Ядерный взрыв

Радиоактивное воздействие ядерного взрыва на поверхность, природу и людей, ее населяющих. Предельные условия развития в ядерном веществе цепной реакции. Различия подземного и наземного взрыва. Характеристика термоядерных бомб, их энергии и мощности.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 03.03.2010
Размер файла 16,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство по чрезвычайным ситуациям Республики Беларусь

Гомельский инженерный институт МЧС

Реферат

по дисциплине: Безопасность жизнедеятельности

на тему: «Ядерный взрыв»

Выполнил:

слушатель 5 курса группы А-53

лейтенант внутренней службы

Новосельцев В. А.

Гомель 2009

Ядерный взрыв

Ядерный взрыв, грандиозный по своим масштабам и разрушительной силе взрыв, вызываемый высвобождением ядерной энергии. К возможности овладения ядерной энергией физики вплотную подошли в начале второй мировой войны 1939 - 45. Первая так называемая атомная бомба была создана в США объединёнными усилиями большой группы крупнейших учёных, многие из которых эмигрировали из Европы, спасаясь от гитлеровского режима. Первый испытательный Ядерный взрыв был произведён 16 июля 1945 близ Аламогордо (штат Нью-Мексико, США); 6 и 9 августа 1945 две американские атомные бомбы были сброшены на японские города Хиросима и Нагасаки (см. Ядерное оружие). Энергия первых Ядерный взрыв оценивалась примерно в 1021 эрг (1014 дж), что эквивалентно выделению энергии при взрыве около 20 тыс. т (кт) тротила (энергию Ядерный взрыв обычно характеризуют его тротиловым эквивалентом). В СССР первый атомный взрыв был осуществлен в августе 1949, а 12 августа 1953 в СССР было проведено первое испытание значительно более мощной водородной бомбы. В дальнейшем ядерные державы производили испытательные Ядерный взрыв с энергиями до десятков млн. т (Мт) тротилового эквивалента.

К Ядерный взрыв может привести либо ядерная цепная реакция деления тяжёлых ядер (например, 235U и 239Pu), либо термоядерная реакция синтеза ядер гелия из более лёгких ядер. Ядра 235U и 239Pu делятся при захвате нейтрона на два осколочных ядра средней атомной массы; при этом рождается также несколько нейтронов (обычно два-три). Сумма масс всех дочерних частиц меньше массы исходного ядра на величину Dm, называемую дефектом массы. Дефекту массы, согласно соотношению А. Эйнштейна, отвечает энергия DЕ = Dm Ч c2 (с -- скорость света), которая представляет собой энергию связи продуктов деления в исходном ядре. Высвобождение этой энергии при быстро развивающейся цепной ядерной реакции деления и приводит к взрыву. На одно делящееся ядро энергия DE составляет около 200 Мэв. В 1 кг 235U или 239Pu содержится 2,5 Ч 1024 ядер. При делении всех этих ядер выделяется огромная энергия, равная примерно 1021 эрг.

Возможность протекания цепной реакции деления обусловлена тем, что в акте деления рождается более одного нейтрона. Каждый из них также может произвести деление ядер. Следующее поколение нейтронов делит другие ядра и т. д.

Например, если по два нейтрона каждого поколения производят деление, то через 80 поколений реакция, начавшаяся с одного нейтрона, приведёт к распаду всех ядер 1 кг делящегося вещества. Обычно не все нейтроны вызывают деление ядер, часть из них теряется. Если потери слишком велики, то цепная реакция развиться не может. Вероятность потери отдельного нейтрона тем выше, чем меньше линейные размеры и масса делящегося вещества.

Предельные условия, когда в веществе может развиться цепная реакция, называются критическими. Они характеризуются плотностью, геометрией, массой вещества (например, существует критическая масса). Делящееся вещество в ядерном заряде располагают так, чтобы оно находилось в докритических условиях (например, чтобы масса была рассредоточена). В нужный момент осуществляются сверхкритические условия (всю массу собирают вместе), и тогда инициируется цепная реакция. Собрать всю массу необходимо очень быстро, для того чтобы реакция протекала при возможно большей степени сверхкритичности и до разлёта нагревающегося вещества успела бы прореагировать возможно большая его доля. Возможности повышения мощности Ядерный взрыв, основанного на цепной реакции деления ядер, практически ограничены, т. к. очень трудно большую массу делящегося вещества, вначале расположенную в докритической форме, достаточно быстро превратить в сверхкритическую.

