинання інфразвуку. Для цього застосовують багатошарові звукопоглинаючі покриття.

Медична профілактика. Одним з найважливіших заходів медичної профілактики шкідливого впливу інфразвуку є здійснення запобіжних і періодичних медичних оглядів. Протипоказаннями для прийняття на роботу є порушення вестибулярної і слухової функції, виражені неврози, вегетативна дисфункція, захворювання центральної нервової та серцево-судинної систем, органів травлення.

6. Вібрація: джерела, вплив на людину, заходи та засоби захисту

Вібрація -- це коливання твердих тіл, частин апаратів, машин, устаткування, споруд, що сприймаються організмом людини як струс.

При вібрації виробничих механізмів передаються їх швидкі коливальні і обертальні рухи контактуючим з ними предметам в тому числі працівникам. Причиною порушення вібрації є виникаючі при роботі машин неурівноважені силові впливи: ударні навантаження; зворотно-поступальні переміщення; дисбаланс. Причиною дисбалансу є: неоднорідність матеріалу; розбіжність центрів мас і осей обертання; деформація.

Вібрація - загальнобіологічний шкідливий чинник, що призводить до фахових захворювань - віброзахворюваннь, лікування котрих можливо тільки на ранніх стадіях. Хвороба супроводжується стійкими порушеннями в організмі людини (опорно-руховий апарат, необоротні зміни в кістках і суглобах, зсуви в черевній порожнині, нервово-психічній сфері). Людина частково або цілком утрачає працездатність. По способі передачі на людину вібрація підрозділяється на загальну і локальну. Загальна - діє через опорні поверхні ніг на весь організм у цілому. Локальна - на окремі ділянки тіла. Загальну поділяють по характері передачі на: транспортну(при прямуванні машин); транспортно-технологічну (при виконанні роботи машиною прямування: кран, бульдозер); технологічну (при роботі механізмів і людина знаходиться поруч).

Часто вібрації супроводжуються почутим шумом.

Вібрація впливає на

О центральну нервову систему

О шлунково-кишковий тракт

О вестибулярний апарат

О викликає запаморочення, оніміння кінцівок

О захворювання суглобів

Тривалий вплив вібрації викликає фахове захворювання -- вібраційну хворобу.

Розрізняють загальну і локальну вібрації. Локальна вібрація зумовлена коливаннями інструмента й устаткування, що передаються до окремих частин тіла. При загальній вібрації коливання передаються всьому тілу від механізмів через підлогу, сидіння або робочий майданчик. Найбільш небезпечна частота загальної вібрації 6--9 Гц, оскільки вона збігається з власною частотою коливань внутрішніх органів людини. В результаті цього може виникнути резонанс, це призводить до переміщень і механічних ушкоджень внутрішніх органів. Резонансна частота серця, живота і грудної клітки -- 5 Гц, голови -- 20 Гц, центральної нервової системи -- 250 Гц. Частоти сидячих людей становлять від 3 до 8 Гц.

Основними параметрами, що характеризують вібрацію, є: частота/ (Гц); амплітуда зсуву А (м) (розмір найбільшого відхилення точки, що коливається, від положення рівноваги); коливальна швидкість v (м/с); коливальне прискорення а (м/с2).

У виробничих умовах припустимі рівні шуму і вібрації регламентуються відповідними нормативними документами.

Зниження впливу шуму і вібрації на організм людини досягається такими методами: .

* зменшенням шуму і вібрації у джерелах їхнього утворення;

* ізоляцією джерел шуму і вібрації засобами звуко- і віброізоляції;

* звуко- і вібропоглинання;

* архітектурно-планувальними рішеннями, що передбачають раціональне розміщення технологічного устаткування, машин і механізмів;

* акустичним опрацюванням помешкань; застосуванням засобів індивідуального захисту.

Параметри вібрації

Параметрами вібрації, які виміряють для визначення негативного впливу на організм людини є такими:

1. Частота, Гц

2. Амплітуда А, м.

3. Середнє квадратичне значення віброшвидкості Vt, м/с.

4. Середнє квадратичнє віброприскорення wt, м/с.

5. Відносний показник віброскорості Lv, Дб.

6. Відносний показник віброприскорення Lw, Дб.

Людина є замкнутою системою з частотою коливань 5-9 Гц. Якщо підвести зовнішні коливання з тієї ж частотою - резонансом, то великою мірою можливе повне припинення роботи серця.

Нормування вібрацій визначається їх нормативними характеристиками.

Нормативними характеристиками, що служать для оцінки впливу вібрацій на людину є:

Середньоквадратичні значення віброшвидкості і виброприскорения та їхні показники. Понад 10 Гц - нормуються Vt і wt. Менше 10 - Lw Lv.

По способу передачі на людину вібрація вимірюється в 3 ортогональних осях: x, y, z. Нормування здійснюється в різних інтервалах частот:

Для загальної вібрації - 2, 4, 8, 16, 31.5, 63 Гц

Для локальної - 8, 16, 31.5, 63, 125, 250, 500, 1000 Гц.

