Электростатические поля

Изучение электростатического поля, которое характеризуется неподвижными электрическими зарядами и стационарными полями постоянного тока. Средства защиты от статического электричества, такие как экранирование источника постоянного тока и рабочего места.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 11.07.2010
Размер файла 22,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. Электростатические поля

2. Электростатическое поле на рабочем месте

3. Принципы нормирования

4. Способы защиты

Список используемой литературы

1.Электростатические поля

Это поля неподвижных электрических зарядов либо стационарные электрические поля постоянного тока. Они достаточно широко используются в промышленности для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и т. д. Вместе с тем существует целый ряд производств и технологических процессов по изготовлению, обработке и транспортировке диэлектрических материалов, где отмечается образование электростатических зарядов и полей, вызванных электризацией перерабатываемого продукта (текстильная, деревообрабатывающая, целлюлознобумажная, химическая промышленность и др.) В энергосистемах ЭСП образуются вблизи работающих электроустановок, распределительных устройств и ЛЭП постоянного тока высокого напряжения. При этом имеет место также повышенная ионизация воздуха (напр., в результате коронных разрядов) и возникновение ионных токов.

Основными физическими параметрами ЭСП являются напряженность поля и потенциалы его отдельных точек. Напряженность ЭСП - векторная величина; определяется отношением силы, действующей на точечный заряд, к величине этого заряда, измеряется в вольтах на метр (В/м). Энергетические характеристики ЭСП определяются потенциалами точек поля.
ЭСП - фактор, обладающий сравнительно низкой биологической активностью. В 60-е гг. XX в. биологическое действие ЭСП связывали с электрическими разрядами, возникающими при контакте человека с заряженными или незаземленными предметами. Именно с ним связывали возможное развитие невротических реакций, в т. ч. фобий. В последующие годы ученые пришли к выводу, что ЭСП само по себе обладает биологической активностью. Выявляемые у работающих в условиях воздействия ЭСП нарушения, носят, как правило, функциональный характер и укладываются в рамки астеноневротического синдрома и вегетососудистой дистонии. В симптоматике преобладают субъективные жалобы невротического характера (головная боль, нарушение сна, ощущение «удара током» и т. п.). Объективно обнаруживаются не резко выраженные функциональные сдвиги, не имеющие каких-либо специфических проявлений. Кровь устойчива к воздействию ЭСП. Отмечается лишь некоторая тенденция к снижению показателей красной крови (эритроциты, гемоглобин), незначительному лимфоцитозу и моноцитозу. Биоэффекты сочетанных влияний на организм ЭСП и аэроионов свидетельствуют о синергизме в действии факторов. При этом превалирующим фактором выступает ионный ток, возникающий в результате движения аэроионов ЭСП. При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей-диэлектриков на изолированных от земли металлических частях производственного оборудования возникает относительно земли электрическое напряжение порядка десятков киловольт. Так, при движении резиновой ленты транспортера и в устройствах ременной передачи на ленте (ремне) и на роликах (шкивах) возникают электростатические заряды противоположных знаков большей величины, а потенциалы их: достигают 45 кВ. Основную роль при этом играют влажность и давление воздуха и состояние поверхностей лент (ремней) и роликов (шкивов), а также скорость относительного движения (пробуксовки). Аналогично происходит электризация: и при сматывании тканей, бумаги, пленки и др. При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает. В аэрозолях электрические заряды образуются от трения частиц пыли друг о друга и о воздух. Причинами электризации пыли могут быть непосредственная адсорбция заряда из окружающего воздуха вместе с адсорбируемым газом. Потенциалы заряженных частиц пыли могут достигать значений: до 10 кВ в зависимости от концентрации пыли в воздухе, размера и скорости движения частиц пыли и относительной влажности воздуха. Применяемое на электроподстанциях минеральное (трансформаторное) масло в процессе его переливания (например, слив из цистерны в бак) также подвергается электризации. В случае, если металлическая емкость или автоцистерна не заземлены, то в процессе налива они окажутся электрически заряженными. Электрические заряды на частях производственного оборудования могут взаимно нейтрализоваться при некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования. Но в отдельных случаях; когда электростатические заряды велики, а влажность воздуха незначительна, может возникнуть быстрый искровой разряд между частями оборудования или разряд на землю. Энергия такой электрической искры может оказаться достаточно большой для воспламенения горючей или взрывоопасной смеси. Например, для многих паро и газовоздушных взрывоопасных смесей требуется сравнительно небольшая энергия воспламенения, всего лишь около 0,0003 Вт/с. Практически при напряжении 3000 В искровой разряд может вызвать воспламенение почти всех паро и газовоздушных смесей, а при 5000 В воспламенение большей части горючих пылей и волокон. Таким образом, возникающие в производственных условиях электростатические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем последующие разряды с тела человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызывать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого движения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение).