Ядерный взрыв большой мощности с эквивалентом в миллионы и десятки млн. т тротила основаны на использовании реакции термоядерного синтеза. Основная реакция здесь -- превращение двух ядер тяжёлых изотопов водорода (дейтерия 2H и трития 3H) в ядро гелия 4He и нейтрон. В одном акте выделяется энергия 17,6 Мэв. При полном превращении 1 кг тяжёлого водорода выделяется энергия, примерно в 4 раза превышающая энергию деления 1 кг 235U или 239Pu. Для того чтобы положительно заряженные ядра 2H и 3H могли столкнуться и испытать превращение, они должны преодолеть действующие между ними электрические силы отталкивания, т. е. обладать значительной скоростью (кинетической энергией). Поэтому термоядерная реакция, используемая в водородной бомбе, протекает при очень высоких температурах -- порядка десятков млн. градусов, что достигается при Ядерный взрыв атомной бомбы, применяемой в качестве «запала» в водородной бомбе. Поскольку водород в обычном состоянии представляет собой газ, при осуществлении термоядерного взрыва используют твёрдые водородсодержащие вещества 6Li 2H, 6Li 3H. Ядра лития и сами участвуют в термоядерной реакции, повышая энергетический выход термоядерного взрыва.

Непосредственно после завершения ядерной реакции к моменту времени 10-7 сек, отсчитываемому от её начала, выделившаяся энергия оказывается сосредоточенной в весьма ограниченных массе и объёме (порядка 1 т и 1 м3). температура и давление при этом достигают колоссальных величин порядка 10 млн. градусов и миллиарда атмосфер. Существенная доля энергии высвечивается этим нагретым веществом в виде мягкого рентгеновского излучения, которое, однако, может распространиться на большое расстояние только при Ядерный взрыв в чрезвычайно разреженной атмосфере -- на высотах порядка 100 км и выше.

Во всех остальных случаях -- при взрывах в воздухе на не очень больших высотах, под землёй, под водой -- почти вся энергия взрыва переходит в среду, непосредственно окружающую вещество ядерного заряда: воздух, землю, воду. Под действием высокого давления в окружающей среде возникает сильная ударная волна. Ядерный взрыв порождает также проникающую радиацию -- потоки гамма-квантов и нейтронов, которые уносят несколько процентов от всей энергии взрыва и распространяются в воздухе при атмосферном давлении на много сотен метров.

Воздух в ударной волне Ядерный взрыв нагревается до сотен тыс. градусов и начинает ярко светиться, возникает так называемый огненный шар. Вначале поверхность огненного шара совпадает с фронтом ударной волны, и они вместе расширяются с большой скоростью. Например, при Ядерный взрыв, эквивалентном 20 кт, в воздухе атмосферного давления через 10-4 сек радиус огненного шара равен примерно 14 м; через 0,01 сек -- 100 м. На этой стадии происходит отрыв ударной волны от границы огненного шара. Ударная волна, уже не вызывая свечение, уходит далеко вперёд; расширение огненного шара замедляется, а затем вовсе прекращается. Через 0,1 сек радиус огненного шара достигает своей максимальной величины -- примерно 150 м; температура свечения в этой стадии составляет около 8000 К. Через 1 сек яркость свечения начинает падать, и через 2 - 3 сек свечение практически прекращается.

Всего на световое излучение приходится примерно треть всей энергии взрыва. Это излучение, более яркое, чем излучение Солнца, оказывает очень сильное поражающее действие, вызывая даже на расстоянии 2 км пожары, обгорание предметов, ожоги у людей и животных. Через 10 сек ударная волна уходит на расстояние 3,7 км от центра Ядерный взрыв Сильное разрушающее действие на дома, промышленные постройки, военную технику ударная волна Ядерный взрыв в 20 кт оказывает на расстоянии до 1 км.