Для вимірювання сили вібрації використовують різні прилади і в тому числі віброскоп.

засоби та заходи боротьби з вібрацією.

У автоматизованих виробництвах засобом боротьби є дистанційне керування (виключає контакт) відповідним технологічним процесом. А у неавтоматизованих виробництвах використовують такі засоби та заходи:

1. Зниження вібрації в джерелах їх виникнень:

підвищення точності опрацювання деталей;

оптимізація технологічного процесу;

поліпшення балансування.

2. Відстройка від режимів резонансу (збільшення жорсткості системи);

вибродемпфірування (пружинні віброізолятори).

Поліпшення організації праці вібронебезпечних процесів:

загальна кількість робочого часу в контакті з віброобладнанням не повинна перевищувати зміни;

одноразова дія не повинна перевищувати для локальної - 20 хвилин, для загальної - 40 хвилин.

До лікувально - профілактичних заходів відносяться: масаж; заходи, що загально укріплюють організм; гідропродцедури. Вібрація має властивість кумуляції (накопичення в організмі).

7. Дія електричного струму на організм людини. Основні положення електрозахисту (в побуті та на виробництві)

Чинники, що впливають на наслідки ураження електричним струмом.

Характер впливу електричного струму на організм людини, а відтак і наслідки ураження, залежать від цілої низки чинників, які умовно можна підрозділити на чинники електричного (сила струму, напруга, опір тіла людини, вид та частота струму) та неелектричного характеру (тривалість дії струму, шлях проходження струму через тіло людини, індивідуальні особливості людини, умови навколишнього середовища тощо).

Сила струму, що проходить через тіло людини є основним чинником, який обумовлює наслідки ураження. Різні за величиною струми справляють і різний вплив на організм людини. Розрізняють три основні порогові значення сили струму:

пороговий відчутний струм -- найменше значення електричного струму, що викликає при проходженні через організм людини відчутні подразнення;

пороговий невідпускаючий струм -- найменше значення електричного струму, яке викликає судомні скорочення м'язів руки, в котрій затиснутий провідник, що унеможливлює самостійне звільнення людини від дії струму;

пороговий фібриляційний (смертельно небезпечний) струм -- найменше значення електричного струму, що викликає при проходженні через тіло людини фібриляцію серця.

Нижче наведені порогові значення сили струму при його проходженні через тіло людини по шляху «рука--рука» або «рука--ноги».

Табл.1 Порогові значення змінного та постійного струму

Вид струму

Пороговий

відчутний струм, мА

Пороговий

невідпускаючий струм, мА

Пороговий

фібриляційний струм, мА

Змінний струм частотою 50 Гц

Постійний струм

0,5--1,5

5,0--7,0

6--10

50--80

80--100

300

Струм (змінний та постійний) більше 5 А викликає миттєву зупинку серця, минаючи стан фібриляції.

Таким чином, чим більший струм проходить через тіло людини, тим більшою є небезпека ураження. Однак необхідно зазначити, що це твердження не є безумовним, оскільки небезпека ураження залежить також і від інших чинників, наприклад від індивідуальних особливостей людини.

Значення прикладеної напруги Uп впливає на наслідки ураження, оскільки згідно закону Ома визначає силу струму Іл, що проходить через тіло людини, та його опір Rл:

.

Чим вище значення напруги, тим більша небезпека ураження електричним струмом. Умовно безпечною для життя людини прийнято вважати напругу, що не перевищує 42 В (в Україні така стандартна напруга становить 36 та 12 В), при якій не повинен статися пробій шкіри людини, що призводить до різкого зменшення загального опору її тіла.

Електричний опір тіла людини залежить, в основному, від стану шкіри та центральної нервової системи. Загальний електричний опір тіла людини можна представити як суму двох опорів шкіри та опору внутрішніх тканин тіла. Найбільший опір проходженню струму чинить шкіра, особливо її зовнішній ороговілий шар (епідерміс), товщина якого становить близько 0,2 мм. Опір внутрішніх тканин тіла незначний і становить 300--500 Ом, В цьому можна переконатися, коли до язика прикласти контакти батарейки, при цьому відчувається легке пощіпування. Коли ці ж контакти прикласти до шкіри тіла, то відчутних подразнень не виникає, оскільки опір сухої шкіри (епідермісу) значно більший.

Загальний опір тіла людини змінюється в широких межах -- від 1 до 100 кОм, а іноді й більше. Для розрахунків опір тіла людини умовно приймають рівним Rл = 1 кОм. При зволоженні, забрудненні та пошкодженні шкіри (потовиділення, порізи, подряпини тощо), збільшенні прикладеної напруги, площі контакту, частоти струму та часу його дії опір тіла людини зменшується до певного мінімального значення (0,5--0,7 кОм).

Опір тіла людини зменшується також при захворюваннях шкіри, центральної нервової та серцевосудинної систем, проявах алергічної реакції тощо. Тому нормативні акти про охорону праці передбачають обов'язкові попередній та періодичні медичні огляди працівників (кандидатів у працівники) для встановлення їх придатності щодо обслуговування діючих електроустановок за станом здоров'я.