2.Электростатическое поле на рабочем месте

Электростатическое поле -- это электрическое поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними. Как и переменное электрическое поле, электростатическое поле характеризуется напряженностью, силовые линии которой не замкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных. Причинами электризации пыли могут быть непосредственная адсорбция заряда из окружающего воздуха вместе с адсорбируемым газом. Потенциалы заряженных частиц пыли могут достигать значений: до 10 кВ в зависимости от концентрации пыли в воздухе, размера и скорости движения частиц пыли и относительной влажности воздуха. Применяемое на электроподстанциях минеральное (трансформаторное) масло в процессе его переливания (например, слив из цистерны в бак) также подвергается электризации. В случае если металлическая емкость или автоцистерна не заземлены, то в процессе налива они окажутся электрически заряженными.Электрические заряды на частях производственного оборудования могут взаимно нейтрализоваться при некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования. Но в отдельных случаях; когда электростатические заряды велики, а влажность воздуха незначительна, может возникнуть быстрый искровой разряд между частями оборудования или разряд на землю. Энергия такой электрической искры может оказаться достаточно большой для воспламенения горючей или взрывоопасной смеси. Например, для многих паро- и газовоздушных взрывоопасных смесей требуется сравнительно небольшая энергия воспламенения, всего лишь около 0,0003 Вт/с. В ряде случаев статическая электризация тела человека и затем последующие разряды с тела человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызывать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого движения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение).Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением производственного оборудования и емкостей для хранения легковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел путем повышения влажности воздуха или применением антистатических примесей к основному продукту (жидкости, резиновые изделия и др.); ионизацией воздуха с целью увеличения его электропроводности. Каждая система аппаратов и трубопроводов, заполняемых электризуемыми жидкостями, должна быть в пределах цеха заземлена не менее чем в двух местах. Автоцистерны во время налива или слива горючих жидкостей должны быть заземлены.Эффективным методом для устранения электризации нефтепродуктов является метод введения в основной продукт специальных антистатических веществ (присадок).Кроме того, для уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты, поэтому сливной шланг (рукав) следует опускать до самого дна цистерны или другой какой-либо емкости. Металлические наконечники этих сливных шлангов во избежание проскакивания искр на землю или заземленные части оборудования следует заземлять гибким медным проводником. В качестве присадки для увеличения электропроводности нефтепродуктов применяют в количестве около 0,001-0,003% олеат хрома, что практически не влияет на их физико-химические свойства. Антистатические вещества (графит, сажа) вводят и в состав резинотехнических изделий, что повышает их электропроводность. Так, резиновые шланги для налива и перекачки легковоспламеняющихся жидкостей изготовляют из маслобензостойкой электропроводящей резины, что в значительной степени снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны).