Нагретый воздух огненного шара после прекращения свечения, будучи менее плотным, чем окружающий воздух, поднимается вверх под действием архимедовой силы. В процессе подъёма нагретый воздух расширяется и охлаждается, в нём происходит конденсация паров воды. Так образуется характерное клубящееся облако Ядерный взрыв поперечником в сотни м. Через минуту оно достигает высоты 4 км, через 10 мин -- 10 км. В дальнейшем это облако, содержащее продукты ядерных реакций, разносится ветрами и воздушными течениями на расстояния в десятки и сотни км. Продукты деления ядер обладают радиоактивностью, они испускают g -кванты и электроны. Под действием радиоактивности и вследствие выпадения радиоактивных осадков происходит радиоактивное заражение местности в области следа облака, которое является одним из опаснейших последствий Ядерный взрыв, вызывая лучевую болезнь у людей и животных.

Особенно опасны в отношении радиоактивного действия Ядерный взрыв на малой высоте, когда огненный шар при своём расширении касается поверхности Земли, вверх вздымается огромный столб пыли и земли, и радиоактивные продукты впоследствии выпадают вместе с пылью. Радиус действия ударной волны приблизительно пропорционален корню кубическому из значения энергии, выделяющейся при взрыве. Например, радиус очень сильного разрушающего действия Ядерный взрыв в 20 Мт примерно в 10 раз больше, чем для Ядерный взрыв в 20 кт, т. е. порядка 10 км. Такой взрыв может уничтожить большой город.

При Ядерный взрыв на очень больших высотах, выше 100 - 200 км, также возникают ударная волна и огненный шар, но в световое излучение переходит значительно меньшая доля энергии Ядерный взрыв, т. к. вследствие сильной разреженности воздух излучает свет гораздо слабее. Одним из важнейших последствий высотного Ядерный взрыв являются возникновение больших областей повышенной ионизации с радиусом в десятки и даже сотни км и возмущение атмосферы. Ионизация вызывается действием рентгеновского и g-излучении (а также нейтронов) и приводит к серьёзным нарушениям в работе средств радиолокации и радиосвязи. Высотные Ядерный взрыв, осуществленные в 1958 - 62 в США, показали, что устойчивая радиосвязь может прерываться на десятки мин.

При подводном взрыве примерно половина всей энергии содержится в первичной ударной волне, которая и производит основные разрушения. Для подводного взрыва характерно образование большого пузыря вокруг центра взрыва, который совершает пульсирующие движения, затухающие с течением времени. Вторичные волны, излучаемые за счёт пульсаций пузыря, оказывают значительно меньшее действие, чем первичная ударная волна. Радиус сильного разрушающего действия, приводящего к нототению кораблей (при Ядерный взрыв в 20 кт на небольшой глубине), составляет ~ 0,5 км. При подводном Ядерный взрыв появляется «султан» -- огромный столб над поверхностью воды, состоящий из водяной пыли и брызг. Возникают также сильные поверхностные волны, которые распространяются на многие км (при взрыве в 20 кт на расстоянии 3 км от эпицентра взрыва высота гребня волны достигает 3 м).

При подземном Ядерный взрыв разрушения производит также ударная волна. Как и при подводном взрыве, в центре возникает газовый пузырь высокого давления. При неглубоком взрыве образуется огромная воронка, в воздух поднимается столб пыли и земли. Подземный Ядерный взрыв вызывает толчок, по своему действию аналогичный землетрясению. По своей энергии Ядерный взрыв в 20 кт можно сравнить с землетрясением силой в 5 М (магнитуд) по шкале Рихтера (см. Магнитуда землетрясения). Ядерный взрыв водородной бомбы в 20 Мт соответствует землетрясению с силой 7 М. Сейсмические волны подземных Ядерный взрыв регистрируются на расстояниях в тысячи км от места взрыва.

Подземные Ядерный взрыв применялись в мирных целях для крупномасштабных горных работ, добычи полезных ископаемых и др. Различают заглубленный Ядерный взрыв наружного действия и подземного (камуфлетного), когда радиус разрушающего действия не достигает поверхности земли. Ядерный взрыв наружного действия, с помощью которых можно направленно перемещать огромные массы горных пород (для вскрытия месторождений полезных ископаемых, строительства каналов, набросных плотин, водоёмов, искусственных гаваней и т. п.), требуют создания ядерных устройств и методов их детонации, гарантирующих отсутствие радиоактивного загрязнения атмосферы и полную безопасность биосферы. Камуфлетные Ядерный взрыв осуществляются при заглублении заряда до нескольких км. Эти взрывы интенсифицируют разработку истощённых нефтяных и газовых месторождений, создают (в пластичных породах) ёмкости-хранилища (для природного газа, нефтепродуктов, захоронения отходов и т. п.), позволяют дробить крепкие рудные тела (для их извлечения), ликвидируют аварийные газовые и нефтяные фонтаны.