Вид та частота струму, що проходить через тіло людини, також впливають на наслідки ураження. Постійний струм приблизно в 4--5 разів безпечніший за змінний. Це пов'язано з тим, що постійний струм у порівнянні зі змінним промислової частоти такого ж значення викликає більш слабші скорочення м'язів та менш неприємні відчуття. Його дія, в основному, теплова. Однак, слід зауважити, що вищезазначене стосовно порівняльної небезпеки постійного та змінного струму є справедливим лише для напруги до 500 В. При більш високих напругах постійний струм стає небезпечнішим ніж змінний.

Частота змінного струму також відіграє важливе значення стосовно питань електробезпеки. Так найбільш небезпечним вважається змінний струм частотою 20--100 Гц. При частоті меншій ніж 20 або більшій за 100 Гц небезпека ураження струмом помітно зменшується. Струм частотою понад 500 кГц не може смертельно уразити людину, однак дуже часто викликає опіки.

Тривалість дії струму на організм людини істотно впливає на наслідки ураження: чим більший час проходження струму, тим швидше виснажуються захисні сили організму, при цьому опір тіла людини різко знижується і важкість наслідків зростає. Наприклад, для змінного струму частотою 50 Гц гранично допустимий струм при тривалості дії 0,1 с становить 500 мА, а при дії протягом 1 с -- вже 50 мА).

Шлях проходження струму через тіло людини є важливим чинником. Небезпека ураження особливо велика тоді, коли на шляху струму знаходяться життєво важливі органи -- серце, легені, головний мозок. Існує багато можливих шляхів проходження струму через тіло людини (петель струму), найбільш поширені серед них наведені нижче.

Табл.2 Характеристика найбільш поширених шляхів проходження струму через тіло людини

Шлях струму

Частота виникнення даного шляху струму, %

Частка потерпілих, які втрачали свідомість протягом дії струму, %


Подобные документы

  • Дослідження дії шуму (поєднання різноманітних небажаних звуків) на організм людини. Основні поняття і їх фізичні параметри. Нормування, вимірювання шуму і вібрації та методи боротьби із ними. Захист від дії ультразвуку, інфразвуку, лазерних випромінювань.

    реферат [849,4 K], добавлен 08.03.2011

  • Шум і мікроклімат як екологічні фактори, що впливають на виробничі процеси. Методи і засоби захисту від виробничого шуму. Вібрація як загальнобіологічний шкідливий чинник, що призводить до фахових захворювань. Параметри випромінювань, що іонізують.

    реферат [31,2 K], добавлен 26.01.2010

  • Електротравми на виробництві. Ураження електричним струмом. Швидкість відділення ураженого від струму. Способи штучного дихання. Основні етапи надання допомоги при ураженні людини електричним струмом. Надання першої допомоги до прибуття лікаря.

    контрольная работа [255,8 K], добавлен 09.06.2013

  • Поняття про виробничу вібрацію, її дія на організм людини та продуктивність праці. Нормування та засоби оцінки вібрацій. Характеристика методів для захисту від вібрації. Заходи з підвищення захисних властивостей організму та трудової активності.

    реферат [36,3 K], добавлен 12.08.2011

  • Характеристика шуму, історія боротьби з ним. Параметри, які характеризують шум. Схеми акустичного розрахунку для різних джерел, нормування шуму. Дія шуму на організм людини у вигляді специфічного ураження органів слуху, порушень з боку органів і систем.

    реферат [1,1 M], добавлен 19.09.2010

  • Державний нагляд, відомчий, громадянський та регіональний контроль за охороною праці. Відповідальність за порушення законодавства та нормативних актів. Фактори, що визначають небезпечність ураження електрострумом. Методи захисту від шуму та вібрації.

    контрольная работа [55,0 K], добавлен 30.05.2009

  • Дія електричного струму на організм людини, основні причини травматизму і заходи його попередження. Класифікація приміщень за ступенем небезпеки ураження та її аналіз у різних мережах. Поняття напруг крокової та дотикання. Індивідуальні засоби захисту.

    реферат [1,0 M], добавлен 08.03.2011

  • Основні заходи для запобігання ураження електричним струмом у нормальному режимі роботи машини, головні вимоги до них та значення на небезпечному виробництві. Основна ізоляція струмовідних частин. Захисне замикання. Заходи захисту комбінованої дії.

    контрольная работа [386,0 K], добавлен 20.03.2011

  • Електронебезпека - можливість людини зазнати небезпечного впливу електричного струму. Способи та засоби захисту працівників автотранспортного підприємства від ураження електричним струмом під час дотику до струмоведучих частин електроустаткування.

    реферат [23,7 K], добавлен 02.12.2011

  • Чинники, що впливають на тяжкість ураження людини електричним струмом. Методи зниження ризику під час грози на відкритій місцевості. Удар струму низької напруги, що виявляється ознаками специфічної дії електричного струму: підвищення тиску, аритмія.

    презентация [3,7 M], добавлен 24.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.