3.Принципы нормирования

В соответствии с «Санитарно-гигиеническими нормами допустимой напряженности электростатического поля» ГН 1757-77 и ГОСТ 12.1.045-84 ССБТ «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» (см. приложение) предельно допустимая величина напряженности ЭСП на рабочих местах устанавливается в зависимости от времени воздействия в течение рабочего дня.
Предельно допустимая напряженность ЭСП на рабочих местах обслуживающего персонала не должна превышать следующих величин: при воздействии до 1 ч - 60 кВ/м; при воздействии свыше 1 ч до 9 ч величина, определяется расчетным методом. ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни напряженности электростатических полей и плотности ионного тока для персонала подстанций и ВЛ постоянного тока ультравысокого напряжения» (см. приложение) МУК 6022-91 регламентирует условия сочетанного влияния указанных в названии факторов на персонал, обслуживающий электроустановки постоянного тока ультравысокого напряжения. В соответствии с требованиями документа ПДУ ЭСП и плотности ионного тока для полного рабочего дня составляют 15 кВ/м и 20нА/мІ; для 5-часового воздействия - 20 кВ/м и 25 нА/мІ. Контроль уровней ЭСП в настоящее время затруднен. Рекомендованные приборы (ИНЭП-1, ИНЭП-20Д, ИНЭСП-1, ИЭЗ-П, ИНЭП-3) предназначены для измерения напряженности ЭСП на поверхности диэлектриков. Попытки оценивать с их помощью ЭСП в пространстве (на рабочих местах, перед экранами телевизоров, дисплеев и т. п.), ведут к большим погрешностям в результатах измерений. Из разработанных в последнее время приборов можно рекомендовать измеритель электростатического потенциала ИЭСП-01 и измеритель напряженности электростатического поля ПЗ-27.

4.Способы защиты

При выборе средств защиты от статического электричества (экранирование источника поля или рабочего места, применение нейтрализаторов статического электричества, ограничение времени работы и др.) должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке профилактических мероприятий. Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается:

*заземлением металлических и электропроводных элементов оборудования;

*увеличением поверхностей и объемной проводимости диэлектриков;

* установкой нейтрализаторов статического электричества.

Заземление проводится независимо от использования др. методов защиты. Заземляются не только элементы оборудования, но и изолированные электропроводящие участки технологических установок. Более эффективным средством защиты является увеличение влажности воздуха до 65-75 %, когда это возможно по условиям технологического процесса. В качестве средств индивидуальной защиты могут применяться антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и др. средства, обеспечивающие электростатическое заземление тела человека. Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением производственного оборудования и емкостей для хранения легковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел путем повышения влажности воздуха или применением антистатических примесей к основному продукту (жидкости, резиновые изделия и др.); ионизацией воздуха с целью увеличения его электропроводности. Каждая система аппаратов и трубопроводов, заполняемых электризуемыми жидкостями, должна быть в пределах цеха заземлена не менее чем в двух местах. Автоцистерны во время налива или слива горючих жидкостей должны быть заземлены. Эффективным методом для устранения электризации нефтепродуктов является метод введения в основной продукт специальных антистатических веществ (присадок).Кроме того, для уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты, поэтому сливной шланг (рукав) следует опускать до самого дна цистерны или другой какой-либо емкости. Металлические наконечники этих сливных шлангов во избежание проскакивания искр на землю или заземленные части оборудования следует заземлять гибким медным проводником. В качестве присадки для увеличения электропроводности нефтепродуктов применяют в количестве около 0,001- 0,003% олеат хрома, что практически не влияет на их физико-химические свойства. Антистатические вещества (графит, сажа) вводят и в состав резинотехнических изделий, что повышает их электропроводность.

Так, резиновые шланги для налива и перекачки легковоспламеняющихся жидкостей изготовляют из маслобензостойкой электропроводящей резины, что в значительной степени снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны). Защита от электростатической индукции должна выполняться путем присоединения металлических корпусов всего оборудования, аппаратов и металлических конструкций к специальному или защитному заземлению. Один из способов защиты здоровья работников, является отвод зарядов статического электричества, накапливающихся на людях. Позволяет исключить опасность электрических разрядов, которые могут вызвать воспламенение и взрыв взрыво и пожароопасных смесей, а также вредное воздействие статического электричества на человека. Основными мерами защиты являются: устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов; обеспечение работающих токопроводящей обувью, антистатическими халатами.