В отличие от ядерных реакторов, в которых происходит регулируемая ядерная реакция деления, при ядерном взрыве происходит экспоненциально быстрое освобождение большого количества ядерной энергии, продолжающееся до тех пор, пока не израсходуется весь ядерный заряд. Ядерная энергия может освобождаться в больших количествах в двух процессах - в цепной реакции деления тяжёлых ядер нейтронами и в реакции соединения (синтеза) лёгких ядер. Обычно в качестве ядерного заряда используют чистые изотопы 235U и 239Pu.

Для осуществления ядерного взрыва в результате цепной реакции деления необходимо, чтобы масса делящегося вещества (урана-235, плутония-239 и др.) превышала критическую (50 кг для 235U и 11 кг для 239Pu). До взрыва система должна быть подкритической. Обычно это многослойная конструкция. Переход в надкритическое состояние происходит за счет делящегося вещества с помощью сходящейся сферической детонационной волны. Для такого сближения обычно используется химический взрыв вещества из сплава тротила и гексогена. При полном делении 1 кг урана выделяется энергия равная энерговыделению при взрыве 20 килотонн тротила. Атомный взрыв развивается за счёт экспоненциально растущего со временем числа разделившихся ядер.

N(t) = N0exp(t/) (1)

Среднее время между двумя последовательными актами деления 10-8 сек. Отсюда можно получить для времени полного деления 1 кг ядерной взрывчатки величину 10-7 - 10-6 сек. Это и определяет время атомного взрыва. В результате большого энерговыделения в центре атомной бомбы температура поднимается до 108 К, а давление - до 1012 атм. Вещество превращается в разлетающуюся плазму.

Для осуществления термоядерного взрыва используются реакции синтеза лёгких ядер.

Сама идея водородной бомбы чрезвычайно проста. Это цилиндрический контейнер с жидким дейтерием. Дейтерий должен нагреваться после взрыва обычной атомной бомбы. При достаточно сильном нагреве должно выделятся большое количество энергии в результате реакции термоядерного синтеза между ядрами дейтерия.

Температура, необходимая для начала термоядерной реакции должна составлять миллион градусов. Однако детальное исследование величины сечений реакций синтеза ядер дейтерия, от которой зависит скорость распространения реакции горения показало, что она протекает недостаточно эффективно и быстро. Тепловая энергия, которая высвобождается за счет термоядерных реакций, рассеивается гораздо быстрее, чем пополняется за счет последующих реакций синтеза. Естественно в этом случае взрывной процесс происходить не будет. Произойдет разброс горючего материала.

Принципиально новое решение состояло в том, чтобы инициирование термоядерной реакции происходило в результате создания сверхплотной среды дейтерия. Был предложен способ создания сверхплотной среды дейтерия под действием рентгеновского излучения, образующегося при взрыве атомной бомбы. В результате сжатия горючего вещества происходит самоподдерживающаяся реакция термоядерного синтеза.

После взрыва ядерного заряда, рентгеновские лучи, спущенные из области ядерного заряда распространяются по пластмассовому наполнителю, ионизуя атомы углерода и водорода. Урановый экран, расположенный между областью ядерного заряда и объемом с дейтеридом лития предотвращает преждевременный нагрев дейтерида лития.

Под действием рентгеновских лучей и высокой температуры в результате абляции возникает огромное давление, сжимающее капсулу с дейтеридом лития. Плотности материала капсулы возрастают в десятки тысяч раз. Находящийся в центре плутониевый стержень в результате сильной ударной волны также сжимается в несколько раз и переходит в надкритическое состояние. Быстрые нейтроны, образовавшиеся при взрыве ядерного заряда, замедлившись в дейтериде лития до тепловых скоростей, приводят к цепным реакциям деления плутония, что действует наподобие дополнительного запала, вызывает дополнительные увеличения давления и температуры. Температура, возникающая в результате термоядерной реакции повышается до 300 млн. К., что и приводит в конечном счете к взрывному процессу. Весь процесс взрыва длится в течение десятых долей микросекунды.

Термоядерные бомбы значительно мощнее атомных. Обычно их тротиловый эквивалент 100 - 1000 кт (у атомных бомб он 1 - 20 кт). При ядерном взрыве в воздухе образуется мощная ударная волна. Радиус поражения обратно пропорционален кубическому корню из энергии взрыва. Для ядерной бомбы 20 кт он около 1 км.