Средства защиты пользователей компьютеров от ЭМП

В основном из средств защиты предлагаются защитные фильтры для экранов мониторов. Они используется для ограничения действия на пользователя вредных факторов со стороны экрана монитора, улучшает эргономические параметры экрана монитора и снижает излучение монитора в направлении пользователя. Представленные на рынке защитные фильтры для экранов мониторов по назначению делятся на 2 основные группы:

· защитные фильтры, улучшающие эргономические параметры дисплея и ослабляющие инфракрасное, ультрафиолетовое излучения, но не влияющие на электромагнитные параметры;

· защитные фильтры, улучшающие эргономические параметры дисплея, ослабляющие инфракрасное, ультрафиолетовое излучения, ослабляющие электростатическое поле и переменное электрическое поле.

Влияние аэроионного состава воздуха на рабочем месте оператора ПК.

Как известно, в заполненных помещениях, в учебных аудиториях, да еще с персональными компьютерами недостает аэроионов. Это сказывается на работоспособности сотрудников и студентов, их самочувствии, восприятии изучаемого материала. Медициной доказано, что на жизнедеятельность живого организма, в том числе человека, влияет не количество ионов воздуха, а соотношение между положительно и отрицательно заряженными ионами.Кроме недостатка аэроионов оператор ПК при работе подвержен одновременному воздействию других неблагоприятных факторов: электростатическое поле от монитора, мерцание экрана, повышенная нагрузка на глаза и головной мозг. Одним из путей улучшения условий труда является искусственная ионизация воздуха, насыщение его легкими отрицательными ионами. С появлением в рабочем помещении компьютеров и оргтехники, создающих электростатические поля высокой напряженности, появилась необходимость разработки генераторов отрицательных ионов воздуха применительно к рабочему месту оператора компьютера. Ряд фирм, отечественных и зарубежных, представили на рынок такие устройства.

Основные требования, предъявляемые к ионизатору воздуха:

обеспечение необходимого уровня отрицательно заряженных ионов воздуха; индикация работоспособности генератора; небольшой вес и габариты; невысокая стоимость. При наличии потенциала и свободных электронов, вырабатываемых источником электронов, молекулы или же положительные ионы воздуха, при воздействии с источником электронно-ионной эмиссии, приобретают электроны, образуя отрицательно заряженные легкие аэроионы. Применение генератора отрицательных ионов воздуха (люстры Чижевского) на рабочем месте оператора ПК позволяет смещать соотношение между положительными и отрицательными ионами в сторону отрицательных ионов, что положительно влияет на работоспособность. Зонами, воспринимающими аэроионы в организме человека, являются дыхательные пути и кожа. Единого мнения относительно механизма воздействия аэроионов на состояние здоровья человека нет. Недостаток содержания легких аэроионов в помещениях с персональными компьютерами приводит к выраженному негативному эффекту. Субъективно недостаток легких аэроионов во вдыхаемом воздухе выражается в ощущении несвежести воздуха и нехватки кислорода. Наибольшее число жалоб, предъявляемых в условиях аэроионной недостаточности: неудовлетворительное самочувствие, повышенная утомляемость, частые головные боли, повышенное давление. Также негативно сказывается преобладание положительных аэроионов, которое может приводить к ухудшению самочувствия людей, бессоннице, утомлению, снижению работоспособности.

Список используемой литературы

1.Глобальная экологическая проблема. М.: Мысль, 1988.

2. «Безопасность жизнедеятельности» Под ред. С. В. Белова.- 3-е изд., перераб.- М.: Высш. шк., 2001.

3. «Экология, окружающая среда и человек»: Учеб. пособие. - М: ФАИР-ПРЕСС, Новиков Ю.В. 1999. - 320 с.

4. «Экология и экологическая безопасность: Учеб. пособие.» - М.: ACADEMA, Хотунцев Ю.Л. 2002. - 480с.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.