Освободившаяся энергия в течение нескольких мкс передаётся окружающей среде. Образуется ярко светящийся огненный шар. Через 10-2 - 10-1 сек он достигает максимального радиуса 150 м, температура его падает до 8000  К (ударная волна уходит далеко вперёд). За время свечения (секунды) в электромагнитное излучение переходит 10 - 20 % энергии взрыва. Разреженный нагретый воздух, несущий поднятую с земли радиоактивную пыль, за несколько минут достигает высоты 10 - 15 км. Далее радиоактивное облако расплывается на сотни километров. Ядерный взрыв сопровождается мощным потоком нейтронов и электромагнитного излучения.

Используемая литература

1. Действие ядерного оружия, пер. с англ., М., 1960; Зельдович Я. Б., Райзер Ю. П.

2. Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966; Коул Р.

3. Подводные взрывы, пер. с англ., М., 1950.

4. Подземные ядерные взрывы, пер. с англ., М., 1962.

5. Ядерный взрыв в космосе, на земле и под землей, пер. с англ., М., 1974.

6. Атомные взрывы в мирных целях, М., 1970; Израэль Ю. А.

7. Мирные ядерные взрывы и окружающая среда, Л., 1974.


Подобные документы

  • Поражающие факторы наземного ядерного взрыва и их воздействие на человека. Расчет поражающего действия ударной воздушной волны. Оценка химической обстановки на объекте экономики при разрушении емкости со СДЯВ. Оказание помощи при отравлении аммиаком.

    контрольная работа [40,8 K], добавлен 25.05.2013

  • Ядерный взрыв как процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза. Его последствия и правила поведения. Негативное воздействие на жизнь, окружающую среду.

    презентация [1,8 M], добавлен 18.04.2016

  • Сущность и признаки взрыва. Основные поражающие факторы, действующие при этом, зоны действия взрыва. Его действие на здания, сооружения, оборудование. Поражение человека. Правила безопасного поведения при угрозе взрыва, последствия и поведение после него.

    презентация [703,8 K], добавлен 08.08.2014

  • Несчастные случаи на воде. Виды утоплений: сухое, истинное и синкопальное. Причины гибели людей на воде: неумение плавать, купание в состоянии алкогольного и наркотического опьянения, нарушение навигационных правил. Поражающие факторы ядерного взрыва.

    контрольная работа [77,3 K], добавлен 21.07.2013

  • Происхождение и классификация взрывчатых веществ. Основные свойства взрывчатых веществ. Особенности факторов поражения и зоны действия взрыва. Последствия воздействие взрыва на человека. Техника предотвращения взрывов. Действия населения при взрывах.

    реферат [23,6 K], добавлен 22.02.2008

  • Защита населения от современных средств поражения как главная задача гражданской обороны. Метод расчёта коэффициента защищённости противорадиационного укрытия. Границы очага ядерного поражения и радиусы зон разрушения после воздушного ядерного взрыва.

    курсовая работа [56,0 K], добавлен 04.06.2010

  • Кратковременное высвобождение внутренней энергии, создающее избыточное давление. Особенности физического взрыва и его энергетический потенциал. Тротиловый эквивалент. Определение категории помещений и зданий по взрывопожарной и пожарной опасности.

    контрольная работа [94,5 K], добавлен 28.04.2011

  • Основные поражающие факты ядерного взрыва: зоны поражения, методы защиты населения. Экономическая безопасность: возможные угрозы, криминализация экономики. Опасные геологические процессы на городских территориях. Порядок и принципы тушения пожаров.

    контрольная работа [43,9 K], добавлен 14.03.2011

  • Общие положения, мероприятия по пожарной профилактике. Процессы и условия горения и взрыва, свойства веществ и материалов, применяемых в технологическом процессе, способов и средств защиты от пожара и взрыва. Состояние пожароопасности населенных пунктов.

    реферат [88,4 K], добавлен 12.05.2009

  • Источники и причины возникновения природных чрезвычайных ситуаций. Признаки возможных поражений людей и способы защиты от ядерного взрыва. Действия отравляющих веществ на организм человека. Конструкция защитных устройств. Санитарная обработка людей.

    контрольная работа [23,5 K], добавлен 23.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.